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Abstract

In this paper we propose new techniques to extract features from protein se-

quences. We then use the features as inputs for a Bayesian neural network (BNN)

and apply the BNN to classifying protein sequences obtained from the PIR protein

database maintained at the National Biomedical Research Foundation. To evaluate

the performance of the proposed approach, we compare it with other protein classi-

�ers built based on sequence alignment and machine learning methods. Experimental

results show the high precision of the proposed classi�er and the complementarity of

the bioinformatics tools studied in the paper.
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1 Introduction

As a result of the Human Genome Project and related e�orts, DNA, RNA and protein

data accumulate at an accelerating rate. Mining these biological data to extract useful

knowledge is essential in genome processing. This subject has recently gained signi�-

cant attention in the bioinformatics community [1, 3, 10, 13, 15, 35]. We present here a

case study in extracting features from protein sequences and using them together with a

Bayesian neural network to classify the sequences.

The problem studied here can be stated formally as follows. Given are an unlabeled

protein sequence S and a known superfamily F . We want to determine whether or not S

belongs to F . (We refer to F as the target class and the set of sequences not in F as the

non-target class.) In general, a superfamily is a group of proteins that share similarity in

structure and function. If the unlabeled sequence S is detected to belong to F , then one

can infer the structure and function of S. This process is important in many aspects of

bioinformatics and computational biology [26, 36, 38]. For example, in drug discovery, if

sequence S is obtained from some disease X and it is determined that S belongs to the

superfamily F , then one may try a combination of the existing drugs for F to treat the

disease X.

There are several approaches available for protein sequence classi�cation. One approach

is to compare the unlabeled sequence S with the sequences in the target class and the

sequences in the non-target class using an alignment tool such as BLAST [2]. One then

assigns S to the class containing the sequence best matching S.

The second method for protein sequence classi�cation is based on hidden Markov models

(HMMs) [24]. The HMM method (e.g., SAM [20] and HMMer [14]) employs a machine

learning algorithm, which uses probabilistic graphical models to describe time series and

sequence data. It was originally applied to speech recognition [27], and now is also applied

to modeling and analyzing protein superfamilies. It is a generalization of the position

speci�c scoring matrix to include insertion and deletion states. Often, an HMM is built for

each (super)family. One then scores the unlabeled sequence S with respect to the HMM of

a (super)family [31]. If the score is more signi�cant than a cut-o� value, then S is regarded
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as a member of the (super)family.

Another approach for protein sequence classi�cation is to iteratively build a model

either based on hidden Markov models (e.g. SAM-T99 [23]) or based on a position speci�c

weight matrix (e.g. PSI-BLAST [2]). The unlabeled sequence S is used as a seed sequence

and iteratively searched against the (super)family either by the HMM or by the position

speci�c weight matrix.

In the study presented here, we will compare our approach with BLAST, SAM, and the

iterative method using SAM-T99. With hidden Markov models, we choose SAM rather

than HMMer because the former outperforms the latter in protein sequence classi�cation

[22]. With iterative methods, we choose SAM-T99 rather than PSI-BLAST because the

former is more sensitive than the latter in homolog detection [26]. We choose BLAST

as a point of comparison because it represents a di�erent computing paradigm, namely

performing classi�cation simply via alignment. One interesting �nding from our work is

that the compared classi�cation methods complement each other; combining them yields

higher precision than using them individually, as our experimental results will show later.

This is consistent with a previous report [33] in which we gave a preliminary analysis of

the complementarity among our approach, BLAST and SAM.

1.1 Feature Extraction from Protein Data

From a one-dimensional point of view, a protein sequence contains characters from the 20-

letter amino acid alphabet A = fA, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

T, V, W, Yg. An important issue in applying neural networks to protein sequence clas-

si�cation is how to encode protein sequences, i.e., how to represent the protein sequences

as the input of the neural networks. Indeed, sequences may not be the best representation

at all. Good input representations make it easier for the neural networks to recognize un-

derlying regularities. Thus, good input representations are crucial to the success of neural

network learning [19].

We propose here new encoding techniques that entail the extraction of high-level fea-

tures from protein sequences. The best high level features should be \relevant". By
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\relevant," we mean that there should be high mutual information between the features

and the output of the neural networks, where the mutual information measures the average

reduction in uncertainty about the output of the neural networks given the values of the

features.

Another way to look at these features is that they capture both the global similarity

and the local similarity of protein sequences. The global similarity refers to the overall

similarity among multiple sequences whereas the local similarity refers to motifs (or fre-

quently occurring substrings) in the sequences. Sections 2 and 3 elaborate on how to �nd

the global and local similarity of the protein sequences. Section 4 presents our classi�ca-

tion algorithm, which employs the Bayesian neural network originated from Mackay [25].

Section 5 evaluates the performance of the proposed classi�er. Section 6 compares our

approach with the other protein classi�ers. Section 7 concludes the paper.

2 Global Similarity of Protein Sequences

To calculate the global similarity of protein sequences, we adopt the 2-gram, also known

as 2-tuple, method as described in [39]. The 2-gram encoding method extracts various

patterns of two consecutive amino acid residues in a protein sequence and counts the num-

ber of occurrences of the extracted residue pairs.1 For instance, given a protein sequence

PVKTNVK, the 2-gram amino acid encoding method gives the following result: 1 for PV (in-

dicating PV occurs once), 2 for VK (indicating VK occurs twice), 1 for KT, 1 for TN, and 1 for

NV.

We also adopt the 6-letter exchange group fe1; e2; e3; e4; e5; e6g to represent a protein

sequence [37], where e1 2 fH; R; Kg, e2 2 fD; E; N; Qg, e3 2 fCg, e4 2 fS; T; P; A; Gg, e5 2

fM; I; L; Vg, e6 2 fF; Y; Wg. Exchange groups represent conservative replacements through

evolution. These exchange groups are e�ectively equivalence classes of amino acids and

are derived from PAM [12].2 For example, the above protein sequence PVKTNVK can be

1The total number of possible patterns from 2-gram encoding is n2 where n is the number of di�erent

letters, namely 20, in the protein alphabet.
2Both PAM and BLOSUM [18] are amino acid substitution matrices; the latter is derived from the

BLOCKS database [17].
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represented as e4e5e1e4e2e5e1. The 2-gram exchange group encoding for this sequence is:

1 for e4e5, 2 for e5e1, 1 for e1e4, 1 for e4e2, and 1 for e2e5.

For each protein sequence, we apply both the 2-gram amino acid encoding and the

2-gram exchange group encoding to the sequence. Thus, there are 202 + 62 = 436 possible

2-grams in total. If all the 436 2-grams are chosen as the neural network input features, it

would require many weight parameters and training data. This makes it di�cult to train

the neural network|a phenomenon called \curse of dimensionality." Di�erent methods

have been proposed to solve the problem by careful feature selection and by scaling of the

input dimensionality [9, 37]. We propose here to select relevant features (i.e. 2-grams) by

employing a distance measure to calculate the relevance of each feature.3

Let X be a feature and let x be its value. Let P (xjClass = 1) and P (xjClass = 0)

denote the class conditional density functions for feature X, where Class 1 represents the

target class and Class 0 is the non-target class. Let D(X) denote the distance function

between P (xjClass = 1) and P (xjClass = 0), de�ned as [6]

D(X) =

Z
jP (xjClass = 1)� P (xjClass = 0)jdx (1)

The distance measure prefers feature X to feature Y if D(X) > D(Y ). Intuitively, this

means it is easier to distinguish between Class 1 and Class 0 by observing feature X than

feature Y . That is, X appears often in Class 1 and seldom in Class 0 or vice versa. In

our work, each feature X is a 2-gram. Let c denote the occurrence number of the feature

X in a sequence S. Let l denote the total number of 2-grams in S and let len(S) represent

the length of S. We have l = len(S)� 1. De�ne the feature value x for the 2-gram X with

respect to the sequence S as

x =
c

len(S)� 1
(2)

For example, suppose S = PVKTNVK. Then the value of the feature VK with respect to S is

2/(7-1) = 0.33.

Because a protein sequence may be short, random pairings can have a large e�ect on

3The term \distance" is from [6, 11], which address feature selection for classi�cation.
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the result. We approximate D(X) in Equation (1) by [30]

D(X) =
(m1 �m0)

2

d21 + d20
(3)

where m1 and d1 (m0 and d0, respectively) are the mean value and the standard deviation

of the feature X in the positive (negative, respectively) training dataset. Intuitively, in

Equation (3), the larger the numerator is (or the smaller the denominator is), the larger

the interclass distance is, and therefore the easier to separate Class 1 from Class 0 (and

vice versa).

The mean valuem and the standard deviation d of the feature X in a set S of sequences

are de�ned as

m =
1

N

NX
i=1

xi (4)

d =

vuut 1

N � 1

NX
i=1

(xi �m)2 (5)

where xi is the value of the feature X with respect to sequence Si 2 S, and N is the total

number of sequences in S.

Let X1; X2; : : : ; XNg
, Ng � 436, be the top Ng features (2-grams) with the largest

D(X) values.4 Intuitively, these Ng features occur more frequently in the positive training

dataset and less frequently in the negative training dataset. For each protein sequence S

(whether it is a training or an unlabeled test sequence), we examine the Ng features in S,

calculate their values as de�ned in Equation (2), and use the Ng feature values as input

feature values to the Bayesian neural network for the sequence S.

To compensate for the possible loss of information due to ignoring the other 2-grams,

a linear correlation coe�cient (LCC) between the values of the 436 2-grams with respect

to the protein sequence S and the mean value of the 436 2-grams in the positive training

dataset is calculated and used as another input feature value for S. Speci�cally, the LCC

4Our experimental results show that choosing Ng � 30 can yield reasonably good performance provided

one has su�cient (e.g. > 200) training sequences. We have also experimented with di�erent combinations

of 2-grams, e.g., using the top Ng features together with the bottom Ng features with the smallest D(X)

values. The results are worse than using the top Ng features alone.
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of S is de�ned as:

LCC(S) =
436
P436

j=1 xjxj �
P436

j=1 xj
P436

j=1 xjq
436
P436

j=1 x
2
j � (

P436
j=1 xj)

2
q
436
P436

j=1 xj
2 � (

P436
j=1 xj)

2
(6)

where xj is the mean value of the jth 2-gram, 1 � j � 436, in the positive training dataset

and xj is the feature value of the jth 2-gram with respect to S as de�ned in Equation (2).

3 Local Similarity of Protein Sequences

In contrast to the 2-grams that occur from the beginning to the end of a sequence (thus

referred to as global similarities), the local similarity of protein sequences refers to fre-

quently occurring motifs where a motif is composed of substrings occurring in local regions

of a sequence. Let T p = fS1; : : : ; Skg be the positive training dataset. We use a previously

developed sequence mining tool Sdiscover [32, 34] to �nd the regular expression motifs

of the forms �X� and �X � Y � where each motif has length � Len and approximately

matches, within Mut mutations, at least Occur sequences in T p. Here, a mutation could

be a mismatch, an insertion, or a deletion of a letter (residue); Len, Mut, and Occur are

user-speci�ed parameters. X and Y are segments of a sequence, i.e., substrings made up

of consecutive letters, and � is a variable length don't care (VLDC) symbol. The length of

a motif is the number of the non-VLDC letters in the motif. When matching a motif with

a sequence Si, a VLDC symbol in the motif is instantiated into an arbitrary number of

residues in Si at no cost. For example, when matching a motif �VLHGKKVL� with a sequence

MNVLAHGKKVLKWK, the �rst � is instantiated into MN and the second � is instantiated into

KWK. The number of mutations between the motif and the sequence is 1, representing the

cost of inserting an A in the motif.

The Sdiscover tool is based on a heuristic that works by taking a small sample K of

sequences from the given set of sequences T p and storing them in a generalized su�x tree

(GST) [21]. The GST can be constructed asymptotically in O(n) time and space where n

is the total length of all sequences in the sample. The heuristic then traverses the GST

to generate candidate regular expression motifs and compares these candidate motifs with

all the sequences in T p to calculate their occurrence numbers. Given a candidate motif M
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and a sequence S in T p, one can determine whether M is within Mut mutations of S in

O(Mut� jSj) time when O(jM j) = O(log jSj) [40]. Thus Sdiscover can �nd all the motifs

satisfying user-speci�ed parameter values in time O(n�Mut�m�k), where n is the total

length of all sequences in the sample K, m is the average length of the sequences in T p and

k is the total number of sequences in T p, although the tool is practically much faster due

to several optimization heuristics implemented for speeding up the traversal of the GST.

Often, the number of motifs returned by Sdiscover is enormous. It's useful to develop a

measure to evaluate the signi�cance of these motifs. We propose here to use the minimum

description length (MDL) principle [7, 28, 36] to calculate the signi�cance of a motif. The

MDL principle states that the best model (a motif in our case) is the one that minimizes

the sum of the length, in bits, of the description of the model and the length, in bits, of

the description of the data (the positive training sequences in T p in our case) encoded by

the model.

3.1 Evaluating the Signi�cance of Motifs

We adopt information theory in its fundamental form [7, 29] to measure the signi�cance of

di�erent motifs. The theory takes into account the probability of an amino acid in a motif

(or sequence) when calculating the description length of the motif (or sequence). Speci�-

cally, Shannon [29] showed that the length in bits to transmit a symbol b via a channel in

some optimal coding is �log2Px(b), where Px(b) is the probability with which the symbol

b occurs. Given the probability distribution Px over an alphabet �x = fb1; b2; : : : ; bng, we

can calculate the description length of any string bk1bk2 : : : bkl over the alphabet �x by

�
lX

i=1

log2Px(bki) (7)

In our case, the alphabet �x is the protein alphabet A containing 20 amino acids. The

probability distribution Px, or P in our case, can be calculated by examining the occurrence

frequencies of amino acids in the positive training dataset T p. One straightforward way to

describe (or encode) the sequences in T p, referred to as Scheme 1, is to encode sequence

by sequence, separated by a delimiter $. Let dlen(Si) denote the description length of
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sequence Si 2 T p. Then

dlen(Si) = �
20X
j=1

naj log2P (aj) (8)

where aj 2 A, 1 � j � 20; naj is the number of occurrences of aj in Si. For example,

suppose Si = MNVLAHGKKVLKWK is a sequence in T p. Then

dlen(Si) = �(log2P (M) + log2P (N) + 2log2P (V) + 2log2P (L) + log2P (A) + log2P (H)+

log2P (G) + 4log2P (K) + log2P (W)) (9)

Let dlen(T p) denote the description length of T p = fS1; : : : ; Skg. Then the description

length of T p is given by

dlen(T p) =
kX
i=1

dlen(Si) + (k � 1)� dlen($) (10)

Since the description length of the delimiter $, dlen($), is insigni�cant, we can ignore it

and hence

dlen(T p) =
kX

i=1

dlen(Si) (11)

Another method to encode the sequences in T p, referred to as Scheme 2, is to encode

a regular expression motif, say Mj, and then encode the sequences in T p based on Mj.

Speci�cally, if a sequence Si 2 T p can approximately match Mj, then we encode Si based

on Mj. Otherwise we encode Si using Scheme 1.5 Let us use an example to illustrate

Scheme 2. Consider, for example, Mj = �VLHGKKVL�. We encode Mj as 1, �, V, L, H, G, K,

K, V, L, �, $0 where 1 indicates one mutation is allowed in matchingMj with Si and $0 is a

delimiter to signal the end of the motif. Let
P

1 denote the alphabet fa1; a2; : : : ; a20; �; $0g,

where a1; a2; : : : ; a20 are the 20 amino acids. Let P1 denote the probability distribution

over the alphabet
P

1. P1($0) can be approximated by the reciprocal of the average length

of motifs. P1(�) = n(P1($0)), P1(ai) = (1 � (n + 1)P1($0))P (ai), where n denotes the

number of VLDCs in the motif Mj. For a motif of the form �X�, n is 2; for a motif of the

form �X � Y �, n is 3.

5The actual number of sequences in T p that are encoded by Scheme 2 is dependent on motif. For each

motif used in the study presented here, more than 1/10 of the sequences are encoded based on the motif

using Scheme 2.
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Given P1, we can calculate the description length of a motif by substituting the prob-

ability distribution P1 for the probability distribution Px in Equation (7). Speci�cally, let

Mj = �aj1aj2; : : : ; ajk�. Let dlen(Mj) denote the description length, in bits, of the motif

Mj. Then

dlen(Mj) = �(2log2P1(�) + log2P1($0) +
kX

i=1

log2P1(aji)) (12)

For instance, consider again Mj = �VLHGKKVL�. We have

dlen(Mj) = �(2log2P1(�) + log2P1($0) + 2log2P1(V) + 2log2P1(L) + log2P1(H)+

log2P1(G) + 2log2P1(K)) (13)

Sequences that are approximately matched by the motifMj can be encoded with the aid

of the motif. For example, consider again Mj = �VLHGKKVL� and Si = MNVLAHGKKVLKWK.

Mj matches Si with one mutation, representing the cost of inserting an A in the third

position of Mj. The �rst VLDC symbol is instantiated into MN and the second VLDC

symbol is instantiated into KWK. We can thus rewrite Si as MN � SSi � KWK where SSi is

VLAHGKKVL and � denotes the concatenation of strings. Therefore we can encode Si as

M, N, $1; 1, (OI, 3, A); K, W, K, $1. Here $1 is a delimiter, 1 indicates that one mutation

occurs when matchingMj with Si and (OI, 3, A) indicates that the mutation is an insertion

that adds the letter A to the third position of Mj. In general, the mutation operations

involved and their positions can be observed using approximate string matching algorithms

[40]. The description length of the encoded Si based on Mj, denoted dlen(Si;Mj), can be

calculated easily as in Equation (12).

Suppose there are h sequences Sp1 : : : Sph in the positive training dataset T p that can

approximately match the motif Mj. The weight (or signi�cance) of Mj, denoted w(Mj), is

de�ned as

w(Mj) =
hX
i=1

dlen(Spi)� (dlen(Mj) +
hX
i=1

dlen(Spi ;Mj)) (14)

Intuitively, the more sequences in T p approximately matching Mj and the less bits we use

to encode Mj and to encode those sequences based on Mj, the larger weight Mj has.

Using Sdiscover, one can �nd a set S of regular expression motifs of the forms �X� and

�X � Y � from the positive training dataset T p where the motifs satisfy the user-speci�ed
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parameter values Len, Mut and Occur. We choose the top Nl motifs with the largest

weights. Let R denote this set of motifs. Suppose a protein sequence S (whether it is a

training sequence or an unlabeled test sequence) can approximately match, within Mut

mutations, m motifs in R. Let these motifs be M1; : : : ;Mm. The local similarity (LS)

value of S, denoted LS(S), is de�ned as

LS(S) =

(
max1�i�mfw(Mi)g if m 6= 0

0 otherwise
(15)

This LS value is used as an input feature value of the Bayesian neural network for the

sequence S. Note that we use the max operator here to maximize discrimination. In gen-

eral, positive sequences will have large LS values with high probabilities and have small

LS values with low probabilities. On the other hand, negative sequences will have small

LS values with high probabilities and have large LS values with low probabilities.

Remark. Essentially, the proposed scheme is to count amino acids in a sequence (or

motif). This scheme is not complete in the sense that di�erent sequences may have the

same description length when they have the same number of the same amino acids. Second,

there may be multiple ways to align a motifM with a sequence S and hence the description

length of the encoded sequence S based on M may not be unique. As a consequence, the

weight of a motif de�ned in Equation (14) may not be unique (in which case the proposed

heuristic randomly picks one). There are several other approaches for �nding motifs of dif-

ferent forms and for calculating their signi�cance values (see, e.g. [7, 8, 16, 36]). However,

motifs have relatively little e�ect on PIR sequence classi�cation and a combination of the

proposed techniques already yields a very high precision, as our experimental results show

later.

4 The Bayesian Neural Network Classi�er

We adopt the Bayesian neural network (BNN) originated from Mackay [25] to classify

protein sequences.6 There are Ng + 2 input features, including Ng 2-grams, the LCC

6Software available at http://wol.ra.phy.cam.ac.uk/pub/mackay/README.html.
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Figure 1: The Bayesian neural network architecture.

feature described in Section 2 and the LS feature described in Section 3. Thus, a protein

sequence is represented as a vector of Ng+2 real numbers. The BNN has one hidden layer

containing multiple hidden units. The output layer has one output unit, which is based

on the logistic activation function f(a) = 1
1+e�a

. The BNN is fully connected between the

adjacent layers. Fig. 1 illustrates an example BNN model with 2 hidden units.

Let D = fx(m); tmg; 1 � m � N , denote the training dataset including both positive

and negative training sequences. x(m) is an input feature vector including the Ng+2 input

feature values, and tm is the binary (0/1) target value for the output unit. That is, tm

equals 1 if x(m) represents a protein sequence in the target class, and 0 otherwise.

Let x denote the input feature vector for a protein sequence, which could be a training

sequence or a test sequence. Given the architecture A and the weights w of the BNN, the

output value y can be uniquely determined from the input vector x. Because of the logistic

activation function f(a) of the output unit, the output value y(x;w;A) can be interpreted

as P (t = 1jx;w;A), i.e., the probability that x represents a protein sequence in the target
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class given w, A. The likelihood function of the data D given the model is calculated by

P (Djw;A) = �N
m=1y

tm(1� y)1�tm = exp(�G(Djw;A)) (16)

where G(Djw;A) is the cross-entropy error function,

G(Djw;A) = �
NX

m=1

tmlog(y) + (1� tm)log(1� y) (17)

The G(Djw;A) is the objective function in a non-Bayesian neural network training

process and is minimized. This process assumes all possible weights are equally likely. The

weight decay is often used to avoid over�tting on the training data and poor generalization

on the test data by adding a term �
2

Pq
i=1w

2
i to the objective function, where � is the

weight decay parameter (hyperparameter),
Pq

i=1w
2
i is the sum of the squares of all the

weights of the neural network, and q is the number of weights. This objective function

is minimized to penalize the neural network with weights of large magnitudes. Thus, it

penalizes an over-complex model and favors a simple model. However, there is no precise

way to specify the appropriate value of �, which is often tuned o�ine.

In contrast, in the Bayesian neural network, the hyperparameter � is interpreted as the

parameter of a model, and is optimized online during the Bayesian learning process. We

adopt the Bayesian training of neural networks described in [25] to calculate and maximize

the evidence of �, namely P (Dj�;A). The training process employs an iterative procedure;

each iteration involves three levels of inference. Fig. 2 illustrates the training process of

the BNN.

In classifying an unlabeled test sequence S represented by its input feature vector x, the

output of the BNN, P (t = 1jx;w;A), is the probability that S belongs to the target class.

If the probability is greater than the decision boundary 0.5, S is assigned to the target class;

otherwise S is assigned to the non-target class. In general, for an unlabeled test sequence

S with m amino acids, it takes O(m) time to calculate 2-gram feature values, O(m) time

to calculate the LCC feature value, and O(m� n) time to calculate the LS feature value

where n is the total length of the motifs chosen, and constant time for calculating the

probability P (t = 1jx;w;A). Thus, the time complexity of our approach to classifying the

unlabeled test sequence S is O(m� n).
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Try another model ?

Converge ?

No

Yes

Yes

No 

Given the hyperparameter, find the most probable we-

Input training data.

Output the chosen model parameters.

Choose the number of hidden units of the model.
Initialize the hyperparameter and weight parameters.

ights by the training process (the first level inference).

Reestimate the hyperparameter
(the second level inference).

Calculate the evidence of the model
(the third level inference).

Figure 2: The training process of the Bayesian neural network.

5 Performance of the BNN Classi�er

5.1 Data

We carried out a series of experiments to evaluate the performance of the proposed BNN

classi�er on a Pentium II PC running the Linux operating system. The data used in the

experiments were obtained from the International Protein Sequence Database [5], release

62, in the Protein Information Resource (PIR) maintained by the National Biomedical

Research Foundation (NBRF-PIR) at the Georgetown University Medical Center. This

database, accessible at http://pir.georgetown.edu, currently has 172,684 sequences.

Table 1 summarizes the data used in the experiments.

Four positive datasets were considered; they were globin, kinase, ras, and ribitol super-

families, respectively, in the PIR protein database. The negative dataset contained 1,650

protein sequences, also taken from the PIR protein database, with lengths ranging from

100 residues to 200 residues; these negative sequences did not belong to any of the four
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Dataset N Lm Lx

Globin 831 115 173

Kinase-related transforming protein 350 151 502

Ras transforming protein 386 106 322

Ribitol dehydrogenase 319 129 335

Negative sequences 1,650 100 200

Table 1: Data used in the experiments. N is the number of sequences, Lm is the minimal

length of the sequences, and Lx is the maximal length of the sequences.

positive superfamilies. Both the positive and negative sequences were randomly divided

into training sequences and test sequences, where the size of the training dataset equaled

the size of the test dataset multiplied by an integer r. With the same training data, we

tested several BNN models with di�erent numbers of hidden units. When there were 2

hidden units, the evidence obtained was the largest (cf. Fig. 2), so we �xed the number of

hidden units at 2. Models with more hidden units would require more training time while

achieving roughly the same performance.

Table 2 summarizes the parameters and base values used in the experiments. The

measure used to evaluate the performance of the BNN classi�er is precision, PR, which is

de�ned as

PR =
NumCorrect

NumTotal
� 100% (18)

where NumCorrect is the number of test sequences classi�ed correctly and NumTotal is

the total number of test sequences. In general, precision is a comprehensive measure in

the sense that it considers true positives, false positives, true negatives, false negatives and

unclassi�ed sequences;7 it is used here to �nd the best parameter values of the proposed

BNN classi�er. A false positive is a non-target member sequence that was misclassi�ed as

a target member sequence. A false negative refers to a sequence in the target class (e.g.

the globin superfamily) that was misclassi�ed as a non-target member. We present the

results for the globin superfamily only; the results for the other three superfamilies were

7Note that the BNN classi�er does not yield any unclassi�ed sequence. By contrast, the three other clas-

si�ers BLAST, SAM and SAM-T99 we will compare with yield unclassi�ed sequences, as our experimental

results will show later.
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Parameter Meaning Value

Ng Number of 2-grams used by BNN 60

Nl Number of motifs used by BNN 20

Len Length of motifs for Sdiscover 6

Mut Mutation number for Sdiscover 2

Occur Occurrence frequency of motifs for Sdiscover 1/10

r size ratio 2

Table 2: Parameters and their base values for the proposed BNN classi�er.

similar.

5.2 Results

In the �rst experiment, we considered only 2-grams and evaluated their e�ect on the

performance of the proposed BNN classi�er. Fig. 3 graphs PR as a function of Ng. It

can be seen that the performance improves initially as Ng increases. The reason is that

the more 2-grams we use, the more precisely we represent the protein sequences. However,

when Ng is too large (e.g. > 90), the training data is insu�cient and the performance

degrades. In general, the larger Ng is, the more input features the BNN classi�er has, and

thus the larger training dataset BNN requires. In our case, there are 561 positive training

sequences and 1,089 negative training sequences. When Ng > 90, these data become too

few to yield reasonably good performance. Figuring out how big the parameter Ng should

be requires some tuning. We have not yet worked out a theory for it.

In the second experiment, we considered only motifs found by Sdiscover and studied

their e�ect on the performance of the BNN classi�er. 1,597 motifs were found, with lengths

ranging from 6 residues to 34 residues. Fig. 4 graphs PR as a function of Nl. It can be seen

that the more motifs one uses, the better performance one achieves. However, that would

also require more time in matching a test sequence with the motifs.8 We experimented

with other parameter values for Len, Mut and Occur used in Sdiscover. The results didn't

change as these parameters changed.

8The time spent in matching a test sequence with the motifs is linearly proportional to the number of

the motifs one uses.
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Figure 3: Impact of Ng in the BNN classi�er.
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Figure 4: E�ect of Nl in the BNN classi�er.

Fig. 5 compares the e�ects of the various types of features introduced in the paper. To

isolate the e�ects of these features, we began by using only one type of features and then

using their combinations. It can be seen that features generated from global similarities

yield better results than that generated from local similarities. This happens because PIR

superfamilies are categorized based on the global similarities of sequences. Note also that

the best performance is achieved when all the features are used.

17



LCC + 2-gram + LS
LCC + 2-gram 
2-gram 
LCC 
LS

80

90

100

2 3 4
r

PR (%)

Figure 5: Comparison of the various types of features used by the BNN classi�er.

Tool Underlying techniques

BNN Bayesian neural networks

BLAST Similarity search and pairwise alignment

SAM Hidden Markov models

SAM-T99 Iterative hidden Markov models

Table 3: The bioinformatics tools studied in the paper.

6 Comparison of Four Protein Classi�ers

The purpose of this section is to compare the proposed BNN classi�er with the BLAST

classi�er [2] built based on sequence alignment, and with the SAM and SAM-T99 classi�ers

[23] built based on hidden Markov models. Table 3 summarizes the studied tools. The

parameter values for the BNN classi�er were as shown in Table 2. The BNN classi�er used

both 2-grams and regular expression motifs.

The BLAST version number was 2.0.10. We used default values for the parameters in

BLAST. For this tool, we aligned an unlabeled test sequence S with the positive training

sequences (i.e. those in the target class, e.g., the globin superfamily) and the negative
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training sequences in the non-target class shown in Table 1 using the tool. If S's score

was below the threshold of the expectation (e) value of BLAST, S was undetermined or

unclassi�ed. Otherwise, we assigned S to the class containing the sequence best matching

S.

The SAM version number was 3.2.1. For this tool, we employed the program buildmodel

to build the HMM model by using only the positive training sequences. We then calculated

the log-odds scores [14] for all the training sequences using the program hmmscore.9 The

log-odds scores were all negative real numbers; the scores (e.g. -100.3) for the positive

training sequences were generally smaller than the scores (e.g. -4.5) for the negative train-

ing sequences. The largest score Sp for the positive training sequences and the smallest

score Sn for the negative training sequences were recorded. Let Bhigh = max fSp; Sng and

Blow = min fSp; Sng. We then calculated the log-odds scores for all the unlabeled test

sequences using the program hmmscore. If the score of an unlabeled test sequence S was

smaller than Blow, S was classi�ed as a member of the target class, e.g., a globin sequence.

If the score of S was larger than Bhigh, S was classi�ed as a member of the non-target

class. If the score of S was between Blow and Bhigh, S was unclassi�ed or undetermined.

The SAM-T99 version number was also 3.2.1. For this tool, we built an HMM (target

model) for each unlabeled test sequence S. We then scored all the training sequences

using the HMM target model. If the lowest score of the training sequences was higher

than the expectation value (E-value) of the HMM target model, the test sequence S was

undetermined or unclassi�ed.10 Otherwise, we assigned the test sequence to the class

containing the training sequence having the lowest E-value. The target model was built in

four iterations. In the �rst iteration, SAM-T99 used BLAST to compare the test sequence

S with sequences in the non-redundant protein database maintained at National Center

for Biotechnology Information (NCBI) and chose a set of close homologs to build an initial

HMM. It also did a BLAST search of the test sequence S against the non-redundant protein

9We used log-odds scores, as opposed to E-values, for this tool because the E-value for a training

sequence was calculated with respect to the training dataset while the E-value for a test sequence was

calculated with respect to the test dataset. These two kinds of E-value were not directly comparable.
10The E-value of the HMM target model used in the study presented here was 20. We have experimented

with other E-values and the results were worse.
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database with a very loose cut-o� value to get a pool of potential homologs. Then the HMM

obtained from the previous iteration was compared against the pool of potential homologs

with a looser cut-o� value than that of the previous iteration to �nd weaker homologs.

These weaker homologs were included to build a new HMM for the next iteration. This

whole process was repeated three times.

In comparing the relative performance of these tools, we use four more measures in

addition to the precision PR de�ned in the previous section: specificity, sensitivity,

unclassifiedp and unclassifiedn where

speci�city = (1�
Nfp

Nng

)� 100% (19)

sensitivity = (1�
Nfn

Npo

)� 100% (20)

unclassi�edp =
Nup

Npo

� 100% (21)

unclassi�edn =
Nun

Nng

� 100% (22)

Nfp is the number of false positives, Nfn is the number of false negatives, Nup is the number

of undetermined positive test sequences, Nun is the number of undetermined negative

test sequences, Nng is the total number of negative test sequences, and Npo is the total

number of positive test sequences. Note that in contrast to PR, specificity and sensitivity

do not consider unclassi�ed sequences. That's why we also add the unclassifiedp and

unclassifiedn measures for performance evaluation.

In the �rst experiment, we studied the e�ect of the threshold of the e value in the

BLAST classi�er. Fig. 6 shows the impact of e values on the performance of BLAST. It

can be seen that with e = 10, BLAST performs well. With smaller e values (e.g. 0.1), the

speci�city of BLAST can approach 100% with very few false positives while the number

of unclassi�ed sequences is enormous. Thus, we �xed the threshold of the e value at 10 in

subsequent experiments.

Tables 4, 5, 6, and 7 summarize the results and classi�cation times, in seconds, of

the four studied tools, referred to as basic classi�ers, on the four superfamilies in Table
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Figure 6: Impact of e values for BLAST.

BNN BLAST SAM SAM-T99 COMBINER

Precision 98.0% 92.7% 95.3% 93.2% 99.8%

Speci�city 98.0% 95.7% 99.8% 94.9% 99.6%

Sensitivity 98.0% 100.0% 99.6% 100.0% 100.0%

Unclassi�edp 0.0% 0.0% 1.1% 0.0% 0.0%

Unclassi�edn 0.0% 6.7% 6.2% 5.1% 0.0%

CPU time 36 1,515 80 848,961 |

Table 4: Comparison of the studied classi�ers on the globin superfamily.

BNN BLAST SAM SAM-T99 COMBINER

Precision 99.0% 86.2% 99.4% 92.6% 99.6%

Speci�city 98.8% 87.8% 99.5% 93.1% 99.5%

Sensitivity 100.0% 100.0% 100.0% 100.0% 100.0%

Unclassi�edp 0.0% 0.0% 0.0% 0.0% 0.0%

Unclassi�edn 0.0% 4.4% 0.2% 2.0% 0.0%

CPU time 30 1,214 63 2,168,005 |

Table 5: Comparison of the studied classi�ers on the kinase superfamily.
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BNN BLAST SAM SAM-T99 COMBINER

Precision 98.7% 91.0% 95.5% 91.6% 99.7%

Speci�city 99.3% 95.0% 99.8% 92.2% 99.6%

Sensitivity 96.1% 100.0% 100.0% 100.0% 100.0%

Unclassi�edp 0.0% 0.0% 3.1% 0.0% 0.0%

Unclassi�edn 0.0% 6.0% 4.6% 2.5% 0.0%

CPU time 29 1,232 64 637,424 |

Table 6: Comparison of the studied classi�ers on the ras superfamily.

BNN BLAST SAM SAM-T99 COMBINER

Precision 96.6% 88.5% 99.4% 90.4% 99.4%

Speci�city 97.0% 92.6% 100.0% 91.1% 99.2%

Sensitivity 94.3% 100.0% 100.0% 100.0% 100.0%

Unclassi�edp 0.0% 0.0% 2.0% 0.0% 0.0%

Unclassi�edn 0.0% 6.2% 0.3% 2.5% 0.0%

CPU time 27 1,212 62 747,821 |

Table 7: Comparison of the studied classi�ers on the ribitol superfamily.
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Classi�cation results Percentage of the test

sequences

All classi�ers agreed and

all were correct 80.88%

All classi�ers agreed and

all were wrong 0.07%

The classi�ers disagreed and

one of them was correct 18.91%

The classi�ers disagreed and

all were wrong 0.14%

Table 8: Complementarity among the four studied tools BNN, BLAST, SAM and SAM-

T99. The percentages in the table add up to 100%.

1.11 In addition to the basic classi�ers, we developed an ensemble of classi�ers, called

COMBINER, that employs a weighted voter and works as follows. If a basic classi�er

gives an \undetermined" verdict, the classi�er is regarded as \abstaining" and its verdict

is not counted. The result of COMBINER is the same as the result of the majority of the

remaining classi�ers. If there is a tie on the verdicts given by the remaining classi�ers,

the result of COMBINER is the same as the result of the BNN classi�er. We see that in

comparison with BLAST, SAM and SAM-T99, the BNN classi�er is faster, yielding fewer

unclassi�ed sequences. COMBINER achieves the highest precision and SAM-T99 requires

most time among all the classi�ers.

Table 8 shows the complementarity of the four studied tools BNN, BLAST, SAM and

SAM-T99. We see that when all the four classi�ers agree on their classi�cation result, the

result is correct with probability 80.88%/(80.88%+0.07%) = 99.91%.

11In examining SAM-T99's CPU time, we note that the time spent for classifying the kinase sequences

shown in Table 5 is much higher than the times spent for classifying the other sequences shown in Tables

4, 6 and 7. The reason is that for each kinase sequence, there are many homologs in the non-redundant

protein database maintained at NCBI. Thus, SAM-T99 gets more homologs for a kinase sequence than the

homologs for the other sequences, and consequently it takes more time to build the HMM target model

for the kinase sequence.
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7 Conclusion

In this paper we have presented a Bayesian neural network approach to classifying protein

sequences. The main contributions of our work include:

� the development of new algorithms for extracting the global similarity and the local

similarity from the sequences that are used as input features of the Bayesian neural

network;

� the development of new measures for evaluating the signi�cance of 2-grams and

frequently occurring motifs used in classifying the sequences;

� experimental studies in which we compare the performance of the proposed BNN

classi�er with three other classi�ers, namely BLAST, SAM and SAM-T99, on four

di�erent superfamilies of sequences in the PIR protein database.

The main �ndings of our work include the following.

� The four studied classi�ers, BNN, BLAST, SAM and SAM-T99, complement each

other; combining them yields better results than using the classi�ers individually.

� The training phase, which is done only once, of the BNN classi�er may take some

time. After the classi�er is trained, it runs signi�cantly faster than BLAST and

SAM-T99 in sequence classi�cation.

Future research directions include:

� comparison of motifs generated by di�erent tools in combination with learning-based

tools such as neural networks and hidden Markov models when applied to sequence

classi�cation in PIR, PROSITE [4, 34] and other protein databases;

� generalization of the classi�ers in combination with graph matching algorithms to

analyze the sequence-structure relationship in protein and DNA sequences.
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