
Reihe Informatik
TR-2005-009

The Importance of Sibling Clustering for
Efficient Bulkload of XML Document Trees

Carl-Christian Kanne Guido Moerkotte

University of Mannheim
cc|moer@pi3.informatik.uni-mannheim.de

The Importance of Sibling Clustering for
Efficient Bulkload of XML Document Trees

Carl-Christian Kanne
Guido Moerkotte

cc|moer@pi3.informatik.uni-mannheim.de

November 18, 2005

Abstract

In an XML Data Store (XDS), importing documents from external sources is a very
frequent operation. Since a document import consists of a large number of individual
node inserts, it is essentially a small bulkload operation.Hence, efficient bulkload
support is crucial for XDSs.

Essentially, XML bulkload is the transformation of an XML parser’s output into the
XDS’s persistent storage structures. This involves two major subtasks: (1) Partitioning
the documents’ logical tree structure into subtrees smaller than a disk page in a way that
is both space-efficient an suitable for later processing. (2) Mapping the subtrees to the
XDS’s internal page representation. In enterprise-scale environments with very large
documents and/or very many parallel bulkloads, task (1) is particularly challenging, as
not only disk space consumption, but also CPU and main-memory usage are important
factors.

In this article, we (1) discuss requirements for an XML bulkload module, (2) exam-
ine existing algorithms for tree partitioning with respectto their applicability as XML
bulkload algorithms, (3) derive a new tree partitioning algorithm, (4) present the design
and implementation of the bulkload module used in our Natix XDS, and (5) evaluate
the implementation.

1 Introduction

Loading of large amounts of data which is already available in an external format is called
a bulkload operation. In conventional DBMS, bulkloads are often used to initialize a
database, for example when introducing an application to DBMS usage, or when importing
data from a different DBMS or storage format.

In contrast, an XDS needs to support document imports as a regular operation which is
used very frequently by applications. Hence, bulkload becomes a core functionality whose
performance is a determinant of overall system performance. However, we could find only
very few publications that discuss efficient XML bulkload inlarge-scale XML data stores.

This article attempts to mitigate this deficit by presentingthe design and implementa-
tion of the bulkload component for the Natix XDS, a native XMLdata store developed at
the University of Mannheim [6]. Besides requirements analysis and interface design, our
main focus is the design of an efficient tree partitioning algorithm that decomposes the log-
ical XML document tree into subtrees, orclusters, that fit on a disk page. Such a clustering
algorithm is needed not only in Natix, but in every XDS that provides native tree storage,
such as IBM’s System RX [2].

Of particular concern is the number of clusters generated. When accessing the stored
documents, inter-cluster navigation is much slower than intra-cluster navigation, often by
several orders of magnitude. Even if access reordering techniques are used [7], the number

1

of clusters is a crucial factor for query performance. Hence, a bulkload algorithm must
minimize the number of generated clusters.

Our main contributions are as follows:

1. A detailed requirements analysis for XML bulkload components.

2. An analysis of existing tree clustering algorithms.

3. A novel linear time tree clustering algorithm that generates up to 30% less clusters
than the best known algorithms.

4. A description of the design and implementation of a concrete XML bulkloader, the
Natix Bulkload Component.

5. An evaluation of the Natix Bulkload Component.

The outline of the article is as follows. In Sec. 2, we give a brief overview of native
tree storage in Natix. In Sec. 3, we analyze the requirementsan XML bulkload component
must meet. In Sec. 4, we discuss existing tree clustering algorithms with respect to these
requirements. Sec. 5 describes the interface and implementation of the Natix Bulkload
Component. This section also covers our novel tree clustering algorithm. Sec. 6 contains
experimental results, including a comparison with the bulkload performance of other XML
storage systems. Sec. 7 concludes the article.

2 XML Storage

The requirements for bulkload components are strongly influenced by characteristics of the
desired target format.

A suitable format for an enterprise-level XDS must efficiently support bulkloads, incre-
mental updates, synchronization and recovery. In this section, we briefly review the Natix
incarnation of such a format (for details, refer to [6, 8, 9]). Similar formats are also used in
other XDSs, such as IBM DB2 (System RX) [2].

2.1 Logical Object Model

To keep the low-level storage engine simple and flexible, it was designed as general labeled
tree storage engine with a simpler model than typical XML APIs such as DOM or SAX.
Such models can easily be mapped to our logical model, as we explain the the following
subsection.

The individual documents are represented as ordered trees in which nodes are labeled
with a symbol taken from an alphabetΣTags. In the current implementation, we use the set
of integers0 . . . 216 − 1 asΣTags. Leaf nodes can, additionally, be labeled with arbitrarily
long strings over a different alphabet. In the current implementation, leaf nodes may be
labeled using Unicode strings.

2.2 Mapping XML to the Logical Object Model

A small wrapper module is used to map concrete XML representations (such as DOM,
SAX) with its node types and attributes to the simple tree model and vice versa. A sample
tree for a document fragment is shown in Figure 1.

2

<SPEECH>
<SPEAKER character=’famous’>OTHELLO</SPEAKER>
<LINE>Let me see your eyes;</LINE>
<LINE>Look in my face.</LINE>
</SPEECH>

SPEECH

SPEAKER

AttrContainter

character
’famous’

PCDATA
OTHELLO

LINE

PCDATA
Let me see your eyes;

LINE

PCDATA
Look in my face.

Figure 1: An XML fragment and its logical tree

2.2.1 Mapping XML Document Nodes to Logical Nodes

Elements are mapped one-to-one to tree nodes of the logical model. Attributes are mapped
to child nodes of an additionalattribute container child node, which is always the first child
of the element node the attributes belong to. Attributes, PCDATA (including whitespace-
only data), CDATA nodes, and comments are stored as leaf nodes, using reserved integer
values as node label.

External entity references are expanded during import, while retaining the name of the
referenced entity as a special inner node.

2.2.2 Mapping XML Tags to Tree Labels

The module which maps XML to the internal model uses a separate data structure to map
tag and attribute names to integers, which are used asΣTags. All the documents in one
XML collection share the same mapping, which makes query evaluation simpler and more
efficient because the possible integer values for a given tagor attribute name can be resolved
once per query and stay the same for all documents in the collection. We call the integer
labelsDeclarationIDs.

2.3 Physical Object Model

We partition the tree into subtrees, in whichProxy nodes are used to refer to connected
subtrees not stored in the same record. Their contents is theRID of the record containing
the subtree they represent. Substituting all proxies by their respective subtrees reconstructs
the original data tree.

A sample is shown in Figure 2. To store the given logical tree (which, say, does not fit
on a page), the physical data tree is distributed over the three recordsr1, r2 andr3. Two
proxies (p1 andp2) are used in the top level record. Two helper aggregate nodes(h1 and
h2) have been added to the physical tree. They group the children belowp1 andp2 into a
tree. Proxy and helper aggregate nodes are drawn as dashed ovals. They are only needed to
link together subtrees contained in different records, andare are calledscaffolding nodes.
Nodes drawn as solid ovals represent logical nodes (fi), and are calledfacade nodes. Only
facade nodes are visible to the caller of the XML segment interface.

The given physical tree is only one possibility to store the sample logical tree. More
possibilities exist since any edge of the logical tree can berepresented by a proxy. The
maintenance of the physical tree during incremental updates is described in [6]. The initial

3

Logical tree

f1

f2 f3 f4 f5 f6 f7

Physical tree

f1

p1

h1

f2 f3 f4

r1

r2 r3

p2

h2

f5 f6 f7

Figure 2: One possibility for distribution of logical nodesonto records

creation of a physical tree for a newly imported document is the core functionality of the
bulkload component described in this article.

The following section will explain how the individual subtrees are materialized.

2.4 Physical Subtree Model

Each subtree is stored in a single record and, hence, must fit on a page. Each subtree
represents part of a logical tree as defined in Section 2.1. Inaddition to leaves labelled with
strings, physical subtrees also contain another kind of leaf node, which is labelled with
references to other subtrees.

Every subtree also has two additional attributes. Aparent record RID points to the
parent subtree (if it exists), and a logical document ID fieldallows to determine which
document this subtree belongs to.

Classified by their contents, there are three types of nodes in subtrees:

Aggregate nodes represent inner nodes of the logical tree.

Literal nodes represent leaf nodes of the logical tree and contain text strings. If a literal
is larger than a page, it is split into chunks which are processed in the same way as
large logical trees.

Proxy nodes are subtree leaf nodes which contain physical references to other records.
They are used to link trees together that were partitioned into subtrees (see 2.3).
Proxies also represent a major difference between Natix’ format and the System RX
format [2], where the proxies contain logical identifiers which may be annotated with
metadata about the target subtree. Our bulkload algorithm is not concerned with the
representation of the links, and can thus be applied to formats that employ logical
links.

3 Requirements

We now turn to the requirements for a bulkload component thatcreates the persistent data
structures from an external document representation.

We base our design of the bulkload component on four goals, all of which are perfor-
mance-related.

4

1. The interface should closely match the typical output of XML parsers.

XML parsers are the most common source of imported XML documents, and many
XML tools, among them query evaluation components, are ableto efficiently deliver
results using parser-like interfaces. Hence, it is very reasonable to assume that the
data to be bulkloaded is delivered as XML parser output.

We do not want to waste resources by requiring to change the data representation
before or while accessing the bulkload component, in addition to potential represen-
tation changes for the actual transfer to the persistent storage format.

2. The mechanism should not require main memory proportional to the document size.

Linear memory usage would prohibit the import of documents larger than available
main memory. As a generalization, the total amount of concurrently importable doc-
uments would be limited by available physical memory.

3. The produced storage layout should be efficient for typical workloads on documents.

We identify three subgoals.

(a) A dominant access pattern for document trees is the preorder traversal of sub-
trees induced by inner nodes. It is used when exporting documents and doc-
ument fragments to their textual representation. Query evaluation on XML
documents typically also relies on preorder traversals, such as the evaluation of
XPathdescendant anddescendant-or-self axes. The default bulk-
load strategy therefore is to create a layout which adequately supports preorder
traversal.

(b) Given a set of children, we assume that the access frequency of sibling nodes
decreases with their order. Typically, the leftmost children are accessed more
often than the last children. For example, to reach any childby position in its
sibling sequence, in Natix storage format, all left siblings of the target node
need to be visited. Hence, the likelihood of being stored in the same record as
the parent node should be higher for left siblings.

(c) The number of clusters or subtrees should be as small as possible, because
traversal of inter-cluster borders is much more expensive than intra-cluster
traversal. Hence, fewer clusters imply higher query performance.

4. The produced storage layout should have minimal space requirements. This also
implies a minimal number of clusters, because each cluster induces storage overhead
in form of proxies and helper aggregates.

In the terms of Sec. 2, the bulkload component must map the logical object model to
the physical object model. According to the goals above, this means that the core task for
the bulkload algorithm is to decide which subtrees of the logical model should be stored as
physical subtrees, i.e. where to introduce scaffolding nodes.

This implies a clustering algorithm that partitions a tree into a minimum number of
subtrees with limited size, which can then be used as Natix XML subtree records.

4 Tree Clustering Algorithms

There are efficient clustering algorithms applicable to weighted tree structures which con-
sider the problem of creating a clustering of a tree which minimizes the number of gener-
ated clusters. However, the clusterings generated by the existing algorithms always have
the following properties: (1) The weight of each cluster hasan upper limit, which is a pa-
rameter of the algorithms. The weight of a cluster is the sum of the weight of its nodes. (2)
All nodes of a cluster are connected.

5

In our case, a cluster is a physical record in our subtree model (Sec. 2.4), and the node
weight is the size of the node (without its subtree) in bytes.Hence, the upper limit must be
a value smaller than or equal to the disk page size.

Unfortunately, our problem is slightly more complicated than mere assignment of log-
ical nodes to clusters. Our storage format does not match well with the stated constraints
for clusters, because in our case (1) the storage cost of a cutedge is not0, as a cut edge
causes overhead in the form of a proxy node and a new physical record header, and (2) it
is possible to put adjacent siblings into a single cluster that does not contain their parent
node, creating nonconnected partitions of the tree.

Note that these issues apply to many other conceivable tree storage structures, because
(1) any storage scheme must materialize the whole tree structure, not only the uncut edges,
and (2) even if efficient sibling clustering is not explicitly supported by a format, it is still
desirable to perform implicit clustering of siblings by placing them on the same disk page.

As explained above, our bulkload algorithm has to solve a more general problem than
existing tree clustering algorithms. However, the fundamental objective for both bulkload
and tree clustering is to find a minimal number of weight-limited clusters. Hence, in the
remainder of this section we review the tree clustering algorithms to find a good starting
point for a bulkload algorithm.

4.1 Workload-Directed Algorithms

(Weighted) Depth-First Search [15] processes a graph usingdepth-first search, assigning
nodes greedily to the current cluster. New clusters are created whenever the current cluster
cannot hold the current node. The resulting clustering is not compatible with our storage
structure, as the preorder traversal may cause nonconnected subtrees to be clustered to-
gether. The cost of cut edges is also not taken into account. In the weighted variant, the
algorithm also accounts for edge weights that represent traversal frequencies. Here, the
edges to visit are ordered by weight to avoid cutting heavilyused edges. The weighted
algorithm requires a main-memory representation of the document.

Lukes [11] presents a linear time algorithm that incorporates edge weights and find a
clustering of optimal value, e.g. one where the total weightof all edges that do not cross
clusters are maximized. For unit edge weights, the algorithm finds the smallest possible
clustering. However, the algorithm has very large constants; its running time isO(nk2)
wheren is the number of nodes andk is the weight limit. [4] report running times of several
hours on modern PCs for very small documents (∼100K). The algorithm also requires a
main-memory representation of the document and intermediate results, does not consider
sibling clusterings, and also does not observe costs for cutedges.

Bordawekar and Shmueli [4] extend Lukes by introducing several techniques to limit
memory usage and improve running time. This breaks the optimality, but achieves approx-
imate clusterings whose value is quite close to the optimum.Again, cut edges and sibling
clusterings are not considered. As we will see in Sec. 6, the performance of the algorithm
is inferior to Natix’ algorithm, even though their measurements only reflect the actual clus-
tering phase, and not the construction of the persistent data structures and associated costs,
such as logging.

Schkolnick [13] partitions hierarchical structures basedon access patterns. However,
the algorithm does not enforce a size limit for clusters, anddoes not consider nodes of
varying weight. The algorithm has a different objective than space-efficient bulkload; it
clusters objects into base collections, which can be joinedto efficiently answer queries.
While this may be applied to join-based XML query processing, it does not solve our
problem of finding weight-limited clusters.

6

4.2 The Algorithm by Kundu and Misra

As a foundation of our own bulkload algorithm, we have chosenthe one by Kundu and
Misra [10], which creates a clustering of a tree with weighted nodes, where each cluster is
connected and has at most weightk, and where the number of clusters is minimal.

To prepare the description of our own algorithm in the subsequent section, we now give
an outline of the original algorithm, and discuss its suitability as a bulkload algorithm in
more detail.

4.2.1 Outline

The algorithm pursues a bottom-up approach, successively assigning clusters to nodes.
A node is processed only after its children have been processed. Processing a nodex

guarantees that the weight of the subtree rooted atx is smaller thank. Theweight of a
subtree is the sum of all weights of those nodes in the subtree which have not been assigned
to a cluster. While the subtree weight is larger thank, new clusters are created for children
of x, each containing the subtree including the children and alldescendant nodes that are
not yet assigned to a cluster. Partitions are created for thechildren in descending order of
their subtree weight. Once the subtree rooted atx has a weight less thank, processing ofx
is finished. When this algorithm has reached the root node of atree, the resulting clusters
are smaller thank, and a minimum number of clusters containing connected subtrees has
been generated (Refer to [10] for a proof).

4.2.2 Suitability as bulkload algorithm

Document bulkload is easily translated into a problem instance for the algorithm above.
Document tree nodes have a weight proportional to their space usage, clusters are stored
as physical records, and the limit for the size of a physical record is the system page size.
The algorithm generates physical records in a bottom-up manner, so that subtrees induced
by some inner nodes are in as few physical records as possible. This prepares preorder
traversals of document fragments, as required when exporting or traversing such subtrees
when evaluating queries.

However, a bulkload algorithm for Natix needs to address some additional issues as
explained above:

1. We do not want to keep the whole document tree in memory.

2. There is an overhead weight associated with a physical record, because the stan-
dalone header and the proxy node in the referring record occupy space.

3. Neighbouring siblings can be assigned to the same physical record, amortizing the
overhead weight over several subtrees.

4. The leftmost siblings should have a higher probability ofbeing clustered with their
parent.

The first issue can easily be addressed, since the algorithm’s bottom-up approach does
never change a node’s assignment to a cluster. Hence, once a cluster has reached the size
limit, it can be stored in a physical record on disk and the constituent nodes need not be
retained in main memory.

The weight limit for a cluster is calledcluster limit in the following. A cluster limit
smaller than the capacity of a disk page may be used to avoid fragmentation. Since the
actual cluster sizes can vary with tree structure and text node sizes, a cluster does not
always closely approach the limit. Hence, many underutilised pages may be created. In
Natix, the cluster limit is set by default to a quarter of the disk page size, to allow several
clusters to share a page and thus improve space utilisation.

7

class SEG_XMLSegment : public SEG_SlottedPageSegment
{
public:
[...]

class BulkloadContext;
BulkloadContext *beginBulkload(const DocumentID &doc, DeclarationID logt,

uint32_t childcount, uint32_t sizehint);
void beginInternalNode(BulkloadContext *context, DeclarationID lt, uint32_t children);
void endInternalNode(BulkloadContext *context);
void addLiteralNode(BulkloadContext *context, DeclarationID lt,

uint32_t contentsize, ptr_t content);
NID endBulkload(BulkloadContext *context);
void abortBulkload(BulkloadContext *context);

[...]
};

Figure 3: XML bulkload interface

5 Natix Bulkload Component

Based on the requirements stated in the previous section, wenow present the design and
implementation of the Natix Bulkload Component. We begin with the Bulkload API that
is used to import an external document, and then elaborate onour clustering algorithm.

5.1 Interface

Figure 3 shows the internal bulkload interface for XML collections. Natix internally orga-
nizes storage in so-called segments, hence the identifier XMLSegment.

The document tree to bulkload is ”described” to the segment in form of a sequence
of ”visit events” resulting from a depth-first search of the tree. The bulkload user signals
these events to the bulkload component by calling appropriate functions each time a node
is visited.

This corresponds directly to parser interfaces such as SAX [12] or libxml [16]. These
generate parsing events which correspond to a depth-first search of the abstract syntax tree.
Clients need to register callbacks with the parser which areinvoked when the associated
event occurs. Each SAX event can be directly translated intoa single call of the bulkload
interface (Attributes are an exception, as they are delivered as a list together with the parent
element.).

The first visit of the document root node initializes the bulkload (beginBulkload()),
and the second visit (endBulkload()) terminates the bulkload and returns the node
identifier of the stored root node. ThebeginBulkload() call allows to specify a size
hint for the document. For small documents, this allows to fitthe document into a matching
gap on an already used page.

When visiting nonliteral nodes (beginInternalNode()) for the first time, the
caller may specify how many children the internal node has, if known. After all descen-
dants of the node have been added,endInternalNode() is called.

When visiting leaf nodes which are labeled with strings,addLiteralNode() is
called.

5.2 Bulkload Algorithm

We now explain the variant of the Kundu and Misra [10] algorithm used in Natix. After
giving a top-level explanation on how to extend the algorithm for our XML storage format,
we elaborate on the details, using C++-like pseudocode to specify the routines involved.

8

void SEG_XMLSegment::beginInternalNode(BulkloadContext *context, DeclarationID id)
{

context->current()->appendNode(new BulkloadNode(id));
}

Figure 4: Code forbeginInternalNode()

5.2.1 Extending the Kundu and Misra Algorithm

As explained in Sec. 4.2, three remaining issues need to be addressed by our algorithm:
(1) The overhead weight associated with a physical record. (2) Siblings can be clustered to
reduce this overhead. (3) The leftmost siblings should havea higher probability of being
clustered with their parent.

The overhead weight is dealt with in the detailed algorithm description below.
The possibility of sibling clustering introduces another degree of freedom when pro-

cessing nodes. Instead of choosing the heaviest child first when creating new subtrees,
it is now possible to create an ”artificial” heaviest child bygrouping consecutive siblings
together into one physical record. This can also be used to address our remaining issue:
Make clustering of leftmost children with their parent morelikely. We can now store some
of the rightmost children together in a separate physical record, while keeping a heavier
child further to the left in the same cluster as its parent.

More precisely, instead of choosing the heaviest child to beassigned to a separate clus-
ter from the parent, Natix combines some of therightmost, unassigned, consecutive chil-
dren of the currently processed node and clusters them into physical records smaller than
the cluster limit. This amortizes the record overhead over several nodes. It also increases
the likelihood of the leftmost children to be clustered withthe parent node.

Unfortunately, the changes described above break the optimality guaranteed by the
original algorithm. This demotes the Natix algorithm to a heuristic with respect to min-
imum number of records generated. It is not clear how the bottom-up algorithm can be
modified to address the issues above and still retain global optimality. In particular, while
sibling clustering is desirable with respect to the number of generated clusters, it increases
the search space of possible clusterings. We were not yet able to find a linear-time algo-
rithm that determines an optimal solution.

Since efficiency is of great importance for document import,we consider a slightly
suboptimal clustering acceptable, as it can be done in linear time. The heuristic algorithm
explained below generates very good clusterings (i.e. better than the optimal solution with-
out sibling clustering) in all observed cases,

5.2.2 Detailed Description of the Natix Algorithm

The algorithm maintains a main-memory tree which consists of nodes that have not been
assigned to a cluster yet. The main-memory tree nodes are stored using native C++ pointers
for parent references, and sets of child pointers in each node. The main-memory tree also
includes main-memory versions for proxies referencing subtrees which have already been
assigned to clusters and moved to physical records. The worst-case size of this main-
memory tree is proportional to the height of the document tree, i.e. the maximal path
length from the root node to a leaf node in the document. This property is guaranteed by
keeping, on each level, only as many nodes as fit within a certain configured memory limit,
which is an integer multiple of the cluster limit (see below).

In the beginning, bulkload starts with an empty main-memorytree. Every call to the
interface functions to construct the document either results in a new main-memory node, or
transfers some of the main-memory nodes to the storage representation by assigning them
to a cluster, or both.

9

void SEG_XMLSegment::endInternalNode(BulkloadContext *context)
{

BulkloadNode *processed=context->current();
pruneCurrentCluster(context);
context->current(processed->parent());
context->current()->addWeight(processed->weight());
if(context->current()->weight() > m * clusterLimit())
pruneCurrentCluster(context);

}

Figure 5: Code forendInternalNode()

void SEG_XMLSegment::pruneCurrentCluster(BulkloadContext *context)
{

BulkloadNode *current=context->current();

if(current->weight() + clusterOverhead() > clusterLimit())
clusterChildren(context, IGNOREPROXIES);

while(current->weight() + clusterOverhead() > clusterLimit())
clusterChildren(context, CLUSTERPROXIES);

}

Figure 6: Code forpruneCurrentCluster()

To simplify the exposition, we only consider treatment of the
beginInternalNode() and endInternalNode() functions. Calls to
addLiteralNode() can be regarded as calls tobeginInternalNode() im-
mediately followed byendInternalNode().

The beginInternalNode() code simply adds the new node to the main mem-
ory tree (Figure 4). The node is buffered in this main-memorytree since it only can be
processed until its complete subtree has been described using the bulkload interface.

WhenendInternalNode() is called (Figure 5), the current node’s subtree has
been completely visited by the depth-first traversal, and itcan be processed. The func-
tionpruneCurrentCluster() is called to guarantee that the node’s subtree is smaller
than the cluster limit. Then, the parent of the current node becomes the new current node,
and its weight is increased by the subtree weight of the node for whichendBulkload()
was called. Finally, if the size of the main memory tree belowthe current node has reached
a certain constant threshold, we start to create physical records to reduce the amount of
memory occupied by the bulkload, even if the cluster limit has not been reached. The
threshold is calledmemory limit. It is the cluster limit times an integermemory factor m.
In Sec. 6, we will show that above the Natix defaultm = 5, the performance gains are
negligible.

Figure 6 shows the code for pruning the main-memory tree. If the subtree below the
current node together with standalone record header is large than the cluster limit, then the
children of the node are clustered into physical records until the size of the main memory
subtree falls below the cluster limit. TheIGNOREPROXIES identifier is explained below.

During pruning of the tree, physical records are created which contain subtrees of the
main-memory tree. These main-memory subtrees are replacedwith main-memory proxy
nodes. Therefore, even after creating clusters and removing the nodes from the main-
memory tree, the remaining proxy nodes may still cause the subtree to be larger than the
cluster limit. Hence, in thewhile loop the proxy nodes themselves are grouped into clus-
ters and physical records are created for them, possibly in several levels, until the subtree
fits into the cluster limit.

TheclusterChildren() function (Figure 7) determines the cluster boundaries,

10

void SEG_XMLSegment::clusterChildren(BulkloadContext *context, ClusterMode m)
{

BulkloadNode *current=context->current();
BulkloadNode *lastsplit=current->lastChild();

lastsplit=findClusterBoundRight(context,lastsplit,mode);

while(lastsplit!=0 &&
current->weight() + clusterOverhead() > clusterLimit())

{
BulkloadNode* firstsplit;
firstsplit=findClusterBoundLeft(context,lastsplit,mode);
RID target=createRecord(context,firstsplit,lastsplit,false);
BulkloadNode* nextsplit=firstsplit->leftSibling;
replaceWithProxy(context,current,firstsplit,lastsplit,target);
lastsplit=nextsplit;
lastsplit=findClusterBoundRight(context,lastsplit,mode);

}
}

Figure 7: Code forclusterChildren()

moves clustered subtrees into physical records, and replaces the subtrees with proxies in
the main-memory tree. Note that the grouping of child nodes into clusters proceeds from
right to left, making sure that nodes further to the right aremore likely to be clustered, as
specified in our requirements.

Instead of showing code, we will only briefly describe the lower-level func-
tions required byclusterChildren(). The findClusterBoundRight()
and findClusterBoundLeft() functions determine the interval of those chil-
dren of the current node that are to be included in a new physical record.
findClusterBoundRight() looks for nodes satisfying a predicate that depends on
themode parameter. The search starts at the second argumentlastsplit and contin-
ues to the left siblings. Ifmode == IGNOREPROXIES, then the predicate is true for all
non-proxy nodes. Otherwise, any node qualifies.

findClusterBoundLeft() moves further right starting from the rightmost node
of the new partition. It includes nodes into the interval while they satisfy the same pred-
icate as above, and while the closed interval of subtrees bounded byfirstsplit and
lastsplit still fits into a physical record.

createRecord() is straightforward and creates new subtree records from themain-
memory representations. If main-memory proxy nodes are included in the subtree, they are
inserted into the physical record, and their target record’s parent pointer is updated to refer
to the new physical record.

replaceWithProxy() removes the main-memory representation of the subtrees
that have been moved to a record and inserts a proxy instead.

Memory management The main-memory representation consists of a large amount of
small objects. In the case of literals, these are even of variable size.

In spite of this, memory management is not expensive during bulkload. Memory is
allocated for the nodes during a depth-first traversal. In depth-first preorder, all nodes of
a subtree form a consecutive interval of nodes. This makes itpossible for the bulkload
component to use a special memory management technique. Thespecial memory manager
requests memory in blocks of constant size from the operating system, adding nodes to
blocks in depth-first preorder as they are delivered to the bulkload component. The order in
which the blocks are used is maintained in a list. When a subtree’s main memory represen-
tation is no longer used, the interval of blocks which only contain nodes of this subtree can
be deallocated in a per-block fashion, without regarding the individual nodes on the blocks.

11

Aborting Import Operations A document import may be aborted, for example because
validation fails half-way through a document. For such cases, the bulkload interface pro-
vides anabortBulkload() method. A call to this routine removes both the current
main-memory structure and the partially materialized document on disk.

Deallocating the whole main-memory structure is done in thesame way as removing
subtrees (see above). However, there are two approaches howto implement removal of the
on-disk structures, depending on whether Natix recovery code is enabled or not.

With enabled recovery, a transaction savepoint is taken during beginBulkload().
UponabortBulkload(), the transaction is rolled back to that savepoint, and removal
of the data structures on disk is automatically handled by the recovery subsystem’s rollback
routines.

Without recovery support, the bulkload component first scans the main-memory struc-
ture for proxy nodes, and deletes the referenced records, recursively descending into further
proxy nodes if present. After removing the subtree records from disk, the main-memory
tree is deallocated.

6 Evaluation

This section presents experimental results to assess the performance of the Natix Bulkload
Component. We examine the effect of sibling clustering, thescalability with respect to
document size, and compare Natix to other XDSs.

6.1 Document Collections

We performed experiments using three document collections. The first is the XMark bench-
mark [14] using scaling factors ofn × 0.2 with n ∈ {1 . . . 5}. The second is a sythetic
document collection generated using the ToXgene data generator [1]. The DTD as well as
the generator template file are listed in the appendix. The smallest document contains 50
employees, 100 students, 10 lectures and 30 exams. We generated 6 documents. With each
document we quadrupled these numbers, so that the biggest document contains 51200 em-
ployees, 102400 students, 10240 lectures and 30720 exams. This leads to document sizes
between 59kB and 43MB.

6.2 Environment

The system used for the experiments ran on two machines.
MachineNEW was used for all experiments except for the comparison to theolder

benchmark results (Sec. 6.4.4). It was equipped with 512MB RAM, a Pentium IV CPU
with 2.4 GHz, and an UltraWide SCSI hard disk. The operating system was SuSE Linux
9.3 with kernel version 2.6.11.

MachineOLD was used to reproduce the environment from [14], and had 512MB of
RAM, a Pentium III running at 600 MHz, and an Ultra Wide SCSI disk.

Natix was compiled with g++ 3.3.5 using optimization level O3.
The measured times are the total elapsed time to import the document, including full

logging and recovery support. A main memory page buffer withsufficient memory to hold
the whole document was used. The times do not include system startup time (about 0.1s),
and the page buffer was not flushed during bulkload. However,the times do include commit
processing and flushing of the log.

For the comparison to MonetDB [3], we used Monet Database Server V4.8.0 with the
Pathfinder module as publicly distributed. We present the import times reported by the
Monet console.

12

Method Clusters
Kundu (Optimal Single Child Clustering) 30198
Natix (Sibling Clustering,m = 1) 33929
Natix (Sibling Clustering,m = 2) 22852
Natix (Sibling Clustering,m = 3) 22117
Natix (Sibling Clustering,m = 5) 21895
Natix (Sibling Clustering,m = 10) 21779
Natix (Sibling Clustering,m = ∞) 21692

Table 1: Number of Clusters for XMark SF 0.2

6.3 Algorithms

For Natix, we implemented the algorithm as explained in thisarticle, using a default value
of m = 5 except where stated otherwise. A disk page size of 8K was used, and the cluster
limit was set to 2K to avoid fragmentation (see Sec. 4.2.2).

We also implemented a modified variant of the Kundu algorithmto compare our ap-
proach against optimal partitioning without sibling partitions. We had to modify Kundu to
incorporate the fact that the weight of a cluster is modified by the additional proxy nodes.
This was done using three modifications. First, while processing a node, the weight of
added proxies was added to the node. Second, nodes whose weight was smaller than or
equal to a proxy node were always clustered with their parent, because clustering them
would not decrease the weight of the parent node. Third, the Kundu algorithm has to deal
with the case that the physical representation for a single node with proxies for all its chil-
dren and small nodes clustered with the parent does not fit into the cluster limit. In this
case, and only in this case, we used the same approach as in theNatix Algorithm, namely
to partition the proxy nodes and the small regular nodes fromright to left by clustering
them into ”intermediate clusters” of maximal weight which were referenced by a proxy
in the parent’s cluster (SeeclusterChildren() in Sec. 5.2.2). As we will see in the
experimental results, this rarely occurs.

6.4 Results

6.4.1 The Importance of Sibling Clustering

With the first series of experiments, we wanted to illustratethe importance of sibling clus-
tering.

Hence, we took the XMark document with scaling factor 0.2, producing a document
about 20MB in size, and bulkload it using the modified Kundu and the Natix algorithm.
For the Natix algorithm, we used different values for them parameter (see Sec. 5.2.2).

The number of clusters generated are shown in Table 1. The modified Kundu algorithm
produces about 50% more clusters than the Natix algorithm with valuesm > 1. This
demonstrates that even a heuristic for sibling clustering can significantly outperform the
optimal single child clustering case. Note that the number of nodes for which intermediate
clusters (see above) had to be created for the Kundu algorithm was less than 750, and did
not significantly distort the results.

Form = 1, the Natix algorithm does not perform well. This is expected, because once
it reaches that limit, it immediately creates new clusters for any additional node, instead of
delaying clustering decisions until more siblings are available. It performs even worse than
the Kundu algorithm, because it degenerates to a non-optimal single child clustering.

For m > 1, the number of clusters quickly converges against the best case achievable
by the Natix algorithm with unlimited memory, which is shownin the last row.

13

Document Size (103 bytes) MonetDB Natix

xmark 0.2 22514 2.16s 5.34s
xmark 0.4 46693 4.52s 10.76s
xmark 0.6 70322 9.88s 16.46s
xmark 0.8 93560 12.03s 22.74s
xmark 1.0 105264 16.03s 27.98s
uni1.xml 58 0.03s 0.02s
uni2.xml 166 0.04s 0.09s
uni3.xml 673 0.08s 0.19s
uni4.xml 2704 0.31s 0.81s
uni5.xml 11053 3.27s 3.08s
uni6.xml 44360 28.70s 13.67s

Table 2: Import times (seconds) for Natix and MonetDB

Document Size XC Natix
SigmodRecord.xml 467K 2.82s 0.27s
mondial-3.0.xml 1.8M 22.69s 0.58s
partsupp.xml 2.2M 6.54s 0.49s
uwm.xml 2.3M 6.78s 0.91s
orders.xml 5.2M 18.86s 1.25s

Table 3: Comparison with XC (Import time)

6.4.2 Scalability

In our second experiment, we wanted to show the scalability of our approach, and compare
it to the scalability of a non-clustering approach.

We imported the two document collections into Natix and MonetDB/Pathfinder [3].
MonetDB is a relational main-memory DBMS that stores XML as binary relations in which
the nodes are stored in preorder, i.e. in the order deliveredby the parser. In such a format,
no clustering is required, but only a preorder traversal is supported as efficient access path,
and updates may be costly.

The results from Table 2 show that the Natix Bulkload Algorithm exhibits a running
time linear in the document size. For the XMark documents, MonetDB is about twice as
fast, and also scales linearly. For the uni documents, the Natix behaviour does not change,
the scalability and bulkload speed remain similar to the XMark case. MonetDB, however,
shows a different behaviour and is slower and scales worse. We were not able to find the
cause.

We conclude that the clustering approach employed by Natix performs and scales ade-
quately, and can keep up with a non-clustering approach.

6.4.3 Comparison with XC

XC is a XML clustering algorithm developed at the IBM Watson Research Center in York-
town heights [5] (See Sec. 4.1). Their optimized version of Lukes is a workload-directed al-
gorithm that generates good clusterings tailored to previously configured workloads. How-
ever, it does not have acceptable performance for online bulkloads. We show some of their
results in Table 3. The table also includes Natix import times for the same documents.

The XC system is written in C++, and the experiments were performed on an x86-
based Linux system with 1.7 GHz CPU speed. The Natix results were obtained on our
MachineNEW with 2.4 GHz. The results show running times for Natix which are faster by

14

System Bulkload time
(Seconds)

System A (from [14]) 414
System B (from [14]) 781
System C (from [14]) 548
Natix 215

Table 4: XML Bulkload Times for various systems

about an order of magnitude. This diffence is clearly beyondthe difference in processor
speed. In addition, their heuristical algorithm only performs single child clustering, which
is inferior to sibling clustering with respect to the numberof clusters, as demonstrated
above.

6.4.4 Comparison with Other Published Results

Published bulkload performance results for XDS systems arerare and far between. The
only comparable numbers we could find were from the XMark benchmark by Schmidt
et al. [14]. They compare bulkload performance for XMark scaling factor 1 on various
anonymous mass-storage systems. We repeat some of their results in Table 4.

We limit our comparison to the disk-based systems, omittingtheir numbers for purely
main-memory based systems, as we do not know whether the main-memory based systems
perform logging or checkpointing, and wether the numbers reflect that. The remaining
systems are relational DBMS, and called ”System A”, ”SystemB” and ”System C” in the
paper. No details about the employed mappings from documents to relations are given,
except that systems A and B do not require a DTD, while system Crequires to manually
generate a relational schema from a DTD.

Table 4 also includes a measurement of Natix’s bulkload performance for the same doc-
ument. We used our MachineOLD, which is very similar to the one described in Schmidt
et al. [14], except that it has less main memory (512MB compared to their 1 GB), and a
slightly faster processor (600Mhz compared to their 550Mhz).

Although Natix outperforms the relational systems by factors between 1.9 and 3.6, few
is known about the exact configurations and techniques used to store XML in the relational
systems. Hence, it is unclear to what extent the numbers are comparable.

7 Conclusion and Future Work

This article discusses the Natix Bulkload Component, a module of the Natix XML Data
Store that is responsible for efficiently converting external documents into the Natix storage
format.

In our requirements analysis, we argued that a bulkload component for XML must ad-
dress three important issues: First, it must be efficient andlimited in its usage of resources
such as computing power and memory. Second, the interface tothe bulkload component
must closely match the format in which external documents are delivered, avoiding expen-
sive representation changes. Third, the generated persistent storage layout must be of high
quality.

We clarified that for tree-structured data such as XML, a highquality of the storage
layout is equivalent to a small number of generatedclusters. Clusters represent subsets of
the document tree that are closely related with respect to document structure, and that fit
on a disk page. In the context of the Natix storage format, andsimilar approaches, such
a cluster is a subset of the document nodes that is connected via parent-child and sibling
relationships.

15

We assessed a number of existing algorithms for our purposes. Even the best candidate,
the tree clustering algorithm by Kundu and Misra, failed to address all requirements, in
particular because it keeps the whole document in memory, and because it does not cluster
siblings.

Hence, we transformed the approach by Kundu and Misra into a novel clustering heuris-
tic, the Natix Bulkload Algorithm. Albeit not optimal, thisalgorithm uses sibling clustering
to produce 30% less clusters than an optimal single-child clustering. The algorithm has lin-
ear complexity with respect to the document size, while using space proportional to the
document tree height.

We presented experimental results, which demonstrate the competitiveness of our bulk-
load component on several fronts: (1) We show that sibling clustering is superior com-
pared to single-child clustering. (2) Our algorithm scaleslinearly with small constants.
(3) Compared to highly efficient relational bulkload techniques that materialize the docu-
ment in preorder as it arrives, the performance penalty thathas to be paid for clustering is
acceptable. (4) Our bulkload component is faster by at leastan order of magnitude than
existing workload-directed approaches that derive their clustering decisions primarily from
expected access patterns.

In the future, we want to improve our heuristics for sibling clustering. We also want
to incorporate information about access patterns into our algorithm without compromising
bulkload performance.

References

[1] Denilson Barbosa, Alberto Mendelzon, John Keenleyside, and Kelly Lyons. ToX-
gene: a template-based data generator for XML. InSIGMOD Conference, 2002.

[2] Kevin Beyer, Roberta J. Cochrane, Vanja Josifovski, JimKleewein, George Lapis,
Guy Lohman, Bob Lyle, FatmäOzcan, Hamid Pirahesh, Normen Seemann, Tuong
Truong, Bert Van der Linden, Brian Vickery, and Chun Zhang. System RX: One Part
Relational, One Part XML. InSIGMOD Conference, pages 347–358, 2005.

[3] P. A. Boncz, T. Grust, S. Manegold, J. Rittinger, and J. Teubner. Pathfinder: Relational
XQuery Over Multi-Gigabyte XML Inputs In Interactive Time.Technical Report
INS-E0503, CWI, March 2005. MonetDB 4.8.0, Pathfinder 0.8.0.

[4] Rajesh Bordawekar and Oded Shmueli. Flexible workload-aware clustering of
XML documents. InDatabase and XML Technologies, Second International XML
Database Symposium, XSym, pages 204–218, 2004.

[5] Rajesh Bordawekar and Oded Shmueli. Flexible workload-aware clustering of XML
documents. Technical report, IBM T.J. Watson Research Center, Yorktown Heights,
May 2004.

[6] Thorsten Fiebig, Sven Helmer, Carl-Christian Kanne, Guido Moerkotte, Julia Neu-
mann, Robert Schiele, and Till Westmann. Anatomy of a NativeXML base manage-
ment system.VLDB Journal, 11(4):292–314, 2003.

[7] Carl-Christian Kanne, Matthias Brantner, and Guido Moerkotte. Cost-sensitive re-
ordering of navigational primitives. InSIGMOD Conference, pages 742–753, 2005.

[8] Carl-Christian Kanne and Guido Moerkotte. Efficient storage of XML data. Techni-
cal Report TR-1999-008, Department for Mathematics and Computer Science, Uni-
versity of Mannheim, June 1999.

[9] Carl-Christian Kanne and Guido Moerkotte. Efficient storage of XML data. InICDE,
page 198, 2000.

16

[10] Sukhamay Kundu and Jayadev Misra. A linear tree partitioning algorithm.SIAM J.
Comput., 6(1):151–154, March 1977.

[11] Joseph A. Lukes. Efficient algorithm for the partitioning of trees. IBM Journal of
Research and Development, 18(3):217–224, 1974.

[12] David Megginson. SAX: A simple API for XML. Technical report, Megginson
Technologies, 2001.

[13] Mario Schkolnick. A clustering algorithm for hierarchical structures.ACM Trans.
Database Syst., 2(1):27–44, 1977.

[14] Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J. Carey, Ioana Manolescu,
and Ralph Busse. XMark: A benchmark for XML data management.In VLDB Conf.,
pages 974–985, 2002.

[15] Manolis M. Tsangaris and Jeffrey F. Naughton. On the performance of object clus-
tering techniques. In Michael Stonebraker, editor,Proceedings of the 1992 ACM
SIGMOD International Conference on Management of Data, San Diego, California,
June 2-5, 1992, pages 144–153. ACM Press, 1992.

[16] Daniel Veillard. The XML C library for gnome. Project Web Site, 2002.

A DTD for the example documents

<!ELEMENT u n i v e r s i t y (employee∗| s t u d e n t∗| l e c t u r e∗| exam∗)∗>

<!ELEMENT employee (name , (p r o f e s s o r| r e s e a r c h−a s s i s t a n t)?)>
<!ATTLIST employee id ID #REQUIRED>

<!ELEMENT p r o f e s s o r (deg ree| room| t e a c h e s∗| examines∗)∗>

<!ELEMENT degree (#PCDATA)>
<!ELEMENT room (#PCDATA)>
<!ELEMENT t e a c h e s EMPTY>
<!ATTLIST t e a c h e s l e c t u r e IDREF #REQUIRED>

<!ELEMENT examines EMPTY>
<!ATTLIST examines l e c t u r e IDREF #REQUIRED>

<!ELEMENT r e s e a r c h−a s s i s t a n t (r e s e a r c h−t o p i c | works fo r)∗>

<!ELEMENT r e s e a r c h−t o p i c (#PCDATA)>
<!ELEMENT works fo r EMPTY>
<!ATTLIST works fo r p r o f e s s o r IDREF #REQUIRED>

<!ELEMENT s t u d e n t (name| s e m e s t e r| exam ina t ion∗ | a t t e n d s)∗>

<!ATTLIST s t u d e n t id ID #REQUIRED>
<!ELEMENT a t t e n d s EMPTY>
<!ATTLIST a t t e n d s l e c t u r e IDREF #REQUIRED>

<!ELEMENT name (#PCDATA)>
<!ELEMENT s e m e s t e r (#PCDATA)>
<!ELEMENT exam ina t ion EMPTY>
<!ATTLIST exam ina t ion id IDREF #REQUIRED>

<!ELEMENT l e c t u r e (h e l p e r s| t i t l e | c r e d i t s| a t t e n d i e s| l e c t u r e r ?)∗>

<!ATTLIST l e c t u r e id ID #REQUIRED>
<!ELEMENT t i t l e (#PCDATA)>
<!ELEMENT c r e d i t s (#PCDATA)>
<!ELEMENT l e c t u r e r EMPTY>
<!ATTLIST l e c t u r e r p r o f e s s o r IDREF #REQUIRED>
<!ELEMENT a t t e n d i e s (a t t e n d e e∗)>
<!ELEMENT a t t e n d e e EMPTY>

17

<!ATTLIST a t t e n d e e s t u d e n t IDREF #REQUIRED>

<!ELEMENT h e l p e r s (h e l p e r∗)>
<!ELEMENT h e l p e r EMPTY>
<!ATTLIST h e l p e r s t u d e n t IDREF #REQUIRED>

<!ELEMENT exam (g rade| b e l o n g s t o| examiner| examinee)∗>

<!ATTLIST exam id ID #REQUIRED>
<!ELEMENT grade (#PCDATA)>
<!ELEMENT b e l o n g s t o EMPTY>
<!ATTLIST b e l o n g s t o l e c t u r e IDREF #REQUIRED>

<!ELEMENT examiner EMPTY>
<!ATTLIST examiner p r o f e s s o r IDREF #REQUIRED>

<!ELEMENT examinee EMPTY>
<!ATTLIST examinee s t u d e n t IDREF #REQUIRED>

B ToXgene template file

<?xml v e r s i o n =”1.0”?>

<!DOCTYPE tox−t e m p l a t e SYSTEM ” h t t p : / / www. cs . t o r o n t o . edu / tox / toxgene / ToXgene2 . d td ”
[

<!ENTITY num employees ”50”>
<!ENTITY num s tuden ts ”100”>
<!ENTITY num he lpe rs ”5”>
<!ENTITY n u m l e c t u r e s ”10”>
<!ENTITY num exams ”30”>

]>

<tox−t em p la te>

<!−− d e f i n e t h e d i s t r i b u t i o n s f o r grades , s e m e s t e r and c r e d i t s−−>

<tox−d i s t r i b u t i o n name=” g r a d ed i s t r ” t ype =” normal ” m i n I n c l u s i v e =”1”
m ax Inc lus i ve =”5” mean =”2 . 5 ” v a r i a n c e =”1”>

</ tox−d i s t r i b u t i o n>

<tox−d i s t r i b u t i o n name=” s e m e s t e rd i s t r ” t ype =” normal ” m i n I n c l u s i v e =”1”
m ax Inc lus i ve =”15” mean =”5” v a r i a n c e =”3”>

</ tox−d i s t r i b u t i o n>

<tox−d i s t r i b u t i o n name=” s w sd i s t r ” t ype =” normal ” m i n I n c l u s i v e =”2”
m ax Inc lus i ve =”6” mean =”3” v a r i a n c e =”2”>

</ tox−d i s t r i b u t i o n>

<tox−d i s t r i b u t i o n name=” m a t r n rd i s t r ” t ype =” un i fo rm ” m i n I n c l u s i v e =”1”
m ax Inc lus i ve =”& num s tuden ts ; ” >

</ tox−d i s t r i b u t i o n>

<!−− d e f i n e a l l o t h e r s im p le t y p e s−−>

<s impleType name=” nametype”>
< r e s t r i c t i o n base =” s t r i n g ”>

<tox−s t r i n g type =” lname ”/>
</ r e s t r i c t i o n>

</s impleType>

<s impleType name=” d e g r e et y p e ”>
< r e s t r i c t i o n base =” s t r i n g ”>

<tox−s t r i n g minLength =”2” maxLength=”2”/>
</ r e s t r i c t i o n>

</s impleType>

18

<s impleType name=” roomtype”>
< r e s t r i c t i o n base =” s t r i n g ”>

<tox−s t r i n g minLength =”2” maxLength=”3”/>
</ r e s t r i c t i o n>

</s impleType>

<s impleType name=” r e s e a r c h t o p i ct y p e ”>
< r e s t r i c t i o n base =” s t r i n g ”>

<tox−s t r i n g />
</ r e s t r i c t i o n>

</s impleType>

<s impleType name=” s e m e s t e rt y p e”>
< r e s t r i c t i o n base =” p o s i t i v e I n t e g e r ”>

<tox−number tox−d i s t r i b u t i o n =” s e m e s t e rd i s t r ”/>
</ r e s t r i c t i o n>

</s impleType>

<s impleType name=” g r a d et y p e ”>
< r e s t r i c t i o n base =” n o n N e g a t i v e I n t e g e r ”>

<tox−number tox−d i s t r i b u t i o n =” g r a d e d i s t r ”/>
</ r e s t r i c t i o n>

</s impleType>

<s impleType name=” swstype”>
< r e s t r i c t i o n base =” n o n N e g a t i v e I n t e g e r ”>

<tox−number tox−d i s t r i b u t i o n =” s w s d i s t r ”/>
</ r e s t r i c t i o n>

</s impleType>

<tox− l i s t name=” l e c t u r e n a m e sl i s t ” readFrom =” l e c t u r e n a m e s . xml”>
<e lem en t name=” l e c t u r e ”>

<complexType>
<e lem en t name=” t i t l e ” t ype =” s t r i n g ”/>

</complexType>
</ e lement>

</ tox− l i s t >

<s impleType name=” l key ”>
< r e s t r i c t i o n base =” p o s i t i v e I n t e g e r ”>

<tox−number s e q u e n t i a l =” yes ”/>
</ r e s t r i c t i o n>

</s impleType>

<tox− l i s t name=” l e c t u r e l i s t ”>
<e lem en t name=” l e c t u r e ”

minOccurs=”& n u m l e c t u r e s ; ” maxOccurs=”& n u ml e c t u r e s ;”>
<complexType>

<e lem en t name=” id ”>
<tox−expr va lue =” ’L ’ # ˜ l key ”/>

</ e lement>

<e lem en t name=” t i t l e ” t ype =” s t r i n g ”>
<simpleType>

< r e s t r i c t i o n base =” s t r i n g ”>
<tox−scan pa th =” [l e c t u r e n a m e sl i s t / l e c t u r e]”>

<tox−expr va lue =” [t i t l e]”/>
</ tox−scan>

</ r e s t r i c t i o n>

</s impleType>
</ e lement>

<e lem en t name=” c r e d i t s ” t ype =” swstype ”/>

19

</complexType>
</ e lement>

</ tox− l i s t >

<s impleType name=” skey”>
< r e s t r i c t i o n base =” p o s i t i v e I n t e g e r ”>

<tox−number s e q u e n t i a l =” yes ”/>
</ r e s t r i c t i o n>

</s impleType>

<tox− l i s t name=” s t u d e n t l i s t ” un ique =” s t u d e n t / i d ”>
<e lem en t name=” s t u d e n t ” minOccurs=”& nums tuden ts ; ”

maxOccurs=”& num s tuden ts ;”>
<complexType>

<e lem en t name=” id ”>
<tox−expr va lue =” ’S ’ # ˜ skey ”/>

</ e lement>

<e lem en t name=”name”>

<simpleType>
< r e s t r i c t i o n base =” s t r i n g ”>

<tox−s t r i n g type =” lname”></ tox−s t r i n g>

</ r e s t r i c t i o n>

</s impleType>
</ e lement>

<e lem en t name=” s e m e s t e r ” t ype =” s e m e s t e rt y p e ”/>

<e lem en t name=” a t t e n d s ” minOccurs =”0” maxOccurs=”& n u ml e c t u r e s ;”>
<simpleType>

< r e s t r i c t i o n base =” s t r i n g ”>
<tox−sample pa th =” [l e c t u r el i s t / l e c t u r e / i d] ” d u p l i c a t e s =” no”>

<tox−expr va lue =” [!] ” / >

</ tox−sample>
</ r e s t r i c t i o n>

</s impleType>
</ e lement>

</complexType>
</ e lement>

</ tox− l i s t >

<s impleType name=” ekey”>
< r e s t r i c t i o n base =” p o s i t i v e I n t e g e r ”>

<tox−number s e q u e n t i a l =” yes ”/>
</ r e s t r i c t i o n>

</s impleType>

<s impleType name=” s t u d e n td i s t r ”>
< r e s t r i c t i o n base =” p o s i t i v e I n t e g e r ”>

<tox−number tox−d i s t r i b u t i o n =” m a t r n r d i s t r ”/>
</ r e s t r i c t i o n>

</s impleType>

<tox− l i s t name=” e x a m l i s t ”>
<e lem en t name=”exam ” type =” examtype ”

minOccurs=”&num exams ; ” maxOccurs=”&numexams;”>
<complexType>

<e lem en t name=” id ”>
<tox−expr va lue =” ’E ’ # ˜ ekey ”/>

</ e lement>

<e lem en t name=” examiner ” t ype =” s t r i n g ”/>

<e lem en t name=” s t u d e n t ”>

<tox−expr va lue =” ’S ’ # ˜ s t u d e n td i s t r ”/>

20

</ e lement>

<e lem en t name=” l e c t u r e ”>

<simpleType>
< r e s t r i c t i o n base =” s t r i n g ”>

<tox−sample pa th =” [l e c t u r el i s t / l e c t u r e / i d] ” d u p l i c a t e s =” no”>
<tox−expr va lue =” [!] ” / >

</ tox−sample>
</ r e s t r i c t i o n>

</s impleType>
</ e lement>

<e lem en t name=” g rade ” type =” g r a d et y p e ”/>
</complexType>

</ e lement>
</ tox− l i s t >

<s impleType name=”emkey”>

< r e s t r i c t i o n base =” p o s i t i v e I n t e g e r ”>

<tox−number s e q u e n t i a l =” yes ”/>
</ r e s t r i c t i o n>

</s impleType>

<tox− l i s t name=” e m p l o y e el i s t ”>
<e lem en t name=” employee ”

minOccurs=”&num employees ; ” maxOccurs=”&numemployees ;”>
<complexType>

<e lem en t name=” id ”>
<tox−expr va lue =” ’EM’ # ˜ emkey”/>

</ e lement>
<e lem en t name=”name” type =” nametype ” />
<tox−a l t e r n a t i v e s>

<tox−o p t i o n odds=”10”>
<e lem en t name=” p r o f e s s o r ”>

<complexType>
<e lem en t name=” deg ree ” t ype =” d e g r e et y p e ”/>
<e lem en t name=” room ” type =” roomtype ”/>

</complexType>
</ e lement>

</ tox−op t ion>

<tox−o p t i o n odds=”50”>
<e lem en t name=” r e s e a r c h−a s s i s t a n t ”>

<complexType>
<e lem en t name=” r e s e a r c h−t o p i c ” t ype =” r e s e a r c h t o p i ct y p e ”/>
<e lem en t name=” works fo r ” t ype =” s t r i n g ”/>

</complexType>
</ e lement>

</ tox−op t ion>

<tox−o p t i o n odds =”40”/>
</ tox−a l t e r n a t i v e s>

</complexType>
</ e lement>

</ tox− l i s t >

<s impleType name=” l2key”>
< r e s t r i c t i o n base =” p o s i t i v e I n t e g e r ”>

<tox−number s e q u e n t i a l =” yes ”/>
</ r e s t r i c t i o n>

</s impleType>

<tox− l i s t name=” w e r l i e s t w a s ”>
<e lem en t name=” e n t r y ” minOccurs=”& n u ml e c t u r e s ; ”

maxOccurs=”& n u m l e c t u r e s ;”>
<complexType>

<e lem en t name=” id ”>

21

<tox−expr va lue =” ’L ’ # ˜ l2key ”/>
</ e lement>
<tox−sample pa th =” [e m p l o y e el i s t / employee] ”

where =”GEQ(COUNT[p r o f e s s o r / deg ree] , 1) ” name=” e”>

<e lem en t name=” l e c t u r e r ”>

<tox−expr va lue =” [$e / id]”/>
</ e lement>

</ tox−sample>
</complexType>

</ e lement>
</ tox− l i s t >

<s impleType name=” e2key”>

< r e s t r i c t i o n base =” p o s i t i v e I n t e g e r ”>

<tox−number s e q u e n t i a l =” yes ”/>
</ r e s t r i c t i o n>

</s impleType>

<tox− l i s t name=” werp rue f twas ”>
<e lem en t name=” e n t r y ” minOccurs=”&numexams ; ”

maxOccurs=”&numexams;”>
<complexType>

<e lem en t name=” id ”>
<tox−expr va lue =” ’E ’ # ˜ e2key ”/>

</ e lement>
<tox−sample pa th =” [e m p l o y e el i s t / employee] ”

where =”GEQ(COUNT[p r o f e s s o r / deg ree] , 1) ” name=” e”>

<e lem en t name=” examiner ”>

<tox−expr va lue =” [$e / id]”/>
</ e lement>

</ tox−sample>
</complexType>

</ e lement>
</ tox− l i s t >

<tox−document name=” un i ” DTD− f i l e =” un i . d td”>
<e lem en t name=” u n i v e r s i t y ”>

<complexType>

<e lem en t name=” l e c t u r e ”
minOccurs=”& n u m l e c t u r e s ; ” maxOccurs=”& n u ml e c t u r e s ;”>
<complexType>

<tox−scan pa th =” [l e c t u r e l i s t / l e c t u r e] ” name=” l ”>
<a t t r i b u t e name=” id ”>

<tox−expr va lue =” [i d]”/>
</ a t t r i b u t e>

<e lem en t name=” t i t l e ”>
<tox−expr va lue =” [t i t l e]”/>

</ e lement>

<e lem en t name=” c r e d i t s ”>

<tox−expr va lue =” [c r e d i t s]”/>
</ e lement>

<e lem en t name=” h e l p e r s ”>

<complexType>
<e lem en t name=” h e l p e r ” minOccurs =”0”

maxOccurs=”& num he lpe rs ;”>
<complexType>
<tox−sample pa th =” [s t u d e n tl i s t / s t u d e n t] ” name=” s ”

d u p l i c a t e s =” no”>
<a t t r i b u t e name=” s t u d e n t ”>

<tox−expr va lue =” [$s / id]”/>
</ a t t r i b u t e>

</ tox−sample>
</complexType>

22

</ e lement>
</complexType>

</ e lement>

<e lem en t name=” a t t e n d i e s ”>

<complexType>
<tox−f o r e a c h pa th =” [s t u d e n tl i s t / s t u d e n t] ” name=” s”>

<tox−f o r e a c h pa th =” [$s / a t t e n d s] ” name=”h”>

<tox− i f expr =”EQ ([!] , [$ l / i d])” >

<tox−then>
<e lem en t name=” a t t e n d e e ”>

<complexType>
<a t t r i b u t e name=” s t u d e n t ”>

<tox−expr va lue =” [$s / id]”/>
</ a t t r i b u t e>

</complexType>
</ e lement>
</ tox−then>

</ tox−i f >

</ tox−f o reach>
</ tox−f o reach>
</complexType>
</ e lement>

<tox−f o r e a c h pa th =” [w e r l i e s t w a s / e n t r y] ” name=” e”>

<tox− i f expr =”EQ([$ l / i d] , [i d])” >

<tox−then>
<e lem en t name=” l e c t u r e r ”>

<complexType>
<a t t r i b u t e name=” p r o f e s s o r ”>

<tox−expr va lue =” [$e / l e c t u r e r]”/>
</ a t t r i b u t e>

</complexType>
</ e lement>

</ tox−then>
</ tox−i f >

</ tox−f o reach>

</ tox−scan>
</complexType>

</ e lement>

<e lem en t name=”exam ”
minOccurs=”&num exams ; ” maxOccurs=”&numexams;”>
<complexType>

<tox−scan pa th =” [e x a ml i s t / exam] ” name=” e”>

<a t t r i b u t e name=” id ”>
<tox−expr va lue =” [i d]”/>

</ a t t r i b u t e>

<e lem en t name=” g rade”>

<tox−expr va lue =” [g rade]”/>
</ e lement>

<e lem en t name=” b e l o n g s t o ”>

<complexType>
<a t t r i b u t e name=” l e c t u r e ”>

<tox−expr va lue =” [l e c t u r e]”/>
</ a t t r i b u t e>

</complexType>
</ e lement>

<tox−f o r e a c h pa th =” [werp rue f twas / e n t r y] ” name=”w”>

<tox− i f expr =”EQ([$e / id] , [i d])” >

23

<tox−then>
<e lem en t name=” examiner ”>

<complexType>
<a t t r i b u t e name=” p r o f e s s o r ”>

<tox−expr va lue =” [$w / examiner]”/>
</ a t t r i b u t e>

</complexType>
</ e lement>

</ tox−then>
</ tox−i f >

</ tox−f o reach>

<e lem en t name=” examinee”>

<complexType>
<a t t r i b u t e name=” s t u d e n t ”>

<tox−expr va lue =” [s t u d e n t]”/>
</ a t t r i b u t e>

</complexType>
</ e lement>

</ tox−scan>
</complexType>

</ e lement>

<e lem en t name=” employee ”
minOccurs=”&num employees ; ” maxOccurs=”&numemployees ;”>
<complexType>

<tox−scan pa th =” [e m p l o y e el i s t / employee] ” name=” e”>
<a t t r i b u t e name=” id ”>

<tox−expr va lue =” [i d]”/>
</ a t t r i b u t e>

<e lem en t name=”name”>

<tox−expr va lue =” [name]”/>
</ e lement>

<tox− i f expr =”GEQ(COUNT[p r o f e s s o r / deg ree] ,1)”>
<tox−then>

<e lem en t name=” p r o f e s s o r ”>

<complexType>

<e lem en t name=” deg ree”>

<tox−expr va lue =” [p r o f e s s o r / deg ree]”/>

</ e lement>

<e lem en t name=” room”>
<tox−expr va lue =” [p r o f e s s o r / room]”/>

</ e lement>

<tox−f o r e a c h pa th =” [w e r l i e s t w a s / e n t r y] ” name=”w”>

<tox− i f expr =”EQ([$e / id] , [l e c t u r e r])”>
<tox−then>

<e lem en t name=” t e a c h e s ”>

<complexType>
<a t t r i b u t e name=” l e c t u r e ”>

<tox−expr va lue =” [$w / id]”/>
</ a t t r i b u t e>

</complexType>
</ e lement>

</ tox−then>
</ tox−i f >

</ tox−f o reach>

<tox−f o r e a c h pa th =” [werp rue f twas / e n t r y] ” name=”w”>

<tox− i f expr =”EQ([$e / id] , [examiner])”>
<tox−then>

<e lem en t name=” examines”>

24

<complexType>
<a t t r i b u t e name=” l e c t u r e ”>

<tox−expr va lue =” [$w / id]”/>
</ a t t r i b u t e>

</complexType>
</ e lement>

</ tox−then>
</ tox−i f >

</ tox−f o reach>
</complexType>

</ e lement>
</ tox−then>

</ tox−i f >

<tox− i f expr =”GEQ(COUNT[r e s e a r c h−a s s i s t a n t / r e s e a r c h−t o p i c] ,1)” >

<tox−then>
<e lem en t name=” r e s e a r c h−a s s i s t a n t ”>

<complexType>
<tox−sample pa th =” [e m p l o y e el i s t / employee] ” name=” e2 ”

where =”GEQ(COUNT[p r o f e s s o r / deg ree] ,1)”>

<e lem en t name=” works fo r”>
<complexType>

<a t t r i b u t e name=” p r o f e s s o r ”>

<tox−expr va lue =” [$e2 / id]”/>
</ a t t r i b u t e>

</complexType>
</ e lement>

</ tox−sample>
<e lem en t name=” r e s e a r c h−t o p i c ”>

<tox−expr
va lue =” [$e / r e s e a r c h−a s s i s t a n t / r e s e a r c h−t o p i c]”/ >

</ e lement>
</complexType>

</ e lement>
</ tox−then>

</ tox−i f >

</ tox−scan>
</complexType>

</ e lement>

<e lem en t name=” s t u d e n t ”
minOccurs=”& num s tuden ts ; ” maxOccurs=”& nums tuden ts ;”>
<complexType>

<tox−scan pa th =” [s t u d e n tl i s t / s t u d e n t] ” name=” s”>

<a t t r i b u t e name=” id ”>
<tox−expr va lue =” [i d]”/>

</ a t t r i b u t e>

<!−−<a t t r i b u t e name=” a t t e n d s ” tox−minOccurs =”0”
tox−maxOccurs =”5” s e p a r a t o r =”q”>
<simpleType>

< r e s t r i c t i o n base =” s t r i n g ”>
<tox−scan pa th =” [$s / a t t e n d s]”>

<tox−expr va lue =” [!] ” / >

</ tox−scan>
</ r e s t r i c t i o n>

</s impleType>
</ a t t r i b u t e> −−>

<tox−f o r e a c h pa th =” [$s / a t t e n d s]”>
<e lem en t name=” a t t e n d s ”>

<complexType>
<a t t r i b u t e name=” l e c t u r e ”>

<tox−expr va lue =” [!] ” / >

</ a t t r i b u t e>

25

</complexType>
</ e lement>

</ tox−f o reach>

<e lem en t name=”name”><tox−expr va lue =” [name]”/></ e lement>
<e lem en t name=” s e m e s t e r”><tox−expr va lue =” [s e m e s t e r]”/></ e lement>

<tox−f o r e a c h pa th =” [e x a ml i s t / exam] ”
where =”EQ([s t u d e n t] , [$s / i d]) ” name=” e”>

<e lem en t name=” exam ina t ion ”>

<complexType>
<a t t r i b u t e name=” id ”>

<tox−expr va lue =” [i d]”/>
</ a t t r i b u t e>

</complexType>
</ e lement>

</ tox−f o reach>

</ tox−scan>
</complexType>

</ e lement>

</complexType>
</ e lement>

</ tox−document>

</ tox−t em p la te>

26

