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Abstract

Lindenmayer Grammars have been applied frequently to represent fractal curves. In this work, the ideas behind Grammar
Evolution are used to automatically generate and evolve Lindenmayer Grammars that represent fractal curves with a
fractal dimension that approximates a pre-defined required value. For many dimensions, this is a non trivial task to be
performed manually. The procedure we are proposing here closely parallels biological evolution, because it acts through
three different levels. a genotype (a vector of integers), a protein-like intermediate level (the Lindenmayer Grammar) and a
phenotype (the fractal curve). Variation acts at the genotype level, while selection is performed at the phenotype level (by
comparing the dimensions of the fractal curvesto the desired value).

Introduction

Fractals

Some interesting geometrical questions were prap@sel discussed during the last years of the
nineteenth century. In 1890, Giuseppe Peano defineatve that solved the following problem: "Is it
possible for a curve to fill a square?" Severas sstodd as this curve, that seemed to be unddusif
monsters, were formally studied. As a consequeitbese works, the concept of classic dimension
was revisited.

In 1919, the mathematician H.Hausdorff proposecew definition of dimension, to be applied to

distinguish these dubious cases from typical liaed surfaces. According to his definition, further
refined by A.S. Besicovitch, monstrous curves mayeha fractional dimension that to some extent
measures the ratio between how much the curve groleagth and how much it advances.

In 1975 Mandelbrot [1] coined the term fractal ®sdribe an heterogeneous class of sets that share
some (not necessarily all) curious properties, sagtself-similarity (the same shapes are found at
different levels with different scales all over thet), underivability at every point, infinite lethg
covered in a finite space, etc. All these setshavractional Hausdorff-Besicovitch dimension (see
[1], chapter 39).

There are three main classes of fractal sets. Sxppear as the boundary between convergence and



divergence of certain recursive mathematical fumstiin the complex domain; others are generated by
means of random Brownian movements; the third claskides those curves obtained when a
recursive transformation (iterator) is applied toiwitial shape (initiator). Peano monstrous cusvin

the latter group.

Fractals have been used for hundreds of appliGtiophysics, chemistry, astronomy, geology, image
compression, psychology, economics, medical imaghgetera. Many natural phenomena are better
described using a fractional dimension. Fractadstiaus used as descriptive models for the growth of
plants, particle aggregation, river cartographglistic images, and similar phenomena. Their flacta

dimension characterizes most of these fractal nsodel

In physical systems, the fractal dimension reflestimme properties of the system [2]. The physical
characteristics of some bodies are related tordwa dimension of their surfaces: the growthgratt

of bacteria has a fractal dimension of 1.7. Anotegample is geological patterns: the fractal
dimension of clouds is 1.30-1.33; 1.7 for snowflkgak#&.05-1.25 for coastlines in South Africa or
Britain; 1.28-1.90 for woody plants and trees;eateca. [3].

In medicine, fractal dimensions have been found/éwious biomolecules, such as DNA and proteins.
For instance, the fractal dimension of Lysozymeg{edpite) is 1.614, for hemoglobin it is 1.583, for
myoglobin 1.728 [4]. The fractal dimension of therimeter of surface cell sections has been used to
distinguish healthy cells and cancerous cellsIfppnalytical chemistry, the fractal dimension sed

as a tool to characterize chemical patterns anblgmos of sample homogeneity [6] . A given fractal
dimension makes it possible to simulate a varietysystems: fluid extraction or contaminant
mitigation techniques [2], the hybrid orbital mod#l proteins [7], or the growth of conflict rate in
aircraft flays [8].

Antennae are electromagnetic devices designed diatea or capture signals. Some of their
characteristics are gain, bandwidth, return loss asonant frequencies. In the last years, fractal
geometry has provided a new approach to traditianénna design methods [9]. Several classical
fractals of the initiator-iterator kind (von Koch@nowflake, Sierpinski's gasket, for example) have
been proposed as antenna prototypes. Certain piexper fractal antennae are related to its fractal
dimension: an increase in the fractal dimension beyranslated into higher gain, low return losd an
a shifting down of the resonant frequencies. Tilgersthm described in this paper, that builds itdra
iterator fractals with a given fractal dimensioould be an interesting tool in the design, analgsis
simulation of fractal antennae.

Lindenmayer Grammars

In 1968, Aristid Lindenmayer [10] defined a newsdeof grammars [11] (Lindenmayer systems or
grammars, or L systems in short), similar to Chogmmgtammars. Both kinds of grammars handle an
initial string of symbols (the axiom) and includeset of production rules that may be applied to the
symbols to generate new strings, but they diffeth@ way in which production rules are applied.
Chomsky grammars change a symbol at a time seaqllgntvhile Lindenmayer grammars apply many
rules at the same time in parallel.



Let us look at an example of an L system: if weenthe rules

A:=B
B ::=AB

and start at the word A, we get the following sisstee derivations:

A - B - AB -~ BAB . ABBAB - BABABBAB ...

This basic scheme is called a DOL system (a detéstid, context free, Lindenmayer system). There
are different kinds of L systems that extend tlesisesne in different ways, but they are not the stibje
of this work.

DOL systems have been applied successfully to sitaulifferent biological processes and to represent
complex systems such as fractal curves [12] [18],[@ellular automata [15] and others [16] [17].

Fractal Representation by means of Lindenmayer Grammars

Lindenmayer grammars provide a powerful tool torespnt fractals of the recursive transformation
type, such as Peano monstrous curve. The recuraiveformation may be easily represented by means
of a production rule, the initial shape by the axiof the L system. The fractal curve is obtaineuirir

the series of words derived from the axiom by apglygraphic representation scheme. One of two
main schemes are usually applied: vector graptassogiating a fixed vector displacement to each
symbol in the L system alphabet), or turtle graphwehere the letters are interpreted as the movismen
in the graphic space of a turtle that remembersutsent position and preceding direction. We have
proved [14] that both schemes are equivalent fantamesting set of fractal curves.

As an example, let us consider the DOL system ddfiby axiom F--F--F and the following set of
rules:

Fo=F+F--F+F
+ =+

The first derivation obtained from the axiom is:
F--F--F . F+F--F+F--F+F--F+F--F+F--F+F

With subsequent derivations, we get successiveoappations to a well-known fractal curve, von
Koch's snowflake curve, one of the first fractalvas in the history of Mathematics. The curve may b
drawn by applying to the derived strings the folilogvturtle graphics interpretation:

* F moves the turtle one step forward in its curckrection.

* +increases by 60 degrees the current angle dtittie direction.



» - decreases by 60 degrees the current angle tirtie direction.

Figure 1 shows the graphical representation ofittiederivation in the preceding L system.

Figure 1. An approximation to von Koch’s snowflakeve.

Determination of fractal dimensions from equivalent L systems

In previous works [18] [19], we have described ggoathm that estimates the fractal dimension of a
non trivial subset of fractals of the recursivensfarmation type, by means of the equivalent Lesysst
The dimension is easily determined by means of synmbanipulation, without using graphical
procedures. For example, if our algorithm is amgplie the L system representing von Koch's
snowflake, the fractal dimension obtained is 1.Z8B871429..., its Hausdorff-Besicovitch dimension.
With this algorithm, we can choose to take intocaktt the fact that the curve generated by the L
system may overlap itself, which would change thtua dimension computed, depending of the
definition used. This, however, increases the tisguired to compute the dimensions, and we have
decided not to consider possible overlapping in theeriments described in this paper. A
consideration of overlapping would not affect muttte results described here, except by the
corresponding increase in execution time and/orbarsof generations needed to reach the target.

Generating fractal curves of a given dimension lbandone by means of deterministic techniques.
Several tools use some measure of the regularitgoafinuous real functions with a single real
variable. Holder exponent is one of them [20].2d][three different methods are described to baiild
function that interpolates a set of points with @sgribed local regularity measured by Hélder
exponent: by means of Schauder basis [22], usingnateass type functions and by a generalization of
Iterated Function Systems (IFS).



Our method works non-deterministically on a formegdresentation of the target system, rather than th
real curve. This approach seems more flexible arkial, because formal models as Lindenmayer
grammars are powerful enough to simulate a widgeaf different complex systems. We hope that
our technique is also applicable to other doméias ¢an be described in this way.

Grammatical Evolution

Grammatical Evolution [23]-[30] is a grammar baskukar genome system, which has been applied
in the area of Automatic Programming to automaifcgénerate programs or expressions in a given
language that solve a particular problem. Programgmianguages can be represented usually by
context free Chomsky languages. In Grammatical @i, the Backus Naur Form (BNF)
specification of a language is used to describeotiiput produced by the system (a compilable code
fragment). Different BNF grammars can be used toraatically produce code in any language.

In Grammatical Evolution, the genotype is a strofg8 bit binary numbers generated at random,

treated as integer values from 0 to 255. The plypeas a running computer program generated by a
genotype-phenotype mapping process. The mappingfilerfrom genetic code degeneracy, i.e.

different integers in the genotype generate theesphenotype. According to Kimura's neutral theory

[31], genetic code degeneracy maintains genotypersity and enforces the preservation of valid

phenotypes from run to run of the genetic engine.

When the string of integers in the genotype is asted before the phenotype has been completely
generated, a biologically inspired wrapping mectianis used to reuse the integers, similar to the
gene-overlapping phenomenon observed in many aganiin nature. The genotype-phenotype
mapping in Grammatical Evolution is deterministie; each individual is always mapped to the same
phenotype. Two mechanisms are used to minimize ntlmabers of invalid individuals in each
generation: punishing them with poor fitness valwgausing a steady state replacement method [29].
The last method seems to improve greatly the pmdace of the algorithm.

In Grammatical Evolution, standard genetic algonishare applied to the different genotypes in a
population, using the typical crossover and mutatiperators. For each domain, one must design the
proper fitness function, which will be used by thenetic algorithm to perform selection. This
technique has been successfully applied to thenaaito programming of problems in different
domains: symbolic regressions, finding trigononeetdentities, the Santa Fe ant trail, and caching
algorithms.

This paper extends Grammatical Evolution to L systeto solve the problem of obtaining arbitrary
fractal curves with a given dimension. The samer@ggh could be used in other domains. Previous
work by other authors has applied genetic algorithonl systems, rather than Grammatical Evolution.
Ochoa [32] evolves DOL systems with a single rak&t generate shapes similar to plants. Other
authors [33][34][35] evolve parametric L systems (@xtension of Lindenmayer grammars) [36],
which means that they are faced with the imporpaoblem that parametric systems are not closed
under the action of genetic algorithms. This probleould be solved easily by our approach, because
Grammatical Evolution goes through an intermedgammar (in this case it would describe a valid
parametric system), which ensures that the actuglstem generated is syntactically correct. In this



paper we are not tackling this problem and use B@tems, where simple genetic algorithms would
be sufficient. However, we have grounds to preffier Grammatical Evolution approach, because it
allows us to evolve at the same time the L systeththe angle used in its graphic interpretation, as
described later.

The design of L systems that represent curves with a given fractal dimension

Designing fractal curves with a given dimensiorrefatively easy for certain values of the desired
dimension, but very difficult for others. The faling L system rules represent (with a turtle graphi
interpretation based on an angle step of 60 degtieesterators for three different fractal curweish

the same dimension: 1.2618595... (log 4 / log B Tirst one, as shown above, corresponds to von
Koch’s snowflake curve. All four, and a few moreutd have been obtained by hand, by a simple
geometrical study of the curve iterator.

F ::= F+F--F+F

F = F+F-
F::= +F-FF-F+
F .= F+F-FF+
On the other hand, designing a fractal curve witldimension of 1.255 would be much more

complicated. The first step would consist of obtagrtwo integer numbers, a and b, such that

1.255 = loga/ log b

This step could be relaxed to asking for two intsgeuch that the given dimension would be
approximated within some degree of accuracy (fstaince, 0.001).

The second step would be to design a geometrgatdr such that it would takesteps to advance a
distance equal tb.

We solve this problem automatically by means ofn@ratical Evolution. Our genetic algorithm acts
on genotypes made of vectors of integers, and maesf a fixed grammar to translate the genotypes
into an intermediate level, which can be interpteds a rule for an L system which, together with a
turtle graphic interpretation, generates the fptaénotype: a fractal curve with the desired dimamsi

or an approximation of the same.

The developmental algorithm

The initial population consists of 64 vectors oin8egers in the interval [0,10]. Vectors of diffate
lengths are later generated by the genetic algori®ther intervals (such as [0,255]) can be usedss
to include genetic code degeneracy. This has besied and it also works, although no significant
improvement in performance has been detected.

In our first experiment, the genotype of one indual in the population (a vector of n integers) is
translated by making use of the following DOL graamm

0: F = F

1. F::=FF
2. F::=F+
3: F::=F

4: F ::= +F
5: F::=-F
6: F ::= F+F
7: F::=FF
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where e is the empty string.
The translation is performed according to the feiftg developmental algorithm:

1. The axiom (first word) of the DOL grammar is assdnebe F.

2. As many elements from the remainder of the genotypdaken (and removed) from the left of the
genotype as the number of F in the current worthdfe remain too few elements in the genotype,
the required number is completed circularly.

3. The current word derives a new one in the followway: each F in the word is replaced by the right
hand side of the rule with the same number astiegers obtained by the preceding step. In the
case of genetic code degeneracy, the remaindbeahtegers modulo 11 is used.

4. If the genotype is now empty, the algorithm stars] the last derived word is the output.

5. If the derived word has no F, the whole word idaeged by the axiom.

6. Go to step 2.

In any derivation, the following implicit rules aadso applied:

+ +

Let us look at an example. Let the individual ggpetto be translated be the 7-element vector
10676027

We start from axiom F. It contains one F. Therefatestep 2 we extract one element from the left of
the genotype (10). The remainder of the genotyperbes

676027

In step 3, by applying rule 10, the axiom derivdthe empty string). The derived word has no Fsthu
in step 5 we replace it by the axiom F. This isgheond word in the derivation. We go back to &ep
The current word contains one F. Therefore, we take element (6) from the remainder of the
genotype, which becomes

76027

In step 3 we now apply rule 6 to the only F, deryvF+F. This is the third word in the derivationeW
go back to step 2. The current word contains twthetefore, we take two elements (7,6) from the
remainder of the genotype, which becomes

027

We now apply rule 7 to the first F and rule 6 te 8econd F in F+F, deriving F-F+F+F. This is the
fourth word in the derivation. We go back to steflBe current word contains four F. Therefore, we
should take four elements from the remainder ofgiéeotype, but we only have three. We complete
the required number circularly and take (0,2,7T@e genotype vector becomes empty.

We now apply rule 0 to the first F, rule 2 to teeend, rule 7 to the third and rule 0 to the fodrtim



F-F+F+F, deriving F-F++F-F+F. This is the last wardhe derivation, the result of the algorithm.

We can now simplify the output by erasing unneagssa pairs, if any (there are none in this case).
We also may add or delete + or - signs at the Inéggnand the end of the word, so that the turtlésen
its movement in the same direction it started (ihia requirement for some of the theorems we are
applying). In this case, we get F-F++F-F+F-. Théesuof the DOL system generated by the
developmental algorithm are:

F
+

F- F++F- F+F-
+

The genetic algorithm

We can now apply the algorithm described in [18B][to compute from F-F++F-F+F- the dimension
of the fractal curve obtained from the DOL systeynniieans of a turtle graphic interpretation with a
given angle step. This dimension can be compardgetbarget dimension, providing a fitness rule for
the genetic algorithm.

The scheme for the genetic algorithm is as follows:

1. Generate a random population of 64 vectors of&yets in the [0,10] or the [0,255] interval.

2. Translate every individual genotype into a wordthe alphabet {F+-}, using the developmental
algorithm described above.

3. Compute the dimension of the fractal curve represkhy the corresponding DOL system.

4. Compute the fitness of every genotype as 1/|tatgeension|.

5. Order the 64 genotypes from higher to lower fitness

6. If the highest fithess genotype has a fitness mighan the target fitness, stop and return this

genotype.

7. From the ordered list of 64 genotypes createdap 8t remove the 16 genotypes with least fithess
(leaving 48) and take the 16 genotypes with masésds. Pair these 16 genotypes randomly to make
8 pairs. Each pair generates another pair, a cbtheo parents, modified according to four genetic
operations. The new 16 genotypes are added tcethaiming population of 48 to make again 64,
and their fitness is computed as in steps 2 to 4.

8. Go to step 5.

The four genetic operations mentioned in the algoriare:

* Recombination (applied to 100% generated genoty@asgn a pair of genotypes,i1(%; ... %,) and
(Y1, ¥2 ... ¥m), @ random integer is generated in the intervahjih(n,m)]. Let it ba. The resulting
recombined genotypes arei,(Xz ... X-1, i, Yi+1 .- ¥m) @nd (M, Yo ... ¥-1, Xi, Xi+1 - X)-

* Mutation (applied to n1 % generated genotypes thhmarents are equal, to n2 % if they are
different). It consists of replacing a random elatnaf the vector by a random integer in the same
interval.

* Fusion (applied to n3 % generated genotypes). Emotgpe is replaced by a catenation of itself
with a piece randomly broken from either itselfitgrbrother’'s genotype. (In some tests, the whole
genotype was used, rather than a piece of it).

» Elision (applied to 5% generated genotypes). Omegar in the vector (in a random position) is
eliminated.



The last two operations allow longer or shorteragg@mes to be obtained from the original 8 element
vectors. The optimal values of n1 (100), n2 (10@) a3 (25) have been obtained by means of a set of
22 tests that combine different angles and targeeisions. Table 1 shows that these parameters are
important, for different combinations of valueseaiise to very different computing times.

nl n2 n3 Average generations Average CPU t

20 20 5 6668 1838

50 20 5 2979 1888

50 50 5 3794 3211

80 10 5 2625 1590

80 80 5 3917 1430

100 100 5 2216 1007

100 100 1 10172 4776

100 100 10 1027 615

100 100 25 146 176

100 100 50 163 497

100 100 90 49 497
Table 1: Results of experinents to get optiml va

operation rates.

me

ues of genetic

The algorithm has three input parameters: the tatgeension, the target minimum fitness, and the

angle step for the turtle graphics interpretation.

This procedure is similar to biological evolutianmany respects. There are three different lewsels (

figure 2):

1. The genotype (nucleic acids), here representeatbiprs of integers.
2. The intermediate level (proteins), here represebyedords on the {F,+,-} alphabet. The translation
from the genotype to the intermediate level isqenied using a fixed grammar (the equivalent of

the fixed genetic code).
3. The final phenotype (organisms), here representatebfractal curves, which are obtained from the
L systems built from the intermediate level worgsieans of a turtle graphic interpretation.
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Figure 2. Parallels between our Grammatical Evofuéipproach and biological evolution.

In a second experiment, the genotype of each iddaliin the population contains one more element
(it is a vector of n+1 integers). The first elemgmtits remainder modulo 11) is interpreted agaex

to a vector that defines the angle to be used engtlaphic interpretation of the phenotype. Eleven
possible angles have been used: 120, 90, 72, 6104386, 30, 24, 20 and 18 degrees (i.e. the first
submultiples of 360). The developmental algorittrenapplied only to the last n elements of the

genotype. The genetic algorithm applies to allrtté elements of the genotype. In this way, theangl

itself evolves, and fractal curves with unexpe@erdles may be obtained.

Results

The algorithm described above reaches its targekssmrprising speed. Sometimes (for the simplest
dimensions, those that can be done by hand) thettar reached in the first generation: in a séiff
random eight-element genotypes, there is a biggimtity of having the codification of one of those
phenotypes). For other, less standard dimensidres, number of generations to reach a given
approximation to the target is usually larger, stomes quite large. Table 2 shows a few of the tesul



we have obtained.

Di nensi on Angl e Nr.of tests Nunber of generations to reach target
1.1 45 10 37 to 9068
1.1 60 4 119 to 72122
1.2 45 8 188 to 11173
1.2 60 10 21 to 750
1.3 45 9 50 to 18627
1.3 60 4 14643 to 66274
1.25 60 2 1198 to 3713
1. 255 60 15 1 to 2422
1.2618595. .. |60 4 1to2
1.4 45 10 79 to 781
1.4 60 10 33 to 1912
1.5 45 11 52 to 11138
1.5 60 8 12 to 700
1.6 45 5 275 to 3944
1.6 60 1 116913
1.7 45 2 585 to 1456
1.7 60 8 18 to 1221
1.8 45 2 855 to 2378
1.8 60 13 69 to 3659
1.9 72 1 5467
1.95 90 1 956
2 45 5 1
2 90 5 1
Tabl e 2. Nunber of generations to reach the target in a set of tests
of our Grammati cal Evol ution approach.

Since the algorithms use random numbers, differ@mdom seeds give different results. We have thus
obtained sets of fractal curves, sometimes quiierdnt in appearance, that share the same fractal
dimension. Table 3 shows some results for a tahgeension of 1.255 and an angle of 60 degrees. In
all of them, the minimum fitness was set to 100hi¢lv corresponds to an error in the target
dimension below 0.001). The dimension of all theutes came to be 1.2549. This fractal dimension
has been computed without considering possible lawgings of the curves with themselves. A
definition of dimension that would take this intocaunt could also be considered [18], [19], at the
cost of longer computation times, and perhaps mgererations. Figure 3 displays the fractal curves,
approximated by the fourth derivation of the cqoeewding L systems.

Nurber of Si ze of L System word Axi om

generations genot ype devel oped

4 16 - F+FF+FF- F--F--F

44 7 F- F++F- F+F- F++F++F

72 8 FF-- F+FF+ F++F++F
255 8 FF- FF++F- FF-F-F
Table 3. D fferent fractal curves sharing the sane dinension,
evol ved by our met hod.



Figure 3. Four different fractal curves evolved ddiarget dimension of 1.255

Table 4 shows a few interesting fractals evolvedhi®ans of our algorithms. The first one has the
same dimension as von Koch’s snowflake, with aneanf) 36 degrees. Figures 8 to 13 display the
fractal curves, approximated by the third derivatd the corresponding L systems.



Di mensi on Angl e | Number of Si ze of L System word Axi om Shown in
generati ons genot ype devel oped figure
1.26178. .. 36 27 35 +F+F---F-F+F- |[F-F-F-F-F- 4
F+F+ F-F-F-F-F
1.5018 45 2000 17 ++F- F- - F+F+F F- - - F++F- - - 5
+FF- - - F- F++ F-F--F
1. 8998 40 1460 41 ++F- FF-F-F--- [ F+F+F+F+F+F 6
F-F---F-F- +F+F+F
F++
1. 8008 45 2378 30 F-F-F-FF-F-F |F---F++F--- 7
-F-F--F-F---F |F-F--F
- FF- F- F+F+FF-
1. 7005 60 18 22 ++FF+F+FFF+F+ |F-F-F-F-F-F | 8
F+FFF+FFF+F+F
-F+F----
1. 6006 45 275 30 +F-F- - F- - F++F++F++F 9
F+FF- - F+F- F-
FF+FF-F--F
Table 4. A few fractal curves evolved by our nethod.

dimension as von Koch’s snowflake.

Figure 5. A fractal curve with approximate

dimension 1.5.

)
Figure 4. A fractal curve with the same Fjgure 6. A fractal

dimension 1.9.

Figure 7. A fractal curve with approximate

dimension 1.8.




Figure 8. A fractal curve with approximate  Figure 9. A fractal curve with approximate
dimension 1.7. dimension 1.6.

Table 5 shows finally some of the results obtaiwéti our second experiment, where the turtle angle
itself was subject to evolution by means of theegieralgorithm.

Tar get Act ual Nurber of Si ze of Angl e evol ved
di nensi on di nensi on generations genot ype
1.5 1.5 5 8 90
1.5 1.5 8 14 45
1.5 1.4999 64 19 90
1.5 1.4999 176 21 90
1.5 1.5 50 9 90
1.5 1. 5009 940 124 36
1.5 1. 5008 1337 86 36
1.5 1.5 68 9 90
1.9 1. 8992 1069 55 72
1.9 1.8993 1306 42 24
1.9 1.8998 1460 41 40
Table 5. A set of tests where the turtle angle was evol ved too.

Conclusions and future research lines

Grammatical Evolution has been applied to genemateevolve Lindenmayer Grammars that represent
fractal curves with a pre-defined fractal dimensidine procedure described parallels biological

evolution by acting through three different levedsgenotype (a vector of integers), a protein-like

intermediate level (the Lindenmayer Grammar) armh@notype (the fractal curve). Variation acts at

the genotype level, while selection is performethat phenotype level (by comparing the dimensions
of the fractal curves to the desired value).

The results show the power of the approach. Thasescwhere a solution is easily found by hand were
also easily solved by our algorithms. Many intergsturves have been found in more difficult cases:
this paper shows a few of them. Evolution towarus target was relatively fast, at least with our

choice of values for the parameters of the algorith

The angle used for the graphical interpretatiotheffractal curve has been introduced as a preekkfi
parameter in some experiments and automaticalbutzed in others. The latter approach generated a



few good cases with unusual angles, although ibleas noticed that variations in the angle tengeto
favorable only during the first generations: oncgaod angle has been evolved, it is not easily
changed, because changing the angle of the graphtespretation has a massive effect on the
dimension of the curve.

Similar results could have been obtained by diyeathplying genetic algorithms on L systems,
represented by arbitrary strings with characters “F and *-. We have actually performed this
experiment, and found no significant differencesnumber of generations or execution time, as
compared to the Grammatical Evolution approach. éi@w, the latter is much better if the angle is
also evolved, as described in the previous paragrapvould also present important advantages if
used with parametric L systems.

In the future, we plan to work on the following gtiens:

» Evolution of other fractal properties besides disien.
» Application of our approach to solve problems inestareas where L Systems are applicable.
 Its application to parametric L systems.
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