
Decomposing the Load-Store Queue by Function
for Power Reduction and Scalability

Lee Baugh and Craig Zilles
Department of Computer Science

University of Illinois at Urbana-Champaign
Email: {leebaugh, zilles}@uiuc.edu

Abstract— Because they are based on large content-addressable
memories, load-store queues (LSQs) present implementation chal-
lenges in superscalar processors, especially as issue width and
number of in-flight instructions are scaled. In this paper, we
propose an alternate organization of an LSQ that separates the
time-critical forwarding functionality from checking that loads
received their correct values. Two main techniques are exploited: 1)
the store forwarding logic is only accessed by those loads and stores
that are likely to be involved in forwarding, and 2) the checking
structure is banked by address.

The result of these techniques is that a collection of small, low band-
width structures can be substituted for the large, high bandwidth
structures used in conventional designs. By our calculations, these
proposed techniques reduce LSQ dynamic power by a factor of 3-5
while achieving equivalent performance. Furthermore, we explore
applying these techniques to processors requiring only statistical
correctness guarantees where another factor of two power reduction
is achievable.

I. INTRODUCTION

In a dynamically-scheduled processor, the load-store unit is
typically implemented by composing a translation-lookaside
buffer, a cache, and a load-store queue (LSQ). The LSQ
typically provides the following four functions:

1) buffering store addresses and values for in-order retire-
ment

2) forwarding in-flight store values to loads
3) detection of load/store ordering violations
4) detection of consistency violations

Commonly, the LSQ is implemented as a pair of age-ordered
queues—one each for loads and stores—that can be associa-
tively searched by address. This organization presents a scal-
ability challenge to increasing superscalar width and number
of in-flight instructions: increasing the number of ports (for
increased width) and the number of entries (for more in-flight
instructions) significantly impacts the access time and power
consumption of the structure.

The access time of the store queue is particularly critical
because it is a component of the load-to-use latency. Typically,
snooping the store queue – that is, querying it for conflicts
with the current memory instruction – must be performed
in the same amount of time as the L1 data cache access,
which is done in parallel, to avoid further complication of
the instruction scheduler.

In this work, we propose an LSQ organization that decouples
the performance-critical store-forwarding logic from the rest
of the load-store queue functionality. This organization is
motivated by two insights:

1) Store value forwarding is the only time-critical op-
eration performed by the LSQ. All other functions
merely need to be performed before the instructions
retire.

2) Only a small and predictable fraction of loads and
stores take part in store value forwarding.

For store forwarding, we propose using a structure—the store
forwarding buffer (SFB)—which is much like a traditional
store queue but has fewer entries and fewer ports, yielding
a reduction in access time and a significant reduction in
power consumption. The structure size is reduced by allocating
entries for only those stores predicted to require forwarding.
Likewise, required bandwidth is reduced by only snooping for
those loads that are predicted to require forwarding. Because
these predictions can be wrong, a mechanism is required to
detect faulty predictions (known as misspeculations).

A second structure, the memory validation queue (MVQ)
detects load-store ordering violations, consistency violations,
and forwarding mispredictions. This structure must observe all
in-flight loads and stores to identify violations. To efficiently
implement this structure, we bank it by address, achieving
a large aggregate throughput and storage capacity through
a collection of small, single-ported structures. Such banking
provides scalability and reduced energy consumption at the
cost of potential imbalance between banks. To tolerate bank
conflicts and enable wider issue of memory instructions, we
decouple processing in the MVQ from instruction execution
through the addition of a small wait queue. Validation is
tolerant of queuing delay, because it merely needs to take place
before the associated instructions commit.

The contributions of this work are three-fold:

1) We describe a load-store queue design that decouples
store forwarding from other LSQ functions, decompos-
ing the LSQ into small, low-bandwidth (and hence fast)
store forwarding buffer and a latency tolerant memory
validation queue, which can be made efficient and high-
throughput through banking.

2) We demonstrate that address-based hashing can be used
to partition a processor address stream into four roughly
balanced streams, making banking effective. Further-
more, we show that bank imbalance, when it does occur,
is caused by repeated loading or storing to a single
address.

3) We provide mechanisms required to achieve good uti-
lization of banked LSQ structures while minimizing
squashing (restarts due to misspeculations) and stalling.
Specifically, to avoid over-subscribing one bank, we pro-
vide an execution throttling mechanism that minimizes
squashes based on the availability of wait queue entries.
Furthermore, we describe how deadlocks (due to out-
of-program-order resource allocation) can generally be
avoided and detected in the rare circumstances they
occur.

The closest related work to ours is that of Roth, who inde-
pendently made the observation that not all loads and stores
need to be considered for forwarding [16]. To handle the
non-forwarding related operations of the LSQ, he proposes
to use filtered load re-execution, as was proposed by Cain and
Lipasti [5], which eliminates the necessity of a load queue at
the expense of re-executing a fraction of loads at retirement.

Sethumadhavan et al. previously considered address-banked
LSQ designs, but discarded them because they failed to
achieve good results [18]. There are three key differences
between their proposal and ours: 1) we propose banking only
the latency-tolerant verification portion of the LSQ, which can
tolerate a buffer to smooth out bank conflicts, 2) our throt-
tling mechanism can be viewed as a hybrid of their stalling
and squashing mechanism, which minimizes the number of
squashes required without being over conservative, and 3) our
primary site of throttling is at issue rather than dispatch. With
these difference we were able to achieve very positive results.

Akkary et al. observe that most forwarding occurs between
relatively nearby instructions and propose building a scalable
store queue by exploiting hierarchy [2]. Recent instructions
are cached in a first-level store queue, with other instructions
residing in a second-level structure. This approach reduces the
size, but not the bandwidth of the latency critical store queue,
but reduces latency predictability.

Park et al. propose reducing the required snoop bandwidth
of the store queue by extending a Chrysos and Emer store set
predictor [7] to predict which loads are likely to receive values
forwarded by stores [15]. Our scheme achieves an equivalent
reduction in snoops with a much simpler predictor.

Sethumadhavan et al. proposed using a Bloom filter to reduce
store queue snoop bandwidth requirements, by eliminating
those searches that the Bloom filter predicts cannot possibly
match [18]. This approach has two drawbacks relative to
our proposal: 1) accessing the Bloom filter is on the critical
path (i.e., it must be done between generating an address
and accessing the store queue), and 2) an instruction’s need

to snoop is not known until execution time, so it is not
available to the scheduler. As a result, the scheduler must
either be conservative or risk over-loading the store queue
ports, requiring queuing and latency mispredictions.

More recent work by Roth further limits the proportion of
loads which must re-execute by establishing a window of
stores to which the load is vulnerable and employing a Bloom
filter on the data address to determine whether a given load
must be re-executed [17]. However, full re-execution of some
loads is still required.

Complex CAM (Content-Addressible Memory) structures are
not only reduced, but entirely avoided in the load-store
mechanism proposed by Gandhi et al [10]. However, their
technique is only applicable in the context of a “latency-
tolerant processor” with an available instruction window in
the thousands of instructions.

A banked, hierarchical store queue design suitable for wide-
issue cores is proposed by Torres et al [19]. In this design,
monolithic store queue complexity is reduced by decomposing
the structure into several smaller ones, which speculatively
forward values. A larger, latency-tolerant second-level store
queue detects and squashes misspeculations.

This paper is organized as follows. In Section II, we describe
the organization of our proposed LSQ design. In Section III,
we describe our experimental methodology and results. In
Section IV, we consider how to further reduce power con-
sumption in the context of processors with reduced correctness
constraints. In Section V, we look closer at the source of
bank imbalance and then conclude (in Section VII), after a
discussion of related work (in Section VI).

II. ORGANIZATION

In this section, we describe our proposed LSQ organization.
Because we use a store queue similar to a traditional LSQ
as a building block of our design, we first describe its salient
details. We then describe the two components of our proposed
LSQ design in Sections II-B and II-C, respectively.

A. Age-ordered Load/Store Queues

The most common implementation of a LSQ involves a pair of
buffers (one for loads and one for stores) that hold instructions
in program order (i.e., “age-ordered”); see Figure 1. Instruc-
tions are allocated entries in their respective queues before
dispatch into the instruction window; dispatch stalls if entries
are not available. When instructions execute, they write their
address (and value for stores) into their allocated entry. In
parallel, they perform an associative search of the other queue,
comparing addresses. If a store matches a later (in program
order) load, a pipeline squash is signaled. If a load matches
with one or more stores earlier in program order, the index of
the youngest is selected (using a priority encoder, a process

UIUC Technical Report #2634, October, 2005

facilitated by age ordering) and used to drive a RAM array
that holds the store’s value.

CAM ADDRESS

Data

Store Queue

S
S
L
L

Load Queue

Bypass Data

Squashes

Priority Encoders

Fig. 1. Traditional Monolithic Load/Store Queue Design. The store bypass
path, which involves a CAM lookup, priority encoder, and RAM access, is
generally one of a processor’s critical paths. A datapath that can support up
to 2 loads and/or 2 stores per cycle is shown.

Because all loads and stores are placed in the LSQ, each
queue must be appropriately sized to allow good utilization of
the reorder buffer, even for instruction mixes rich in loads or
stores. In recent processors, the queues have been sized to hold
25-40 percent of the maximum number of in-flight instructions
(Alpha 21264: 32 loads/32 stores, 80 in-flight instructions [12],
Pentium 4: 48 loads/32 stores, 128 in-flight instructions [6]).

B. Store Forwarding Buffer

As described in Section I, we streamline the performance
critical store queue by only using it for those instructions
that require it. In Figure 2, the black bars show the fraction
of dynamic loads and stores that matched1 in the LSQ and
hence required forwarding, for a machine with a 256-entry
instruction window. On average, only 7 percent of dynamic
loads and 20 percent of dynamic stores are involved in
forwarding in our runs.

Because an instruction’s disposition to forward or not is a
property of the program, the instruction’s PC can be used to
segregate those instructions likely to forward from those that
are not. Specifically, we find that a large fraction of static
instructions are never involved in forwarding. Thus a single
bit per static instruction is sufficient to effectively predict an
instruction’s forwarding behavior; all bits are initially cleared
and an instruction’s bit is set when it is first detected to require
forwarding. This simple predictor is very effective for loads
(filtering out 70% of dynamic loads) and moderately effective
for stores (filtering out 40% of dynamic stores), as shown in
Figure 2. As there are generally more loads than stores, it is
desirable that more loads are filtered than stores.

Ideally, this prediction bit is stored in the instruction—an
option when defining a new ISA or dynamically translating
to an internal ISA [1], [8], [9], [13], [20]—because then

1Engaged in either forwarding or an ordering violation

bz cr eo ga gc gz mc pa pe tw vo vp av
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

of
 I

ns
tr

uc
ti

on
s

Marked Stores

Matched Stores

Marked Loads

Matched Loads

Fig. 2. Only a small, predictable fraction of memory instructions is involved
in bypassing. Fraction of all loads and stores executed, we break them down
into those that matched in the LSQ, those that are marked because previous
instances of their static instruction matched, and those belonging to static
instructions that never matched.

the behavior only has to be learned once. Alternatively, this
prediction can be implemented by associating an extra bit with
each instruction in the I-cache. To handle programs with large
working sets (not a problem for our SPEC2000 benchmarks)
it may be beneficial to “page” these predictions into L2 ECC
bits, as is done in the AMD Opteron with branch predictor
information [11].

Once these predictions are available, the operation of the SFB
is much like that of a traditional store queue. Like traditional
systems, stores allocate entries in the age-ordered SFB prior
to dispatch into the instruction window; the only difference
is that only those stores predicted to require bypassing—what
we call marked stores—need to allocate an entry.

L

S

L

S

L

S

L

S

Buffer

Buffer

S
S
L
L

CAM ADDRESS

Data

Bypass Data

Priority Encoder

MVQ

SFB

Squashes

Fig. 3. Proposed Decoupled Load/Store Queue Design. The performance
critical store forwarding buffer (SFB) is used by only those instructions
likely to be involved in store forwarding, reducing its access time and energy
consumption. The energy consumed by the rest of the LSQ functionality is
reduced by banking it into a number of small, low-bandwidth structures. A
datapath that can support up to 2 loads and/or 2 stores per cycle is shown,
but only 1 load and 1 store can access the SFB.

As only a fraction of loads and stores are marked, less SFB
bandwidth can be provided than overall memory bandwidth
with only modest performance loss (as shown in Section III).
Thus only a subset of load/store units need be provided

UIUC Technical Report #2634, October, 2005

with ports to the SFB. Marked instructions must be slot-
ted/scheduled to execute only on those functional units.

C. Memory Validation Queue

Of the four LSQ functions described in Section I, the SFB
only provides the second (forwarding). Additional structures
are required to provide the remaining functions. The first
function (buffering store values for in-order retirement) is
relatively straight-forward; two reasonable implementations
are possible: 1) a separate (non-associative) RAM structure to
hold addresses and values, or 2) using such a structure for un-
marked stores in conjunction with the SFB. To handle the last
two functions (detecting load/store ordering and consistency
violations) we provide a Memory Validation Queue (MVQ).

The MVQ has two roles: to mark instructions for subsequent
introduction into the SFB, and to ensure that loads receive their
correct value by forcing pipeline squashes when necessary. In
addition to the detection of load-store ordering and consistency
violations required of traditional load queues, the MVQ must
detect situations where load-store forwarding should have been
performed on unmarked loads or stores.

While the MVQ acts much like a traditional LSQ, by virtue of
factoring out the performance-critical store-forwarding logic,
the structure becomes latency tolerant, enabling an energy
efficient implementation. The primary technique that we ex-
ploit to simplify the implementation is banking by address,
though others (e.g., a lower frequency clock domain, high
Vt transistors) are possible. Banking allows a collection of
small, low-bandwidth structures to be used as a single, large,
high-throughput structure. The reduction of structure size and
number of ports significantly reduces energy consumption, as
we discuss in Section III.

& >

physical address valid INUM

m
ar

k

=

AND

first stage second stage

m
at

ch

>

AND

match_1 match_2 inum mark

ad
dr
_i
n

va
lid
_i
n

in
um
_i
n

1 0

P
rio

rit
y

E
nc

od
er

Fig. 5. A closeup of an entry of the MVQ store queue. On the first cycle the
match 1 line is pulled down if any matches are found and the set of matching
entries are latched in the match bit. In the second cycle, a priority encoder
selects the oldest (in execution order) match, and broadcasts its INUM so
that it can be verified as the oldest. It is the oldest if match 2 is not pulled
down and a misspeculation can be signaled if its mark bit is not set.

The schematic diagram in Figure 3 shows the high-level
organization of the MVQ. The MVQ comprises a set banks,
each consisting of a pair of circular queues, one to hold
loads and one to hold stores. The entries in these queues
contain the same fields as in the traditional load-store queue
— CAM accesses to the data address, valid bits (a byte mask
for supporting multiple access sizes), and instruction serial
number (INUM), as shown in Figure 5. Memory instructions

are assigned to banks based on a hash of their memory
addresses, assuring that communicating instructions will be
assigned to the same bank.

In the remainder of this section, we first describe how banking
the MVQ impacts its structure (Section II-C.1). We then
discuss how stores and loads are handled (Sections II-C.2 and
II-C.3, respectively) and then explain how entries in the MVQ
are deallocated (Section II-C.4). We conclude (in Section II-
C.5) with a discussion of how deadlock is handled

1) Challenges Due to Banking: The most obvious drawback
of banking is the potential for load-balancing problems, but we
have found this to be a minor problem in practice. By using
a hash function that incorporates many (e.g., 16) address bits,
we find that problems resulting from strided accesses can be
minimized. Figure 4 shows that a relatively even distribution
can be achieved in most cases (data shown for 4 banks,
interleaving at the granularity of a 64b word 2, hashing bits
[18:3] of the address). In general, the address distribution is
remarkably constant over time. In the few cases (e.g., the first
sample from bzip2) where the distribution is skewed, we
can attribute it to the existence of a small number of “hot”
addresses (data not shown), and thus skewing could not be
avoided by the selection of a different hash function.

The true challenges resulting from banking arise from ad-
dresses (and hence bank indices) not being available until
execution time, namely: 1) MVQ entries cannot be allocated
at dispatch time, making it difficult to manage the structure
in an age-ordered manner, 2) bank conflicts can arise from
simultaneously issuing multiple instructions destined for the
same bank, and 3) it is difficult to guarantee that one bank
will not be over-subscribed.

We address the first challenge by not using an age-ordered
queue; instead we assign entries FIFO in execution order,
maintaining head and tail pointers. Age ordering serves pri-
marily two purposes: 1) simplification of the management of
queue resources, and 2) simplification of priority encoding.
Because of the simple FIFO allocation scheme we use, we
cannot deallocate entries as soon as they retire when reordering
has occurred, but because the degree of reordering is generally
modest this has little practical impact. The execution-time
allocation does improve utilization, however, by avoiding tying
up resources before they are needed. Solving the priority
encoding issue is more involved, but can be handled (using the
INUMs stored in the MVQ) because of the latency tolerance
of the MVQ and the fact that accesses to the same address are
rarely reordered (see Sections II-C.2 and II-C.3).

The second challenge, that of bank conflicts, is easily ad-
dressed by placing a pair of small buffers (see Figure 3) to
smooth out instantaneous bank imbalance. The addition of this

2Banking is facilitated by the constraint in some RISC architectures (e.g.,
Alpha, which we used in our simulations) that memory operations be naturally
aligned. For Alpha, this restriction means no operation spans 64b boundaries.
For ISAs without this restriction (e.g., x86) support for insertion into multiple
banks would be required.

UIUC Technical Report #2634, October, 2005

0

25

50

75

100

pe
rc

en
t (

lo
ad

)

bz cr eo ga gc gz mc pa pe tw vo vp
0

25

50

75

100

pe
rc

en
t (

st
or

e)

bz cr eo ga gc gz mc pa pe tw vo vp

Fig. 4. Address-based hashing can be used to partition dynamic memory instructions into roughly equal groups. For each benchmark, each column represents
occupancy of 4 different hash bins over a 100 million instruction interval — from left to right, starting at 0 billion, 3 billion, 5 billion, and 8 billion instructions
into the execution. Within each column, fractions of occupancy are sorted from largest to smallest, bottom to top.

buffer increases the latency of an MVQ insertion/snoop by a
potentially variable amount (based on the number of recent
conflicts), but, as the MVQ is only used to signal pipeline
squashes and to mark instructions involved in forwarding, it
is latency insensitive and its latency need not be predictable.

The third challenge is the most difficult, as there is a tension
between fully utilizing the MVQ and not oversubscribing any
one bank. Our primary mechanism is to only issue memory
instructions when there is space available in the buffer. This
scheme is relatively easy to implement at the scheduler by
tracking how many buffer entries have been allocated but not
freed: we increment a counter when a memory instruction
issues and decrement it when an instruction is removed from
the buffer. To allow the maximum instruction throughput, the
number of buffer entries must exceed the number of pipeline
stages between issue and address generation scaled by the
memory instruction issue width.

2) Handling Stores: : As a store is written to its MVQ bank’s
store queue, the entry’s index (read from the head pointer) is
sent to the ROB for use at retirement time. In parallel, the
store’s address, valid bits, and INUM are CAMed against the
bank’s load queue to detect ordering violations. If a load is
found with a matching address, overlapping valid bits, and
a younger INUM, then the MVQ pipeline is halted. Such a
match does not guarantee an ordering violation (a load may
have received a value from a younger store that executed
earlier than the present store), but we have found that the
complexity of detecting such circumstances cannot be justified
as they are relatively infrequent.

On detecting an ordering violation, the offending load (and
later instructions) is squashed, mark bits are set for the load
and store instructions, and the memory dependence predictor
is trained. For these last two operations, PCs are retrieved from
the ROB using the load and store INUMs available from the
MVQ.

When multiple matches occur, we need to squash back to
the oldest; also, we choose to only add the oldest to our
memory dependence predictor so as to minimally synchronize

the execution. Because instructions are not necessarily stored
in program order, INUMs need to be compared to identify
the oldest. Our solution to this problem is a low-cost/low-
performance one because ordering violation squashes, par-
ticularly those involving multiple matches, are rare. When
processing a store, the MVQ load queue sets match bits on all
matching entries. The INUMs of the matching lines are then
read out one per cycle (while the MVQ is otherwise stalled)
using a carry propagate-style priority encoder that sequences
through the matched lines. Each cycle the oldest INUM is
retained until all matches have been read out. Performing
priority selection in this way impacts performance by less than
0.001 percent in all cases.

3) Handling Loads: : Loads are similarly entered into the
MVQ bank’s load queue with the position being forwarded
to the ROB. In parallel, the load snoops the MVQ bank’s
store queue for matching (same address, overlapping valid
bits, earlier INUM) stores. When such a store is detected then
forwarding should have occurred. If the mark bits for either of
the load or the store are not set then a value misspeculation has
likely occurred and the pipeline is squashed and the mark bits
are set on both instructions (again using the stored INUMs to
retrieve PCs from the ROB). To avoid repeatedly replaying a
load whose unmarked producing store is stalled in the reorder
buffer, we squash back to the oldest unmarked instruction.

When multiple matches occur, the MVQ needs to identify the
youngest (the true producer) to avoid conservatively marking
all matching stores. Unlike an LSQ, a priority encoder is not
guaranteed to find the oldest instruction in the MVQ, because
instructions can enter out of program order. Nevertheless,
stores to the same address are very rarely reordered in practice
(an observation also made by Park, et al. [15]), so a priority
encoder almost always (over 99.9% of the time) returns the
correct value. Thus, our implementation assumes the store
closest to the head is the youngest, then validates this.

To prevent this process from affecting the throughput of the
MVQ, we pipeline the store queue access over two cycles.
In the first cycle, we identify all matches (setting the match
bits shown in Figure 5. In the second cycle, we prioritize

UIUC Technical Report #2634, October, 2005

the matches, select the presumed youngest (using a priority
encoder) and (attempt to) verify that all other matches are
older. The verification is performed by broadcasting the INUM
of the entry selected by the priority encoder on a second INUM
CAM port to see if any of the matched entries are younger. If
no entries are younger, the match2 signal will be low, and
the presumed youngest’s mark bit, which is read out while its
INUM is being broadcast, is checked. If there is at least one
older entry, then we must iterate; the match bits are updated
so that only those matching entries younger than the presumed
youngest are set, and the process is repeated. If another load
was in the first stage of the pipeline and had a match, it would
have to be replayed on the following cycle, but, as previously
noted, this almost never happens.

4) Deallocating Entries: : Loads and stores are not allowed
to retire until they have been processed by the MVQ. Once
an instruction has been committed, its MVQ entry is lazily
deallocated. When the tail instruction in an MVQ load queue
has an INUM older than the oldest retired instruction, the
instruction is invalidated and the tail pointer is incremented.
Because instructions can be allocated in the MVQ in program
order they are also deallocated in program order. Because
instruction reordering in practice is modest, this only yields a
small inefficiency. Likewise, squashed instructions are invali-
dated, but the “holes” created in the queues are not collapsed.

A similar process happens with the store queue, but stores
cannot be deallocated immediately at retirement. Before a
store entry can be deallocated, it must be snooped by all loads
that executed before its retirement (i.e., before it is available
from the cache) and some of these instructions may still be
in the MVQ buffer (waiting for entry in an MVQ queue). By
recording at a store’s retirement the number of buffered loads
destined for the same bank and decrementing this count each
time a load is processed, the safe time for deallocating a store
can be known. If the MVQ buffer is limited to hold 6 loads, we
need to keep track of at most 7 INUMs per bank: an INUM
that is currently safe to retire, and INUMs that are safe to
retire after 1-8 loads are processed. This functionality can be
implemented with a circular buffer without a CAM port.

5) Deadlock Avoidance, Detection, and Resolution: As with
any situation where the resources are limited and allocated
out of program order, the MVQ has the potential for deadlock.
Deadlock in the MVQ can occur in two ways. Both begin with
an instruction being scheduled later than its program order, and
becoming next-to-retire while some set of MVQ banks is full:

• If the late instruction issues and enters the MVQ’s buffer,
but cannot enter its bank because the bank is full, then
the late instruction can never retire — but until it does
so, no other instructions can retire.

• If the late instruction becomes the next to retire when
some set of banks in the MVQ is full and the MVQ’s
buffer is blocked on that set of banks, then it can never
issue, for there is no room for it in the MVQ, and the
MVQ will remain full, since none of the instructions in

it can retire until the late instruction does so.

The latter case requires a full MVQ bank, an MVQ buffer
full of instructions waiting to enter the full bank, and a
memory instruction, scheduled out-of-order, bypassed by every
instruction in the MVQ. In practice, for reasonable MVQ sizes,
it is vanishingly rare. To detect it, we apply a timeout on the
status of the next instruction to retire — if it has not yet
issued, and a timeout has elapsed , then we decide a deadlock
has occurred. Resolution is easy, if costly: we flush the pipe
back to the blocked instruction and resume execution. This
case never occurs in our simulations.

The former case happens more frequently; fortunately, it can
be avoided. When the MVQ detects that an instruction in the
buffer is the next to retire, it can allow that instruction to snoop
and to remove itself from the MVQ without ever allocating
it an entry in a bank. To do this, it permits the instruction
to snoop its bank as usual, but also requires the instruction
to snoop backward in the buffer, examining all later-issued
instructions for matches. The extra time required for such
an operation is small compared to the pipe flush otherwise
required. This case is not common, but does occur, particularly
in memory-intensive benchmarks like mcf.

To reduce the likelihood of either situation, we limit the
number of loads and stores dispatched into the instruction
window to be slightly less than can be held in the MVQ proper
(anticipating some imbalance). By throttling the number of
memory instructions entering the window, we reduce the
likelihood that an MVQ bank fills before a stalled instruction
executes.

III. METHODOLOGY AND RESULTS

We evaluated our proposed load-store queue design using
timing simulations of SPEC2000 integer benchmarks. Our
timing simulator uses the loader and system call functionality
from SimpleScalar [3], but the pipeline model has been re-
written to perform a true execution-driven simulation of Alpha
binaries. Parameters for our simulated machine can be found
in the table in Figure 6. Benchmarks are compiled with the
Compaq Alpha compiler at the highest level of optimization,
but without profile information. All the results presented in
this paper are for 200 million instruction runs started after
skipping the first 5 billion instructions.

In this section, we first demonstrate (in Section III-A) that
filtering based on previous forwarding behavior significantly
reduces the required number of entries and ports on the store
forwarding structure, relative to a traditional LSQ. We then
show (in Section III-B) that our throttling mechanisms are
sufficiently effective to approximate the performance of an
ideal MVQ with an MVQ with 4 banks, each with 16 entries.
We conclude this section by demonstrating that an SFB/MVQ
design enables equivalent performance to a conventional LSQ
with a 3-to-5-fold reduction in dynamic power.

UIUC Technical Report #2634, October, 2005

Scheduler & Pipeline
4-issue, 12-stage pipeline, 256-entry instruction win-
dow, 4k gshare predictor with 8 bits of history.
Memory
64kB 2-way associative L1 instruction & data cache
with 1 cycle latency, 1MB 8-way associative L2 cache
with 20 cycle latency, 80-cycle memory latency.
Functional Units (latency)
4 Integer ALUs (1), 1 Integer MULT/DIV (3/12),
2 Memory ports (3 ld/2 st), 2 FP ALUs (2), 1 FP
MULT/DIV (4/12)

Fig. 6. Simulation Parameters.

A. Varying Store Queue Size and Ports

In a system using a conventional LSQ, performance is closely
related to the LSQ’s parameters. In particular, reducing the
capacity of the queues or the number of ports they expose
severely limits performance. In Figure 7, the load and store
queue capacity is varied between 8 and 64 entries with both
single read/write ported and double read/write ported queues.
With the conventional LSQ—drawn with solid lines—single
read/write ported performance trails double read/write ported
by 5.8% with a capacity of 64 elements, and performance
begins to drop drastically when the capacity is reduced below
32 elements, attaining a 13% slowdown by 8 elements.

In contrast, we observe systems to be much less sensitive to
the size and bandwidth of a store forwarding buffer (SFB);
Figure 7 shows single read/write ported performance differs
from double read/write ported by 1.5% at 64 entries, and
the 64-entry queue performs only 1.8% better than the 8-
entry queue. As these results are concerned with sensativity
to the SFB, they were generated with an ideal (i.e., unlimited
bandwidth and capacity) MVQ. We consider practical MVQ
configurations next.

64 48 32 16 8

LSQ Size

1.0

1.1

N
or

m
al

iz
ed

 R
un

ti
m

e

1/1-ported LSQ
1/1-ported SFB/Perfect MVQ
2/2-ported LSQ
2/2-ported SFB/Perfect MVQ

Fig. 7. A conventional system is sensitive to its store queue parameters; an
MVQ-equipped system is relatively insensitive. Data averaged across samples
of the SPEC2000 integer benchmarks, normalized to a 64-entry 2/2-ported
LSQ.

8 16 24 32

MVQ Queue Size

1.00

1.02

1.04

N
or

m
al

iz
ed

 R
un

ti
m

e

2-banked MVQ
4-banked MVQ
8-banked MVQ

Fig. 8. The MVQ requires 4 banks and 16 entries/bank, but benefits from little
more. Data averaged across the SPEC2000 integer benchmarks, normalized
to the case with a perfect MVQ.

B. Varying MVQ Parameters

We explore two MVQ parameters that potentially affect per-
formance: the number of banks in the MVQ and the capacity
of both the store and the load queue in each bank. Results in
Figure 8 show that four banks are required to provide sufficient
bandwidth (recall that each bank can process only a single load
or store per cycle), but performance is reasonable with queues
as short as 16 entries. Increasing the number of banks beyond
four only helps when each bank is shrunk to less than 16
entries, because it increases the aggregate number of entries.
Thus the MVQ can be implemented with 4 banks, each with 16
entries per instruction type (4x16) with minimal performance
reduction, which we now show to significantly reduce power.

8 16 24 32 48 64 96 128

CAM entries

0.0

0.1

0.2

nJ

2/2-ported CAM
1/1-ported CAM

Fig. 9. Query power in CAMs varies with the number of ports and the
number of elements. .09µ technology. Produced by Cacti 3.2

C. MVQ Power

Our previous results have shown that our SFB/MVQ combi-
nation can achieve performance comparable to a monolithic
LSQ, but with a collection of smaller, low bandwidth struc-
tures. While this modestly reduces the access time of each
structure, it provides a substantial dynamic power reduction.

UIUC Technical Report #2634, October, 2005

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr avg

0.98
1.00
1.02
1.04

R
un

ti
m

e LSQ (48 entries, 2/2 ports)
LSQ (32 entries, 2/2 ports)
MVQ/SFB (16 entries, 2/2 ports)
MVQ/SFB (16 entries, 1/1 ports)

bzip2 crafty eon gap gcc gzip mcf parser perl twolf vortex vpr avg
0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er
 (

N
or

m
al

iz
ed

 t
o

L
SQ

)

SQ (48 entries, 2/2 ports)

LQ (48 entries, 2/2 ports)

SQ (32 entries, 2/2 ports)

LQ (32 entries, 2/2 ports)

MVQ (16 entries, 1/1 ports)

SFB (16 entries, 2/2 ports)

SFB (16 entries, 1/1 ports)

Fig. 10. Designs using the SFB/MVQ can achieve similar performance using smaller, lower bandwidth structures, yielding lower power execution. Data
shown for 48- and 32-entry LSQs (striped) with 2 load and 2 store ports for each queue. The MVQs (solid) have a 16-entry buffer and 4 banks, with each
bank having 16 entries and one read and one write port; the left MVQ features a 16-entry 2/2-ported SFB, while the right MVQ features a 16-entry 1/1-ported
SFB.

According to Cacti 3.2, energy per access for a CAM scales
roughly linearly with both the number of entries and number
of ports (see Figure 9). Thus, querying a 48-entry 2-read/2-
write-ported CAM takes almost 7 times the power of a query
to a 16-entry 1-read/1-write-ported CAM.

As a result, the use of smaller structures and limiting the
queries to them translates into as much as a 5-fold reduction in
LSQ power. Accounting for the fact that the marked instruc-
tions access both the SFB and the MVQ, we computed energy
consumption for both the LSQ and SFB/MVQ organizations.
We looked at two performance points: a 2-ported 48-entry
LSQ has roughly the same performance as a 2-ported 16-entry
SFB with a 4x24-entry MVQ and a 2/2-ported 32-entry LSQ
has roughly the same performance as a 1/1-ported 16-entry
SFB with a 4x16-entry MVQ. Figure 10 shows the SFB/MVQ
achieves roughly a 5-fold and 3-fold reduction of dynamic
power, respectively.

A back-of-the-envelope calculation suggests our design com-
pares equivalently or favorably to conventional LSQ designs
in terms of static power and area. To analyze both the static
power consumption and area requirements of our design we
have made an estimation of the transistor count of both the
traditional design and the SFB/MVQ3. This estimate suggests
that a 48 entry 2/2 ported LSQ architecture uses roughly
the same number of transistors as a 16 entry 2/2 ported
SFB together with a 4-banked, 16-entry per queue MVQ.
The latter architecture, by virtue of using structures with
fewer ports, uses fewer wires, and the MVQ could employ
slower, lower-leakage, smaller fabrication transistors without
significant performance penalty. As the MVQ dominates the
transistor count of our architecture, we expect this to favorably
influence static power and area. Furthermore, since the SFB
and MVQ scale more slowly with instruction window size

3We assumed that one bit of storage is 4 transistors, and each write port
requires 2 extra transistors per bit, while each CAM read port requires 3 extra
transistors per bit.

than traditional LSQs (see Figure 7), we expect this trend to
continue.

IV. APPLICATIONS FOR RELAXED CORRECTNESS

Given that SFB/MVQ power consumption is dominated by
the MVQ, it is interesting to consider how MVQ power
consumption can be reduced. Because the MVQ is only
responsible for checking the work performed by a memory
dependence predictor and the SFB, both of which are reliable
after initial training, most of the work performed by the
MVQ does not affect the program’s execution. In fact, in
the experiments from the previous section, only around one
hundredth of one percent of dynamic instructions are involved
in dependence violations detected by the MVQ. In light
of the MVQ’s high power consumption to utility ratio, we
consider applications of the SFB/MVQ in machines that have
relaxed correctness guarantees, like Diva [4] and Master/Slave
Speculative Parallelization (MSSP) [20].

Master-Slave Speculative Parallelization (MSSP) is a new
execution paradigm that decouples the issues of performance
and correctness in microprocessor design and implementation.
MSSP uses a fast, not necessarily correct, master processor
to speculatively split a program into tasks; these tasks are
then executed independently and concurrently on slower, but
correct, slave processors. This model is most effective when
the Master eliminates, in either software or hardware, corner
cases – when a great deal of work is omitted at the cost of a
small chance of producing an error.

Because results generated by the MSSP master are only
used as value predictions, incorrect results can only affect
performance and not correctness. Thus, the master only has
statistical correctness requirements — necessary to ensure
good performance — providing an interesting testbed for
exploring the optimization of the MVQ. The key idea is that
if we can accurately predict which loads and stores will not

UIUC Technical Report #2634, October, 2005

be involved in dependence violations, then these instructions
need not be inserted into the MVQ, reducing both the size and
activity of the MVQ. On the rare occurrence that the MVQ
misses a dependence violation, it will be caught by MSSP’s
verify/commit unit, yielding a more expensive misspeculation,
but no incorrect result.

To avoid large prediction tables, we sought instead to discover
properties of instructions and their execution contexts that
might predict their behavior in the MVQ. We considered
four properties for making a prediction: 1) whether a squash
has occurred recently, 2) how frequently an instruction has
executed (a property that is tracked at a coarse grain by
MSSP’s iterative dynamic optimizer [14], 3) whether the
instruction is marked, and 4) whether the instruction is a load
or store. Somewhat disappointingly, we found no combination
of these attributes to distinguish instructions (i.e., separate
those that should be dropped from those that should not) that
was sufficiently accurate across all of the benchmarks. We did,
however, find that within a benchmark, the characteristics of
instructions that were safe to drop were quite stable.

Thus, the implementation that we studied tries to identify
those combinations of attributes (what we call dropsets that
are indicative of instructions that are safe to drop, and drops a
fraction of those instructions. Specifically, we keep 16 counters
(one for each dropset) and record the ratio of instructions al-
located to that dropset to the number of dependence violations
detected. If this ratio is above some threshold (1000 insertions
to one violation in our experiment), then the instruction is a
candidate for dropping. We found that dropping 60% of drop
candidates all the time, and 90% when the MVQ buffers are
close to capacity, permitted over 57% of dynamic memory
instructions to be dropped from the MVQ, yielding a further
factor of two dynamic power reduction with minimal impact
on performance, as shown in Figure 11.

V. SOURCE OF BANK IMBALANCE

In this section, we demonstrate that when bank imbalance
occurs in the MVQ, it is due to the repetition of a single
or small set of addresses. We observe this correlation in a
micro-architecture independent way by breaking a program’s
execution into intervals of 1024 instructions; for each interval
we record two statistics: 1) we count how many times each
address was loaded from and record the count of the most
frequent, and 2) we hash all of the load addresses and record
the amount of imbalance (i.e., we subtract the average bank
occupancy from the maximum bank occupancy). In this way,
each interval provides us a point in two dimensions. If we
aggregate these points, we can produce a three-dimensional
plot, like the contour plot shown in Figure 12. It can be seen
that there is a strong linear correlation between a value being
repeated within the interval (plotted on the X axis) and the
interval’s bank imbalance (plotted on the Y axis).

To understand the cause of this, we analyzed the assembly

H
as

h
Im

ba
la

nc
e:

 m
ax

(b
an

ks
)

-
av

g(
ba

nk
s)

Number of Accesses to the Same Address (in 1024 instructions)

Fig. 12. A contour plot that shows the correlation between repeated accesses
to the same address and load imbalance within a 1024 instruction interval.
Data shown is for loads from the benchmark crafty and is representative
of loads and stores across all of SpecInt 2000.

for (j = 0; j < limit; j+=1024) {
spec fd[i].buf[j] = 0;

}
Fig. 13. A code example that demonstrates a common source of bank
imbalance. The compiler’s alias analysis fails to detect that the store to
spec fd[i].buf[j] does not alias with the load of spec fd[i], so
the load (to that same address) is performed every iteration of the loop. This
example is responsible for the imbalance observed in the first checkpoint of
bzip2 in Figure 4.

and source code of a few regions with frequently repeating
addresses. The cases we observed were all like the code
from bzip2 shown in Figure 13. This code fragment initial-
izes values in a large array that is reached through a level
of indirection. The DEC Alpha compiler fails to promote
spec fd[i] to a register, due to a perceived potential alias
with spec fd[i].buf[j] we imagine. As a result, this
load, which always loads from the same address, represents
100% of the loads during its interval.

VI. RELATED WORK

There has been much recent work in the design of load-store
queues. The closest related work to ours is that of Roth, who
independently made the observation that not all loads and
stores need to be considered for forwarding [16]. To handle
the non-forwarding related operations of the LSQ, he proposes
to use filtered load re-execution, as was proposed by Cain and
Lipasti [5], which eliminates the necessity of a load queue at
the expense of re-executing a fraction of loads at retirement.

Sethumadhavan et al. previously considered address-banked
LSQ designs, but discarded them because they failed to
achieve good results [18]. There are three key differences
between their proposal and ours: 1) we propose banking only

UIUC Technical Report #2634, October, 2005

bzip2_5 crafty_5 eon_5 gap_5 gcc_5 gzip_5 mcf_5 perl_5 twolf_5 vortex_5 vpr_5 avg
0.96
0.98
1.00
1.02
1.04

ru
nt

im
e MSSP w/LSQ

MSSP w/MVQ

MSSP w/spec MVQ

bzip2 crafty eon gap gcc gzip mcf perl twolf vortex vpr avg
0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er
 (

N
or

m
al

iz
ed

 t
o

L
SQ

)

SQ MSSP w/LSQ

LQ MSSP w/LSQ

MVQ MSSP w/MVQ

SFB MSSP w/MVQ

MVQ MSSP w/spec MVQ

SFB MSSP w/spec MVQ

Fig. 11. When instructions are judiciously dropped from the MVQ, the MVQ produces much less dynamic power with almost no performance impact The
traditional LSQ shown here has 48 entries and is dual-ported. The MVQ has 4 ways, 16 entries per way, and is single-ported, and its SFB has 24 entries,
single-ported.

the latency-tolerant verification portion of the LSQ, which can
tolerate a buffer to smooth out bank conflicts, 2) our throt-
tling mechanism can be viewed as a hybrid of their stalling
and squashing mechanism, which minimizes the number of
squashes required without being over conservative, and 3) our
primary site of throttling is at issue rather than dispatch. With
these difference we were able to achieve very positive results.

Akkary et al. observe that most forwarding occurs between
relatively nearby instructions and propose building a scalable
store queue by exploiting hierarchy [2]. Recent instructions
are cached in a first-level store queue, with other instructions
residing in a second-level structure. This approach reduces the
size, but not the bandwidth of the latency critical store queue,
but reduces latency predictability.

Park et al. propose reducing the required snoop bandwidth
of the store queue by extending a Chrysos and Emer store set
predictor [7] to predict which loads are likely to receive values
forwarded by stores [15]. Our scheme achieves an equivalent
reduction in snoops with a much simpler predictor.

Sethumadhavan et al. proposed using a Bloom filter to reduce
store queue snoop bandwidth requirements, by eliminating
those searches that the Bloom filter predicts cannot possibly
match [18]. This approach has two drawbacks relative to
our proposal: 1) accessing the Bloom filter is on the critical
path (i.e., it must be done between generating an address
and accessing the store queue), and 2) an instruction’s need
to snoop is not known until execution time, so it is not
available to the scheduler. As a result, the scheduler must
either be conservative or risk over-loading the store queue
ports, requiring queuing and latency mispredictions.

More recent work by Roth further limits the proportion of
loads which must re-execute by establishing a window of
stores to which the load is vulnerable and employing a Bloom
filter on the data address to determine whether a given load

must be re-executed [17]. However, full re-execution of some
loads is still required.

Complex CAM structures are not only reduced, but entirely
avoided in the load-store mechanism proposed by Gandhi et
al [10]. However, their technique is only applicable in the
context of a “latency-tolerant processor” with an available
instruction window in the thousands of instructions.

A banked, hierarchical store queue design suitable for wide-
issue cores is proposed by Torres et al [19]. In this design,
monolithic store queue complexity is reduced by decomposing
the structure into several smaller ones, which speculatively
forward values. A larger, latency-tolerant second-level store
queue detects and squashes misspeculations.

VII. CONCLUSION

Scaling traditional load-store queue (LSQ) designs presents
a pressing problem for architects, as the content-addressable
memories on which they are based scale poorly with regards
to access time and complexity. In this paper, we have proposed
an alternative for the traditional LSQ in which its several
functions are decomposed and distributed so that critical
value forwarding happens in a fast structure and correctness
is removed from the critical path. We simplify the store
forwarding logic by restricting the store queue to hold and
snoop only those instructions predicted to be involved in
forwarding. We simplify the checking functionality of the LSQ
by implementing it in a physically distributed structure, called
the Memory Validation Queue (MVQ). Having demonstrated
that hashing data addresses can effectively partition memory
instructions in the common case, we demonstrate how the
MVQ can be banked and propose throttling techniques for
dealing with load imbalance between the banks and a deadlock
avoidance mechanism to deal with deadlocks caused by the
MVQ’s limited resources. The end result of this design is that
a traditional monolithic LSQ can be replaced with a collection

UIUC Technical Report #2634, October, 2005

of small, low bandwidth structures with a negligible loss in
performance. These smaller structures offer significant savings
in power and modest improvements in access time, making the
SFB and MVQ a practical alternative for future processors.

VIII. ACKNOWLEDGMENTS

This research was supported in part by NSF CCR-0311340,
NSF CAREER award CCR-03047260, and a gift from the Intel
corporation. We thank the members of the MSSP group and
the anonymous reviewers for feedback on previous drafts of
this paper.

REFERENCES

[1] V. Adve, C. Lattner, M. Brukman, A. Shukla, and B. Gaeke. LLVA: A
Low-level Virtual Instruction Set Architecture. In 36th Int’l Symp. on
Microarchitecture, pages 205–216, San Diego, CA, Dec 2003.

[2] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint processing
and recovery: Towards scalable large instruction window processors. In
Proceedings of the 36th Annual IEEE/ACM International Symposium on
Microarchitecture, Dec. 2003.

[3] T. Austin, E. Larson, and D. Ernst. Simplescalar: An infrastructure for
computer system modeling. IEEE Computer, 35(2):59–67, Feb. 2002.

[4] T. M. Austin. Diva: A reliable substrate for deep submicron mi-
croarchitecture design. In Proceedings of the 32nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 196–207, Nov.
1999.

[5] H. Cain and M. Lipasti. Memory ordering: A value-based approach. In
Proceedings of the 31st Annual International Symposium on Computer
Architecture, June 2004.

[6] M. F. Chowdhury and D. M. Carmean. Method, appartus, and system
for maintaining processor ordering by checking load addresses of
unretired load instructions against snooping store addresses. U.S. Patent
Application Number 6,484,254, assigned to Intel, 2000.

[7] G. Z. Chrysos and J. S. Emer. Memory dependence prediction using
store sets. In Proceedings of the 26th Annual International Symposium
on Computer Architecture, pages 142–153, May 1999.

[8] K. Ebcioglu and E. R. Altman. DAISY: Dynamic compilation for
100% architectural compatibility. In Proceedings of the 24th Annual
International Symposium on Computer Architecture, pages 26–37, June
1997.

[9] B. Fahs, S. Bose, M. Crum, B. Slechta, F. Spadini, T. Tung, S. J.
Patel, and S. S. Lumetta. Performance characterization of a hardware
framework for dynamic optimization. In Proceedings of the 34th Annual
IEEE/ACM International Symposium on Microarchitecture, Dec. 2001.

[10] A. Gandhi, H. Akkary, R. Rajwar, and K. L. S. Sriniva andan. Scalable
load and store processing in latency tolerant processors. In Proceedings
of the 32nd Annual International Symposium on Computer Architecture,
pages 446–457, June 2005.

[11] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway. The amd
opteron processor for multiprocessor servers. IEEE Micro, 23(2):66–76,
March/April 2003.

[12] R. E. Kessler. The alpha 21264 microprocessor. IEEE Micro, 19(2):24–
36, March/April 1999.

[13] A. Klaiber. The technology behind crusoe processors. Transmeta
Whitepaper, Jan. 2000.

[14] N. Neelakantam. Program orienteering. Master’s thesis, Dept. of
Electrical and Computer Engineering., University of Illinois at Urbana-
Champaign, Urbana, IL, April 2004.

[15] I. Park, C. liang Ooi, and T. N. Vijaykumar. Reducing design complexity
of the load-store queue. In Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, Dec. 2003.

[16] A. Roth. A high-bandwidth load-store unit for single- and multi-
threaded processors. Technical report, University of Pennsylvania, 2004.

[17] A. Roth. Store vulnerability window (svw): Re-execution filtering
for enhanced load optimization. In Proceedings of the 32nd Annual
International Symposium on Computer Architecture, pages 458–468,
June 2005.

[18] S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore, and S. W. Keck-
ler. Scalable hardware memory disambiguation for high ilp processors.
In Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, Dec. 2003.

[19] E. Torres, P. Ibanez, V. Vinals, and J. Llaberia. Store buffer design in
first-level multibanked data caches. In Proceedings of the 32nd Annual
International Symposium on Computer Architecture, pages 469–480,
June 2005.

[20] C. Zilles and G. Sohi. Master/slave speculative parallelization. In
Proceedings of the 35th Annual IEEE/ACM International Symposium
on Microarchitecture, Nov. 2002.

UIUC Technical Report #2634, October, 2005

