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Advances in Rosetta protein
structure prediction on
massively parallel systems

S. Raman
B. Qian

D. Baker
R. C. Walker

One of the key challenges in computational biology is prediction of
three-dimensional protein structures from amino-acid sequences.
For most proteins, the ‘‘native state’’ lies at the bottom of a free-
energy landscape. Protein structure prediction involves varying the
degrees of freedom of the protein in a constrained manner until it
approaches its native state. In the Rosetta protein structure
prediction protocols, a large number of independent folding
trajectories are simulated, and several lowest-energy results
are likely to be close to the native state. The availability of
hundred-teraflop, and shortly, petaflop, computing resources is
revolutionizing the approaches available for protein structure
prediction. Here, we discuss issues involved in utilizing such
machines efficiently with the Rosetta code, including an overview of
recent results of the Critical Assessment of Techniques for Protein
Structure Prediction 7 (CASP7) in which the computationally
demanding structure-refinement process was run on 16 racks of the
IBM Blue Gene/Le system at the IBM T. J. Watson Research
Center. We highlight recent advances in high-performance
computing and discuss future development paths that make use of
the next-generation petascale (.1012 floating-point operations per
second) machines.

Introduction

With genetic sequencing completed for the entire genome

of a number of organisms including humans, the next

challenge is to functionally characterize the proteins

encoded by the genes and to understand their roles and

interactions in cellular pathways. High-resolution three-

dimensional (3D) protein structures can help in

understanding biological functions of proteins and also

explain the underlying molecular mechanisms of protein

interactions. The availability of high-resolution protein

structures should significantly accelerate efforts toward

targeted drug development.

It has been known for more than 40 years that the 3D

structures of proteins under normal physiological

conditions are uniquely determined by the composition of

their amino acids, which form a sequence called the

primary structure of a protein [1]. However, despite

considerable technical advances, the experimental

determination of protein structures by nuclear magnetic

resonance (NMR) and x-ray diffraction techniques

remains slow, expensive, and arduous. In particular, the

rate at which protein structures are being experimentally

solved is lagging far behind the explosive rate at which

protein sequence information is being gathered by high-

throughput genome sequencing efforts. Thus, given an

amino-acid sequence, a high-throughput methodology to

computationally predict protein structures at atomic-level

accuracy is one of the long-standing challenges in

computational biology.

If the protein of interest shares a reasonable sequence

similarity with a protein of known structure, then the

latter can be used as a template for modeling. If,

however, no detectable templates exist or the similarity is

small, then de novo techniques have to be used [2]. In

de novo methods, a protein structure is predicted in the

absence of any tertiary (i.e., 3D) structure information.

In other words, no known proteins can be used as

templates for the starting model. The ultimate objective

is to make high-resolution protein structures readily

available for all proteins of biological interest and then

to extend this to enable the design of man-made

proteins.
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Predicting protein structures presents a formidable

problem given the large dimensionality of the protein

conformation search space [3]. For instance, in the

Rosetta approach described in the next section, about

1,000 degrees of freedom exist for a 150-amino-acid

protein. The degrees of freedom consist of backbone and

side-chain torsion angles. In addition, the problem is

further complicated by the presence of a large number of

local minima in the energy landscape because of the

atomic repulsions at close distances. Therefore, the task is

computationally very demanding and requires a

significant amount of computing power to sample a

sufficiently large ensemble of conformations in the

protein conformation space to locate the native state, that

is, the operative or functional form of the protein.

The Rosetta method
Protein structure prediction and refinement are carried

out using the open-source software Rosetta, developed in

David Baker’s research group at the University of

Washington. Rosetta is a software package and a protein

structure prediction algorithm. In this paper, when

referring to Rosetta, we refer to the algorithm as

implemented within the Rosetta software package.

At the core of the Rosetta algorithm are potential

energy functions for computing the interactions within

and between macromolecules, as well as optimization

methods for determining the lowest-energy structure for

an amino-acid sequence. While significant insight can be

gained about protein topology from de novo models and

medium-resolution atomic interactions from homology

models, the atomic details that are responsible for protein

function and interaction require models at the highest

resolution. This motivated us to develop the high-

resolution refinement protocol in Rosetta. The starting

points for this protocol are approximate models of the

desired structure. These models come as two forms. First,

they may be homology models, generated by comparing

the amino-acid sequence of the protein whose structure is

to be predicted with similar sequences of known structures

and then accounting for the differences in the sequence

with predictions based on patterns detected in the

available experimental data. Second, the models may

come from low-resolution NMR refinement of the protein

under study or similar proteins. Typically, only a handful

of initial starting structures are available, and these may

be significantly perturbed from the true native structure.

Thus, we adopt a two-step approach consisting of low-

resolution protein-backbone loop modeling followed by

high-resolution refinement. This approach works in a

step-wise pattern whereby the initial structure is perturbed

using a set of rules that operate on a low-resolution

representation of the structure. This has the effect of

generating new low-resolution model structures. Then,

each of these structures is converted to a high-resolution

structure (containing all atoms), and the energy is

evaluated using the Rosetta energy function as described

later. This structure then undergoes a series of

optimization steps (high-resolution optimization), as

described below, that attempt to minimize the energy as

described by the Rosetta energy function. Assuming

sufficient conformation space has been sampled, the

structure with the lowest energy is likely to be close to the

native structure. The individual steps are described in

more detail below.

Low-resolution loop modeling—In protein structure

prediction, it is critical to rapidly sample configuration

space diversely enough to have sufficient probability

of generating a model that is close to the native

structure. This is achieved in the low-resolution loop-

modeling phase. In this step, the protein has a reduced

representation known as the low-resolution mode. At this

stage, we introduce structural changes to selected regions

of the protein structure by rebuilding them from a

customized set of fragment libraries [4]. The fixed regions

in the initial structure impose a geometrical constraint on

the newly built regions, ensuring fidelity of the new

structures to the initial overall folding, without large

backbone conformation differences. This step introduces

a large diversity in structural conformation while

preserving the folding.

High-resolution optimization—All the atoms of the

protein are explicitly represented, and the protein

structure has all available backbone and side-chain

degrees of freedom. The structural changes consist of

perturbing the backbone conformation of stochastically

selected regions and rapid combinatorial optimization of

the side chains [5, 6] to accommodate the new backbone

conformation, followed by gradient-based minimization

to the nearest local energy minimum [7, 8].

After every perturbation in the low-resolution mode, or

perturbation optimization in the high-resolution mode,

the new conformation of the structure is accepted or

rejected with the Boltzmann probability of the Metropolis

Monte Carlo criterion [9]. A single trajectory of protein

structure refinement involves hundreds of iterations of

structure perturbation moves in the low- and high-

resolution modes. At the end of the refinement trajectory,

the model settles at a low minimum of the energy

landscape. For a given protein, tens of thousands to

hundreds of thousands of independent trajectories are

simulated. A small fraction of these end up as local

minima that are close in energy to the native structure [7].

The Rosetta high-resolution energy function
One of the critical aspects of high-resolution structure

refinement is an energy function that can discriminate a

native structure from a non-native structure at atomic
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resolution such that the native structure lies at the bottom

of a free-energy landscape. The Rosetta energy function

makes use of the 12-6 Lennard–Jones energy function [6],

the Lazaridis–Karplus implicit solvation model [10],

orientation-dependent hydrogen bonds derived from

quantum mechanical calculations [11], and statistics

computed on high-resolution x-ray structures in the

Brookhaven Protein Data Bank (PDB) [12], a pair

interaction term that represents longer-range electrostatic

interactions between polar atoms and p–p and cation–p
interactions, a side-chain torsional potential derived from

the Dunbrack backbone-dependent rotamer library [13],

and a backbone torsional potential dependent on

secondary structure [14]. Each of the above terms can be

pair-wise factorized, and the total energy of the structure is

theweighted sumof all these terms. The functional forms of

the components of the energy function are shown inTable 1

[15]. In this table, P refers to the probability of specified

input conditions, such as backbone torsion angles,

occurring in databases of experimental results. These

probability tables have been constructed by fitting to high-

resolution structures that have been determined

experimentally and are published in the PDB. The term

residue in the table refers to an amino acid in the protein.

Running Rosetta on supercomputers

High-resolution structure refinement is a very

computationally intensive task. In essence, the problem is

one of global optimization of the free energy of the

protein by varying all degrees of freedom in order to

explore a highly complex multidimensional energy

landscape. Each simulation comprises thousands of

Monte Carlo minimization trajectories, each initiated

from a distinct random number seed. Given that the high-

resolution prediction of a protein structure of fewer than

200 amino acids could take thousands of CPU days, this

problem (coupled with the need to minimize the wall-

clock [elapsed] time for Critical Assessment of Techniques

for Protein Structure Prediction 7 [CASP7] and related

protein structure prediction benchmarks [16, 17]) is thus

ideally suited for high-performance computing (HPC) on

massively parallel systems.

Utilizing the Blue Gene/L system for structure

prediction

The coarse-grain nature of the Rosetta structure

refinement calculations makes the IBM Blue Gene/L*

(BG/L) platform, with its large number of relatively low-

power processors, the ideal architecture for protein

structure prediction. We parallelized the Rosetta software

by using a master/worker thread approach, using the

message-passing interface (MPI) [18]. A schematic of the

implementation is shown in Figure 1. In this approach, the

master thread runs as a job distribution node that

distributes packets of work to each of the worker threads.

These threads then independently work on this packet and

Figure 1
Diagram showing communication patterns within the Rosetta code when carrying out a structure prediction on the IBM BG/L platform. A 

job distributor, running on the master node, controls load balancing and produces summary information about the prediction progress. The 

worker threads receive their computation instructions from the job distributor in batch form over a message-passing interface. See text for 

additional details. (GPFS: General Parallel File System*.)

Score file and progress report

Structure list and filenames of initial guesses

Analysis

Collation and

visualization

Master thread

(job distributor)

Worker threads

[compute nodes]

Structure of initial guess 

Structures of refined models

Input

Output

MPI traffic

Gigabit Ethernet traffic

GPFS*

[I/O nodes]
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Table 1 The components of the Rosetta high-resolution energy function.

Function name Functional form Parameters Description

Ramachandran

torsion

preferences

X
i

�ln½Pð/i;wijaai; ssiÞ� i ¼ residue index Based on the secondary

structure of proteins, the

backbone torsion angles

assume preferred values.

This term penalizes

deviations from the

preferred state

represented by the

Ramachandran map.

/, w ¼ backbone torsion

angles

aa ¼ amino-acid type

ss ¼ secondary structure type

Lennard–Jones

interactions X
i

X
j.i

rij
dij

� �12

� 2
rij
dij

� �6
" #

eij; if
dij
rij

. 0:6

�8759:2
dij
rij

� �
þ 5672:0

� �
eij; else

8>>>><
>>>>:

i, j ¼ residue indices Short-range atomic

interactions are

dominated by attractive

van der Waals forces. If

the atoms get too close,

they clash and are

repelled. This term

captures the attractive

and repulsive

interactions.

d ¼ interatomic distance

e ¼ geometric mean of atom

well depths

r ¼ summed van der Waals

radii

Hydrogen

bonding

X
i

X
j

ð�ln½PðdijjhjssijÞ� � ln½PðcoshijjdijhjssijÞ�

� ln½PðcoswijjdijhjssijÞ�Þ

i ¼ donor residue index The hydrogen bonds

involve two groups: a

donor and an acceptor

group. These bonds are

formed at very specific

angles and distances

between these groups.

This is a statistical

potential that scores a

given conformation in

comparison to hydrogen

bonds observed in high-

resolution crystal

structures.

j ¼ acceptor residue index

d ¼ acceptor–proton

interatomic distance

h ¼ hybridization (sp2, sp3)

ss ¼ secondary structure type

h ¼ proton–acceptor–acceptor

base bond angle

w ¼ donor–proton–acceptor

bond angle

Solvation X
i

�
DGref

i

�
X
j

2 DGfree
i

4 p3=2kir2
ij

e�d
2
ij Vj þ

2 DGfree
i

4 p3=2kjr2
ij

e�d
2
ij Vi

 !�
i, j ¼ atom indices Naturally occurring

proteins interact with

the surrounding solvent.

The interaction of the

solvent with protein is

called the solvation-free

energy as described by

this term.

d ¼ distance between atoms

r ¼ summed van der Waals

radii

k ¼ correlation length

V¼ atomic volume

DGref, DGfree ¼ energy of a

fully solvated atom

Rotamer energy X
i

�ln
Pðrotij/i;wiÞPðaaij/i;wiÞ

PðaaiÞ

� �
i, j ¼ residue indices The side-chains of

proteins adopt preferred

conformations

depending on the

backbone state. This is

a statistical potential

derived from high-

resolution crystal

structures for scoring

side-chain

conformations.

rot ¼ Dunbrack backbone-

dependent rotamer

aa ¼ amino-acid type

/, w ¼ backbone torsion

angles

Unfolded state

reference energy

Xn
i¼1

Eref ½aai�
aa ¼ amino-acid type Reference energy for

every amino-acid type

assuming unfolded state

of the protein.

n ¼ number of residues

Eref ¼ unfolded state

reference energy for

amino-acid type aa
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return to the master for more work. This approach has

advantages because it deals with computational load-

balancing issues due to different amounts of time required

to refine each structure. The approach also has a

disadvantage: With low numbers of processors, the

overhead introduced by having a master thread that does

not do any computation can have an impact on the overall

efficiency. However, we have found that on most small

computer clusters, because of the control of load balancing

introduced by the job distributor model, the efficiency is

only marginally affected by running one more MPI thread

than there are available processors. On the BG/L platform,

this is not possible because of the lack of multitasking

support in the node OS (operating system), but here, jobs

are typically run using 2,048 or more processors, in which

case the efficiency impact of having one node run as a non-

compute node is trivial. In addition, as the number of

worker nodes increases (so the load on the master node

increases), a point will be reached in which there is little to

be gained by also running compute jobs on the master

node.

Note that in Figure 1, the master thread uses MPI to

send the filename for an initial structure guess (from a

homology model or a low-resolution NMR experiment),

as well as the number of trials to generate from this initial

structure to each worker thread. Each worker thread then

completes this batch of work, and each writes the results

of its structure refinements in parallel to disk and

communicates back to the master, using MPI, the

summary information regarding the batch of refinements

and a request for more work.

Overcoming problems with large processor counts

Early in our study, we encountered a number of

challenges when running Rosetta on large numbers of

processors (e.g., .8,192). First, the overall load on the

master thread increases as a function of the number of

processors; thus, at more than a certain number of

processors, the master thread cannot handle the requests

sufficiently fast, and the performance decreases. This was

easily overcome by dynamically increasing the size of the

work chunk (i.e., portion) that is given to each compute

thread. However, in the future, it may become necessary

to implement a hierarchical job distribution system with

several job distributors that communicate with a single

master job distribution thread in order to avoid such

bottlenecks. This will be particularly important when

utilizing processor counts in excess of 100,000 since this is

the point at which the current load-balancing scheme will

theoretically break down. This breakdown occurs because

the number of individual refinement trajectories that are

typically run for a given protein is on the order of 100,000

to 500,000. Thus, as the number of processors approaches

the number of refinements to be run, the flexibility

available for dynamic load balancing is reduced, as is the

ability to regulate the load on the master node by

modifying the work chunk size.

Even with code parallelization, the bottleneck in

protein structure prediction is still the amount of

conformational sampling that can be undertaken; thus,

benefits exist for simply increasing the number of

trajectories that are run. For the reasons discussed above,

increasing the number of trajectories will address the issue

of load balancing, at least in the short term, by increasing

the amount of work that each processor is responsible

for; however, long-term advancements, including more

accurate predictions and the ability to treat larger

proteins, will likely come from improving the complexity

of the energy functional used and developing more

efficient methods for sampling conformational space. In

this regime, as compute power increases, the number of

trajectories that can be run in a given time will remain

roughly constant, and thus, it will be necessary to

implement even finer-grain parallelism in order to ensure

effective load balancing.

Another problem that was encountered early in this

study concerned disk I/O issues. Initially, the job

distributor thread was responsible for reading

information from disk, packaging all the data required by

the worker thread for computation and then sending this

to the worker thread over MPI. The worker thread would

then undertake the computation and routinely send

progress reports back to the master thread so that it

could write the status and necessary output files. Such

an approach works fine on small clusters, but when

moving to massively parallel systems, and in particular the

BG/L system with its limited memory per node, this

approach leads to severe performance degradation due to

I/O and MPI bottlenecks at the master node. The I/O

requirements of the Rosetta code are not particularly

large, but once the computation moves to a large number

of processors, the I/O rapidly becomes prohibitive. For

example, a typical run for a protein of approximately 100

residues would have about 100 input structures totaling

100 KB each, as well as a database of parameters of

approximately 65 MB. The completion of each of the

trajectories would produce about another 120 KB of

trajectory data and a 100-KB PDB file containing the

refined structure information. Thus, for an I/O approach

in which all input and output is done by the master

thread, two I/O bottlenecks occur. The first occurs at

initial startup of the run, and the second occurs during

computation. At startup, the database must be read and

distributed to all nodes. This consists of 65 MB of data

that can be read from disk and cached on the master

node. Assuming a crude broadcast, in which the master

thread contacts each CPU in turn, then with 32,768

processors, the master node must broadcast 2 TB of data.
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With a point-to-point speed of approximately 160 MB/s,

this corresponds to more than 3 hours of elapsed time.

Obviously, a binary tree approach could address this

challenge; however, it is equally efficacious to simply have

each worker thread read the database from disk via the

parallel file system.

During the actual computation, the size of a work

packet (containing data for a single trajectory) sent from

the master node to each worker node would typically be

on the order of 100 KB. The returned completed work

packet size would be on the order of 220 KB. If the

calculation of 120,000 trajectories was to be completed in

3 hours, then this corresponds to a sustained I/O load on

the master thread of 3.5 MB/s, which, though technically

possible, assumes that the datastream is continuous or

that sufficient buffer space is available to fully buffer the

I/O stream. On the BG/L system in particular, this initial

approach caused serious problems with memory

management since it not only requires excessive memory

for buffering the output but it also requires a significant

amount of memory on the master node to deal with the

multiple MPI events. This meant that Rosetta structure

predictions were initially restricted to about 80 amino-

acid residues on BG/L systems. By transitioning to a

distributed I/O model in which each worker thread writes

to its own output file and both reads and writes its own

structure files, we have alleviated most of the I/O

constraints. In this case, the master thread has to send

only minor job-control information over the MPI

network and all I/O is distributed evenly across the

parallel General Parallel File System (GPFS). When we

move forward to greater than 100,000 processors for

studying larger proteins and use somewhat more

sampling, we may have to readdress this problem in order

to avoid issues related to having extremely large numbers

of individual files in a single directory, which, in our

experience, not only makes post-analysis and archiving of

the results difficult but also increases the I/O latency. This

challenge might be addressed with a hierarchical directory

structure or alternatively via some kind of connection

to a back-end database rather than a flat file system.

Additionally, we plan to implement a better monitoring

and fault tolerance system so that the user can more easily

monitor a calculation when it is running on an extremely

large number of nodes.

Another problem that was first encountered when

moving to massively parallel machines was the way in

which Rosetta treats random numbers. By default,

Rosetta seeds the random number generator using the

time of day. On a single system, this ensures a unique seed

and so avoids any duplication in the production run. For

testing purposes, the user can override this with his own

seed. When we initially implemented the MPI version of

the code, we simply let each thread obtain its random

number seed from the time of day. Delays in the startup

of each thread meant that for simulations using up to

approximately 128 processors, each thread would get a

different initial seed. However, upon moving beyond 128

processors, it quickly became evident that multiple

threads could obtain the same random number seed. This

would then lead to the two threads duplicating the same

result and so having a negative impact on the efficiency.

The solution we have chosen for this is to have only the

master thread obtain the time of day and then broadcast

this to each of the worker threads at the commencement

of the run. Each worker thread then multiplies its task ID

by the time-of-day value and uses this as the random

number seed. This approach avoids any issues with

duplication and also allows for testing on large numbers

of CPUs since the user can specify the random seed and

each worker thread will inherit this and multiply its own

task ID by the user-defined number. Obviously, this

means that for exact duplication of results, the user must

run the simulation on exactly the same number of

processors, but for the purposes of testing the software,

this is sufficient. Ideally, one would like to be able to

exactly reproduce the same ensemble of trajectories, but

this will require considerable reworking of the code since

the master thread will have to send specific blocks of

random number sequences to each worker thread in a

way that is independent of the number of threads used or

the order of operation. We have plans to implement this

to facilitate easier testing in parallel, but for now, our

current implementation is perfectly acceptable in terms of

the scientific results generated.

Overall, the implementation of a master/worker job

distribution system, coupled with parallel I/O, has been

sufficient to obtain efficient scaling performance to 40,960

processors on the BG/L system, which is the largest

calculation (in terms of total numbers of processors) that

we have run to date. The scaling behavior for an 86-

residue protein is highlighted in Figure 2. On 40,960

processors, we observe approximately 86% efficiency. The

14% loss of efficiency is largely due to a combination of

load-balancing issues at high processor counts and

increasing disk latency caused by contention for the I/O

nodes. We are hopeful that future modifications aimed at

scaling to more than 100,000 processors, as discussed

later, will address this problem and further improve the

scaling efficiency.

Results from CASP7 study
The phrase ‘‘Critical Assessment of Techniques for

Protein Structure Prediction’’ (CASP) [16, 17] refers to a

biennial community-wide experiment to test the current

state of the art in computational methods for protein

structure prediction. The CASP organizers release the

primary sequence of a number of proteins for which the
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experimental structures are not currently available to the

scientific community. Each team then conducts blind

predictions of the 3D protein structures and submits them

to the CASP organizers. At the end of the experiment, the

experimental structures are made public and the

predictions of each team are scored against these

previously unknown experimental structures. CASP,

therefore, acts as an important benchmark in measuring

the accuracy of current protein structure prediction

algorithms and is considered very seriously throughout

the protein structure prediction community.

There is typically a 3-week window between the release

of the sequence and the due date for submission of the

prediction. In CASP7, about 100 targets were made

available for prediction from May through July 2006,

corresponding to nearly a target a day. Each of these

targets required a large volume of computing before a

reliable prediction, using Rosetta, could be made. Ideally,

one would like to adopt the approach of using one large

production run, followed by significant post-production

analysis, for each target. However, in previous CASPs, we

were restricted by the lack of available computing

resources and had to use a less efficient approach that

attempted to iteratively refine the structure. Furthermore,

with a large fraction of time spent on computing,

typically very little time remained for thorough post-

production analysis of the models. The post-production

analysis is as important as generating the models

themselves. CASP7 marked the first time in which we had

access both to a version of Rosetta that could run on

massively parallel systems and to machines in which a

large amount of computing time was available for a

reasonable length of time (e.g., 24 hours). In the latest

CASP experiment, we made extensive use of the BG/L

systems at the San Diego Supercomputer Center and

Argonne National Laboratory. Overall, the access to

tightly integrated and reliable massively parallel systems

allowed us to run our prediction algorithm for a

significantly longer duration of simulation time, allowing

a more thorough exploration of conformation space and

affording greater time for analysis. A complete overview

of the CASP7 performance of the Rosetta team is

discussed elsewhere [19]. An overview of the performance

of all the groups that took part in CASP7 can also be

obtained from the CASP Web site [16]. Below, we discuss

a specific example that we ran as a demonstration of the

effectiveness of massively parallel systems for protein

structure prediction.

Running Rosetta on 16 racks of the BG/L system
for CASP7
In order to demonstrate the utility of massively parallel

supercomputers when coupled with recent modifications

to the Rosetta software, we participated in the July 2006

IBM BG/L application deployment workshop hosted on

the 20-rack BG/L system at the IBM T. J. Watson

Research Center (BGW). This coincided with the CASP7

competition and so provided us with an opportunity to

test the potential of the Rosetta software to effectively

utilize a massively parallel (.100-Tflops) supercomputer

on a current CASP target. The organizers of the

workshop made 16 racks (32,768 CPUs) of the BGW

supercomputer facility available to us for 3 hours. Our

aim was to be able to run a full Rosetta production run

on a moderate-size CASP target, leaving ample time for

thorough analysis after the production run.

We selected CASP target T0380. The experimentally

determined structure of this protein is now published in

the Brookhaven PDB of experimentally determined

protein structures as PDB ID 2HQ7 [20] and is the

general stress protein 26 (GS26) of Bacillus subtilis

(pyridoxine-phosphate oxidase family). This target fell

into the template-based modeling category of the CASP

experiment. When the primary amino-acid sequence of

T0380 was compared against sequences of all structures

deposited in the PDB, we found matches to structures

that shared significant sequence similarity with the query

Figure 2

Rosetta scaling on a BG/L system and a DataStar system as a 

function of CPU count. DataStar is an IBM POWER4 (Federation 

interconnect) system located at the San Diego Supercomputer 

Center.  Calculation time is the time to complete 120,000 all-atom 

refinements of an 86-residue protein. With the exception of the 

32,768 CPU run, the timings were calculated from benchmark 

runs on a subset of the 120,000 refinements and then extrapolated. 

The ideal line represents the time taken to run all the refinements 

on one processor divided by the number of processors. Note that 

the DataStar runs made use of a combination of 1.5-GHz and 

1.7-GHz nodes, depending on the number of CPUs in use.

1,024

512

256

128

64

32

16

8

4

2

C
al

cu
la

ti
o
n
 t

im
e 

 (
h
r)

1
2
8

2
5
6

5
1
2

1
,0

2
4

2
,0

4
8

4
,0

9
6

8
,1

9
2

1
6
,3

8
4
 

3
2
,7

6
8

6
5
,5

3
6

CPUs

Blue Gene/L

DataStar (1.5-/1.7-GHz POWER4*)

Blue Gene/L ideal

DataStar ideal

90%

88%

86%

IBM J. RES. & DEV. VOL. 52 NO. 1/2 JANUARY/MARCH 2008 S. RAMAN ET AL.

13



sequence. It was likely that these structures, slightly

varying between themselves, resembled the unknown

T0380 structure. Therefore, we used the structure with the

highest sequence identity as a template, or starting point,

for modeling T0380. The T0380 sequence was threaded

onto the template and Rosetta refinement was applied.

We then performed a single Rosetta production run on

the system for 3 hours, utilizing a total of 98,304 CPU

hours. The calculation generated approximately 190,000

models. We selected the lowest-scoring 5% for further

processing and analysis. The post-production analysis,

routinely used, includes distance-based hierarchical

clusters, filtering out models for poorly packed regions of

the protein, ensuring among other things that buried

polar residues are involved in hydrogen bonding. A

second smaller round of simulation was performed on

desktop compute resources to ensure that the desired

features were present in the model. Access to the BGW

system allowed us to complete the entire prediction within

a day and quickly submit it to the CASP organizers.

Figure 3 shows the superposition of the native structure

(released later) in blue, template structure in pink, and the

Rosetta prediction in green. Figure 4 shows the results for

the first prediction submitted by each of the teams that

predicted this target. This plot shows the percentage of

residues (alpha-carbons) in the predicted structure that

had root-mean-square deviations (RMSDs) to the crystal

structure of less than the cutoff shown on the y-axis.

Thus, lines that have a low initial gradient and a low

y-axis value indicate better fits. The prediction from the

David Baker research group is highlighted in black, and it

is clear that this was one of the most accurate predictions.

Future development paths aimed at next-
generation HPC systems
Since the current development path for HPC systems is

targeted toward larger and larger degrees of parallelism, it

is essential that we attempt to address the issues of

running Rosetta with more than 100,000 processors. As

mentioned earlier, a number of problems are encountered

when running Rosetta on such a large number of

processors, and we plan a number of modifications to

help improve the efficiency.

First, the single master thread system will be incapable

of handling such a large number of worker threads; thus,

we plan to investigate hierarchical approaches for job

distribution. This should reduce contention for the master

node. Second, beyond 100,000 processors, it becomes

necessary to start actively dealing with node failures,

which are likely to be fairly frequent (,24 hours per

failure). To address this, we are looking at ways to

actively monitor nodes. One potential option is for the

master thread, or the group master in a hierarchical

system, to routinely check on each of the worker threads.

Figure 3

Superposition of the native structure (which was made publicly 

available after the prediction was submitted for review) in blue, 

the initial template in pink, and the Rosetta prediction in green for 

CASP7 target T0380. All production calculation for this target 

was completed in fewer than 3 hours on 32,768 processors of the 

BGW system.

Figure 4

Plot showing the percentage of residues that had alpha-carbon 

Cartesian root-mean-square deviations (RMSDs) between the 

predicted structure and the experimental structure, below a 

distance cutoff in angstroms (10�10 m) shown on the vertical axis. 

The closer the line is positioned to the bottom right corner of the 

plot, the better the fit. The first submitted prediction for each of the 

teams that predicted target T0380 as part of CASP7 is shown. The 

Baker research group prediction is shown in black.
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Since the master thread keeps a record of what each

worker is working on, if a worker is found to be non-

responsive, the tasks assigned to that worker thread can

be distributed to other functional threads as necessary.

We also must attempt to improve issues with I/O

latency when using massively parallel systems. One

potential approach is to attempt to buffer the I/O locally

on a node and then write the buffer out as larger chunks

in less frequent intervals. This will partially alleviate the

problem, but since the memory-to-processor ratio of most

future HPC systems is likely to be constant, or even

decreasing, this may yield only a short-term fix.

Ultimately, we plan to overhaul the software in a way

that allows better management of the file structure and

job progression. One potential option here is to make use

of either a hierarchical or a database-like file structure as

opposed to the flat file system we currently use. This will

obviously make analysis of the results easier, but it will

also likely improve the I/O latency. In recent simulations,

we have noticed that the latency associated with writing

an individual output file to disk, in the form of a protein

databank file containing the coordinates of a predicted

structure, can increase as the number of files within a

specific directory grows. We hope that avoiding flat file

systems will improve this situation.

Finally, as we move toward machines with processor

counts approaching one million, it will be necessary to

migrate to an approach whereby the worker threads

represent more than a single processor. Without this, load

balancing will be a serious issue, and it will not be

possible to effectively utilize the entire machine. The

restricted memory per processor will also prevent

simulations of large sequences (.120 amino acids) from

being run. For reference, Figure 5 shows a histogram of

the sequence lengths (in amino-acid residues) of all

current entries in the PDB. This clearly shows that the

Rosetta software might one day be used for much larger

proteins. Since our ultimate goal is to run simulations

that involve roughly constant numbers of refinements

(;250,000) but with larger and larger counts of amino

acids, it will become necessary to implement a finer degree

of parallelism within the refinement step. This is necessary

both to reduce the wall-clock (elapsed) time per

individual refinement and also to make the effective

memory available per MPI-refinement thread larger than

the current 256 MB provided by the BG/L system. One

possible approach may include a hybrid OpenMP**/MPI

(or custom threaded) approach whereby we maintain the

communications between job distributors and workers

using MPI, but within a worker thread we utilize

OpenMP or custom threading to, for example, run 32

SMP (symmetric multiprocessing) threads for a single

refinement calculation. While technically fairly simple to

implement, this approach will restrict the software to

HPC systems that are built out of reasonably large SMP

blocks. An alternative would be to implement a subset of

MPI communicators and perform the refinement in

parallel over a subset of processors using MPI. Though

more portable, such an approach will lead to a

significantly more complicated code base and also does

not improve the restrictions imposed by limited memory

per processor. Thus, in order to achieve the goal of both

structure prediction and functional studies of more and

more complex proteins, it will be essential that future

massively parallel systems support large (.16 processors)

SMP nodes with a memory capacity that is not less than

256 MB per processor (for a minimum of 4 GB fully

shared and addressable per node). Without this, the

memory limitations imposed by the desire to achieve

higher and higher peak floating-point-operation counts at

the expense of system balance will undoubtedly restrict

future advances in this field.

Conclusions

CASP7 marks the first time that we have had access to

both massively parallel high-performance computational

resources and a version of the Rosetta software that could

take advantage of them. The ability to run individual

protein structure predictions in a relatively short amount

of time (,1 day) while dramatically increasing the

amount of sampling per prediction made a significant

impact on our approach in CASP7 and will undoubtedly

influence the way in which we approach CASP8.

Figure 5

Histogram showing the sequence length (number of amino-acid 

residues) for all protein structures currently deposited in the 

Protein Data Bank. This information was compiled from informa-

tion at the Protein Data Bank [21].
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In addition, access to massively parallel high-

performance computer systems has been extremely

beneficial for protein structure prediction using Rosetta

by greatly reducing the time required to perform a single

prediction and so increasing the size of proteins that can

be studied. When we use ever-more-powerful machines in

the future, we face a number of hurdles that must be

overcome to make efficient use of these machines.

However, we are confident that none of these challenges

is insurmountable, and it is highly likely that future

advances in massively parallel computer systems will

increase protein structure prediction throughput and,

more importantly, lead to refinements of the underlying

models and to more accurate protein structure prediction.
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