Reihe Informatik
TR-2005-009

The Importance of Sibling Clustering for
Efficient Bulkload of XML Document Trees

Carl-Christian Kanne Guido Moerkotte

University of Mannheim
cgmoer@pi3.informatik.uni-mannheim.de

The Importance of Sibling Clustering for
Efficient Bulkload of XML Document Trees

Carl-Christian Kanne
Guido Moerkotte
cgmoer@pi3.informatik.uni-mannheim.de

November 18, 2005

Abstract

In an XML Data Store (XDS), importing documents from extéis@urces is a very
frequent operation. Since a document import consists ofge laumber of individual
node inserts, it is essentially a small bulkload operatibtence, efficient bulkload
support is crucial for XDSs.

Essentially, XML bulkload is the transformation of an XMLrpar’s output into the
XDS'’s persistent storage structures. This involves twoomsyibtasks: (1) Partitioning
the documents’ logical tree structure into subtrees smiiléan a disk page in a way that
is both space-efficient an suitable for later processingM@pping the subtrees to the
XDS'’s internal page representation. In enterprise-scadr@anments with very large
documents and/or very many parallel bulkloads, task (1aitiqularly challenging, as
not only disk space consumption, but also CPU and main-mgogage are important
factors.

In this article, we (1) discuss requirements for an XML ba#id module, (2) exam-
ine existing algorithms for tree partitioning with resp&ztheir applicability as XML
bulkload algorithms, (3) derive a new tree partitioningoaithm, (4) present the design
and implementation of the bulkload module used in our NatiXSXand (5) evaluate
the implementation.

1 Introduction

Loading of large amounts of data which is already availablken external format is called
a bulkload operation. In conventional DBMS, bulkloads are often usednttialize a
database, for example when introducing an application tIBBisage, or when importing
data from a different DBMS or storage format.

In contrast, an XDS needs to support document imports asudaregperation which is
used very frequently by applications. Hence, bulkload bezpa core functionality whose
performance is a determinant of overall system performardoeever, we could find only
very few publications that discuss efficient XML bulkload#@mnge-scale XML data stores.

This article attempts to mitigate this deficit by presenting design and implementa-
tion of the bulkload component for the Natix XDS, a native XMéata store developed at
the University of Mannheim [6]. Besides requirements asighand interface design, our
main focus is the design of an efficient tree partitioningaliym that decomposes the log-
ical XML document tree into subtrees, dusters, that fit on a disk page. Such a clustering
algorithm is needed not only in Natix, but in every XDS thabydes native tree storage,
such as IBM’s System RX [2].

Of particular concern is the number of clusters generatedeMaccessing the stored
documents, inter-cluster navigation is much slower thamainluster navigation, often by
several orders of magnitude. Even if access reorderingnigabs are used [7], the number

of clusters is a crucial factor for query performance. Herecbulkload algorithm must
minimize the number of generated clusters.
Our main contributions are as follows:

1. A detailed requirements analysis for XML bulkload comeits.
2. An analysis of existing tree clustering algorithms.

3. A novel linear time tree clustering algorithm that getesaip to 30% less clusters
than the best known algorithms.

4. A description of the design and implementation of a caieckML bulkloader, the
Natix Bulkload Component.

5. An evaluation of the Natix Bulkload Component.

The outline of the article is as follows. In Sec. 2, we give efboverview of native
tree storage in Natix. In Sec. 3, we analyze the requirensan¥ML bulkload component
must meet. In Sec. 4, we discuss existing tree clusterinyyigiigns with respect to these
requirements. Sec. 5 describes the interface and impleti@mtof the Natix Bulkload
Component. This section also covers our novel tree clugieigorithm. Sec. 6 contains
experimental results, including a comparison with the lmald performance of other XML
storage systems. Sec. 7 concludes the article.

2 XML Storage

The requirements for bulkload components are stronglyénited by characteristics of the
desired target format.

A suitable format for an enterprise-level XDS must efficigstipport bulkloads, incre-
mental updates, synchronization and recovery. In this@seaotve briefly review the Natix
incarnation of such a format (for details, refer to [6, 8, @imilar formats are also used in
other XDSs, such as IBM DB2 (System RX) [2].

2.1 Logical Object Model

To keep the low-level storage engine simple and flexibleas designed as general labeled
tree storage engine with a simpler model than typical XML #\Blich as DOM or SAX.
Such models can easily be mapped to our logical model, as plaimxhe the following
subsection.

The individual documents are represented as ordered treelsich nodes are labeled
with a symbol taken from an alphati®tags In the current implementation, we use the set
of integersD...2'% — 1 asXTags Leaf nodes can, additionally, be labeled with arbitrarily
long strings over a different alphabet. In the current immatation, leaf nodes may be
labeled using Unicode strings.

2.2 Mapping XML to the Logical Object Model

A small wrapper module is used to map concrete XML represienta(such as DOM,
SAX) with its node types and attributes to the simple tree ehadd vice versa. A sample
tree for a document fragment is shown in Figure 1.

<SPEECH>

<SPEAKER char act er =’ f ambus’ >OTHELLO</ SPEAKER>
<LI NE>Let ne see your eyes; </LINE>

<LI NE>Look in ny face. </ LI NE>

</ SPEECH>

PCDATA
OTHELLO

PCDATA PCDATA
Let me see your eyes; Look in my face.

Figure 1: An XML fragment and its logical tree

AttrContainter

character
‘famous’

2.2.1 Mapping XML Document Nodes to Logical Nodes

Elements are mapped one-to-one to tree nodes of the logaimAttributes are mapped
to child nodes of an additionattribute container child node, which is always the first child
of the element node the attributes belong to. AttributedDRIA (including whitespace-
only data), CDATA nodes, and comments are stored as leafspnodeng reserved integer
values as node label.

External entity references are expanded during importiewbtaining the name of the
referenced entity as a special inner node.

2.2.2 Mapping XML Tags to Tree Labels

The module which maps XML to the internal model uses a sepaata structure to map
tag and attribute names to integers, which are usetirgg All the documents in one
XML collection share the same mapping, which makes querlpatian simpler and more
efficient because the possible integer values for a giveartagiribute name can be resolved
once per query and stay the same for all documents in thectiolle We call the integer
labelsDecl ar at i onl Ds.

2.3 Physical Object Model

We partition the tree into subtrees, in whiPnoxy nodes are used to refer to connected
subtrees not stored in the same record. Their contents Rlib®f the record containing
the subtree they represent. Substituting all proxies biy teepective subtrees reconstructs
the original data tree.

A sample is shown in Figure 2. To store the given logical treeich, say, does not fit
on a page), the physical data tree is distributed over theethecords, o andrs. Two
proxies p; andps) are used in the top level record. Two helper aggregate n@desnd
h2) have been added to the physical tree. They group the chilueowyp; andp, into a
tree. Proxy and helper aggregate nodes are drawn as dastisdThwey are only needed to
link together subtrees contained in different records, anmedare calledcaffolding nodes.
Nodes drawn as solid ovals represent logical noggsdnd are calledacade nodes. Only
facade nodes are visible to the caller of the XML segmentfate.

The given physical tree is only one possibility to store tample logical tree. More
possibilities exist since any edge of the logical tree camepeesented by a proxy. The
maintenance of the physical tree during incremental updateescribed in [6]. The initial

Logical tree
™
-~ \/@\ ~~
(P (P2)
l/ \l/
Physical tree } }
T9 —~ T3 —~

Figure 2: One possibility for distribution of logical nodesto records

creation of a physical tree for a newly imported documeniiésdore functionality of the
bulkload component described in this article.
The following section will explain how the individual subtrs are materialized.

2.4 Physical Subtree Model

Each subtree is stored in a single record and, hence, must itpage. Each subtree
represents part of a logical tree as defined in Section 2 dddiition to leaves labelled with
strings, physical subtrees also contain another kind dfriede, which is labelled with
references to other subtrees.

Every subtree also has two additional attributespahent record RID points to the
parent subtree (if it exists), and a logical document ID figlldws to determine which
document this subtree belongs to.

Classified by their contents, there are three types of nadsstitrees:

Aggregate nodes represent inner nodes of the logical tree.

Literal nodes represent leaf nodes of the logical tree and contdistiéngs. If a literal
is larger than a page, it is split into chunks which are preedsn the same way as
large logical trees.

Proxy nodes are subtree leaf nodes which contain physical refeseto other records.
They are used to link trees together that were partitionéal snbtrees (see 2.3).
Proxies also represent a major difference between Natiriéd and the System RX
format [2], where the proxies contain logical identifiersgrhmay be annotated with
metadata about the target subtree. Our bulkload algorishmoti concerned with the
representation of the links, and can thus be applied to fteihat employ logical
links.

3 Requirements

We now turn to the requirements for a bulkload componentdrestes the persistent data
structures from an external document representation.

We base our design of the bulkload component on four goalsf alhich are perfor-
mance-related.

1. The interface should closely match the typical output bfiXparsers.

XML parsers are the most common source of imported XML docus)eand many
XML tools, among them query evaluation components, aretatidéficiently deliver
results using parser-like interfaces. Hence, it is vergoeable to assume that the
data to be bulkloaded is delivered as XML parser output.

We do not want to waste resources by requiring to change tteerdpresentation
before or while accessing the bulkload component, in asldith potential represen-
tation changes for the actual transfer to the persisteragéoformat.

2. The mechanism should not require main memory propottiorthe document size.

Linear memory usage would prohibit the import of documeatgér than available
main memory. As a generalization, the total amount of camenily importable doc-
uments would be limited by available physical memory.

3. The produced storage layout should be efficient for typicakloads on documents.
We identify three subgoals.

(a) A dominant access pattern for document trees is the geetmaversal of sub-
trees induced by inner nodes. It is used when exporting deatsrand doc-
ument fragments to their textual representation. Querjyuatian on XML
documents typically also relies on preorder traversalsh sis the evaluation of
XPathdescendant anddescendant - or - sel f axes. The default bulk-
load strategy therefore is to create a layout which adetyusu@ports preorder
traversal.

(b) Given a set of children, we assume that the access freguwdrsibling nodes
decreases with their order. Typically, the leftmost cléldare accessed more
often than the last children. For example, to reach any dhjldosition in its
sibling sequence, in Natix storage format, all left sibfingf the target node
need to be visited. Hence, the likelihood of being storedherxdame record as
the parent node should be higher for left siblings.

(c) The number of clusters or subtrees should be as small sshbe, because
traversal of inter-cluster borders is much more expendiam tintra-cluster
traversal. Hence, fewer clusters imply higher query penfmice.

4. The produced storage layout should have minimal spaagresgents. This also
implies a minimal number of clusters, because each clustieicies storage overhead
in form of proxies and helper aggregates.

In the terms of Sec. 2, the bulkload component must map thedbgbject model to
the physical object model. According to the goals abovs, itieans that the core task for
the bulkload algorithm is to decide which subtrees of thédalgnodel should be stored as
physical subtrees, i.e. where to introduce scaffoldingasod

This implies a clustering algorithm that partitions a tratbia minimum number of
subtrees with limited size, which can then be used as Natit.XNbtree records.

4 Tree Clustering Algorithms

There are efficient clustering algorithms applicable togli&d tree structures which con-
sider the problem of creating a clustering of a tree whichimizes the number of gener-
ated clusters. However, the clusterings generated by tisérexalgorithms always have
the following properties: (1) The weight of each cluster hasupper limit, which is a pa-

rameter of the algorithms. The weight of a cluster is the stith@weight of its nodes. (2)

All nodes of a cluster are connected.

In our case, a cluster is a physical record in our subtree h{Sée. 2.4), and the node
weight is the size of the node (without its subtree) in bykésnce, the upper limit must be
a value smaller than or equal to the disk page size.

Unfortunately, our problem is slightly more complicatednhmere assignment of log-
ical nodes to clusters. Our storage format does not matchwitbl the stated constraints
for clusters, because in our case (1) the storage cost of edgst is not), as a cut edge
causes overhead in the form of a proxy node and a new physicatd header, and (2) it
is possible to put adjacent siblings into a single clustat ttoes not contain their parent
node, creating nonconnected partitions of the tree.

Note that these issues apply to many other conceivablettvesgge structures, because
(1) any storage scheme must materialize the whole treetgteymot only the uncut edges,
and (2) even if efficient sibling clustering is not expligisdupported by a format, it is still
desirable to perform implicit clustering of siblings by pilag them on the same disk page.

As explained above, our bulkload algorithm has to solve aengeneral problem than
existing tree clustering algorithms. However, the fundatakobjective for both bulkload
and tree clustering is to find a minimal number of weight-tediclusters. Hence, in the
remainder of this section we review the tree clustering réitlgms to find a good starting
point for a bulkload algorithm.

4.1 Workload-Directed Algorithms

(Weighted) Depth-First Search [15] processes a graph wepth-first search, assigning
nodes greedily to the current cluster. New clusters ardedeshenever the current cluster
cannot hold the current node. The resulting clustering tscompatible with our storage
structure, as the preorder traversal may cause noncowungaldrees to be clustered to-
gether. The cost of cut edges is also not taken into accoarthel weighted variant, the
algorithm also accounts for edge weights that represemnisal frequencies. Here, the
edges to visit are ordered by weight to avoid cutting heawdigd edges. The weighted
algorithm requires a main-memory representation of theioent.

Lukes [11] presents a linear time algorithm that incorpesadge weights and find a
clustering of optimal value, e.g. one where the total weftdll edges that do not cross
clusters are maximized. For unit edge weights, the algoriinds the smallest possible
clustering. However, the algorithm has very large constaitg running time isO(nk?)
wheren is the number of nodes ards the weight limit. [4] report running times of several
hours on modern PCs for very small documentd QOK). The algorithm also requires a
main-memory representation of the document and interrteedésults, does not consider
sibling clusterings, and also does not observe costs faedges.

Bordawekar and Shmueli [4] extend Lukes by introducing ssvtechniques to limit
memory usage and improve running time. This breaks the afitynbut achieves approx-
imate clusterings whose value is quite close to the optimiigain, cut edges and sibling
clusterings are not considered. As we will see in Sec. 6, gnlopnance of the algorithm
is inferior to Natix’ algorithm, even though their measuents only reflect the actual clus-
tering phase, and not the construction of the persisteatsdaictures and associated costs,
such as logging.

Schkolnick [13] partitions hierarchical structures basedaccess patterns. However,
the algorithm does not enforce a size limit for clusters, dods not consider nodes of
varying weight. The algorithm has a different objectiverttspace-efficient bulkload; it
clusters objects into base collections, which can be jotoeefficiently answer queries.
While this may be applied to join-based XML query processiihgloes not solve our
problem of finding weight-limited clusters.

4.2 The Algorithm by Kundu and Misra

As a foundation of our own bulkload algorithm, we have chogenone by Kundu and
Misra [10], which creates a clustering of a tree with weightedes, where each cluster is
connected and has at most weighaind where the number of clusters is minimal.

To prepare the description of our own algorithm in the subsatjsection, we now give
an outline of the original algorithm, and discuss its sditfybas a bulkload algorithm in
more detail.

4.2.1 Outline

The algorithm pursues a bottom-up approach, successigsigrang clusters to nodes.
A node is processed only after its children have been prededdrocessing a nodex
guarantees that the weight of the subtree rooted iatsmaller thark. Theweight of a
subtreeis the sum of all weights of those nodes in the subtree whighk hat been assigned
to a cluster. While the subtree weight is larger thanew clusters are created for children
of x, each containing the subtree including the children andedktendant nodes that are
not yet assigned to a cluster. Partitions are created foctihéren in descending order of
their subtree weight. Once the subtree rootedlads a weight less than processing of

is finished. When this algorithm has reached the root nodetiafea the resulting clusters
are smaller that, and a minimum number of clusters containing connectedeebthas
been generated (Refer to [10] for a proof).

4.2.2 Suitability as bulkload algorithm

Document bulkload is easily translated into a problem imstafor the algorithm above.
Document tree nodes have a weight proportional to theirespaage, clusters are stored
as physical records, and the limit for the size of a physieabrd is the system page size.
The algorithm generates physical records in a bottom-umeraso that subtrees induced
by some inner nodes are in as few physical records as posSibis prepares preorder
traversals of document fragments, as required when exygooti traversing such subtrees
when evaluating queries.

However, a bulkload algorithm for Natix needs to addressesaniditional issues as
explained above:

1. We do not want to keep the whole document tree in memory.

2. There is an overhead weight associated with a physicatdebecause the stan-
dalone header and the proxy node in the referring recordpycspace.

3. Neighbouring siblings can be assigned to the same physicard, amortizing the
overhead weight over several subtrees.

4. The leftmost siblings should have a higher probabilitpeing clustered with their
parent.

The first issue can easily be addressed, since the algosithmttom-up approach does
never change a node’s assignment to a cluster. Hence, orgster dhas reached the size
limit, it can be stored in a physical record on disk and thestiturent nodes need not be
retained in main memory.

The weight limit for a cluster is calleduster limit in the following. A cluster limit
smaller than the capacity of a disk page may be used to avagarientation. Since the
actual cluster sizes can vary with tree structure and tegersizes, a cluster does not
always closely approach the limit. Hence, many underetilipages may be created. In
Natix, the cluster limit is set by default to a quarter of thekdpage size, to allow several
clusters to share a page and thus improve space utilisation.

class SEG XM.Segnent : public SEG Sl ott edPageSegnent

{
public:
[-..]
cl ass Bul kl oadCont ext ;
Bul kl oadCont ext =*begi nBul kl oad(const Docunent| D &Joc, Decl arationlD | ogt,
uint32_t childcount, uint32_t sizehint);

voi d begi nl nt er nal Node(Bul kl oadCont ext *context, DeclarationlD It, uint32_t children);
voi d endl nt er nal Node(Bul kl oadCont ext *cont ext);
voi d addLi t eral Node(Bul kl oadCont ext *context, DeclarationlDIt,

uint32_t contentsize, ptr_t content);
NI D endBul kil oad(Bul kl oadCont ext *context);
voi d abort Bul kl oad(Bul kl oadCont ext *context);
[...]
s

Figure 3: XML bulkload interface

5 Natix Bulkload Component

Based on the requirements stated in the previous sectionpwepresent the design and
implementation of the Natix Bulkload Component. We begithvihe Bulkload API that
is used to import an external document, and then elaboradeioclustering algorithm.

5.1 Interface

Figure 3 shows the internal bulkload interface for XML cotiens. Natix internally orga-
nizes storage in so-called segments, hence the identifidrSégment.

The document tree to bulkload is "described” to the segmeibim of a sequence
of "visit events” resulting from a depth-first search of tiheet The bulkload user signals
these events to the bulkload component by calling apprtgpfienctions each time a node
is visited.

This corresponds directly to parser interfaces such as &Xdr libxml [16]. These
generate parsing events which correspond to a depth-fasttsef the abstract syntax tree.
Clients need to register callbacks with the parser whichirareked when the associated
event occurs. Each SAX event can be directly translatedargimgle call of the bulkload
interface (Attributes are an exception, as they are delivas a list together with the parent
element.).

The first visit of the document root node initializes the bo#ld pegi nBul kil oad()),
and the second visitefidBul kl oad()) terminates the bulkload and returns the node
identifier of the stored root node. Tlegi nBul kl oad() call allows to specify a size
hint for the document. For small documents, this allows tihéitdocument into a matching
gap on an already used page.

When visiting nonliteral nodeshégi nl nt er nal Node()) for the first time, the
caller may specify how many children the internal node Haspown. After all descen-
dants of the node have been addedd| nt er nal Node() is called.

When visiting leaf nodes which are labeled with stringddLi t er al Node() is
called.

5.2 Bulkload Algorithm

We now explain the variant of the Kundu and Misra [10] aldoritused in Natix. After
giving a top-level explanation on how to extend the alganifior our XML storage format,
we elaborate on the details, using C++-like pseudocodedoifyfthe routines involved.

voi d SEG XM.Segnent : : begi nl nt er nal Node(Bul kl oadCont ext *context, DeclarationlD id)

cont ext - >current () - >appendNode(new Bul kl oadNode(i d));
}

Figure 4: Code fobegi nl nt er nal Node()

5.2.1 Extending the Kundu and Misra Algorithm

As explained in Sec. 4.2, three remaining issues need to deesgbd by our algorithm:
(1) The overhead weight associated with a physical rec@)dSiplings can be clustered to
reduce this overhead. (3) The leftmost siblings should lzakigher probability of being
clustered with their parent.

The overhead weight is dealt with in the detailed algoritteaatiption below.

The possibility of sibling clustering introduces anothegree of freedom when pro-
cessing nodes. Instead of choosing the heaviest child finsinvereating new subtrees,
it is now possible to create an "artificial” heaviest child ¢gmpuping consecutive siblings
together into one physical record. This can also be useddeeas our remaining issue:
Make clustering of leftmost children with their parent mékely. We can now store some
of the rightmost children together in a separate physiaadne while keeping a heavier
child further to the left in the same cluster as its parent.

More precisely, instead of choosing the heaviest child tadsgned to a separate clus-
ter from the parent, Natix combines some of thghtmost, unassigned, consecutive chil-
dren of the currently processed node and clusters them hysigal records smaller than
the cluster limit. This amortizes the record overhead oegesal nodes. It also increases
the likelihood of the leftmost children to be clustered vitile parent node.

Unfortunately, the changes described above break the afiyjnguaranteed by the
original algorithm. This demotes the Natix algorithm to aihigtic with respect to min-
imum number of records generated. It is not clear how theobotip algorithm can be
modified to address the issues above and still retain glgitahality. In particular, while
sibling clustering is desirable with respect to the numiigramerated clusters, it increases
the search space of possible clusterings. We were not yetaliind a linear-time algo-
rithm that determines an optimal solution.

Since efficiency is of great importance for document impest, consider a slightly
suboptimal clustering acceptable, as it can be done intlite&. The heuristic algorithm
explained below generates very good clusterings (i.eebttan the optimal solution with-
out sibling clustering) in all observed cases,

5.2.2 Detailed Description of the Natix Algorithm

The algorithm maintains a main-memory tree which consistsdes that have not been
assigned to a cluster yet. The main-memory tree nodes aeglsieing native C++ pointers
for parent references, and sets of child pointers in eacle.nbde main-memory tree also
includes main-memory versions for proxies referencingreas which have already been
assigned to clusters and moved to physical records. Thetwass size of this main-
memory tree is proportional to the height of the documerd,tiee. the maximal path
length from the root node to a leaf node in the document. Tiopgrty is guaranteed by
keeping, on each level, only as many nodes as fit within aicertafigured memory limit,
which is an integer multiple of the cluster limit (see below)

In the beginning, bulkload starts with an empty main-mentoeg. Every call to the
interface functions to construct the document either tesnila new main-memory node, or
transfers some of the main-memory nodes to the storagesesgiagion by assigning them
to a cluster, or both.

voi d SEG XM.Segnent : : endl nt er nal Node(Bul kl oadCont ext *cont ext)

Bul kl oadNode *processed=cont ext->current();

pruneCurrent C uster (context);

cont ext->current (processed->parent());

cont ext - >current () ->addWei ght (processed->wei ght ());

if(context->current()->weight() > m=* clusterLimt())
pruneCurrent Cl uster(context);

Figure 5: Code foendl nt er nal Node()

voi d SEG XM_Segnent : : pruneCurrent O ust er (Bul kl oadCont ext *cont ext)
{

Bul kl oadNode *current=cont ext->current();

if(current->weight() + clusterOverhead() > clusterLimt())
cl usterChil dren(context, | GNOREPROXI ES);

whi | e(current->weight() + clusterOverhead() > clusterLimt())
clusterChildren(context, CLUSTERPROXI ES);

Figure 6: Code fopr uneCurrent Cl ust er ()

To simplify the exposition, we only consider treatment of eth
begi nl nt er nal Node() and endl nternal Node() functions. Calls to
addLi t er al Node() can be regarded as calls twegi nl nt er nal Node() im-
mediately followed byendl nt er nal Node() .

The begi nl nt er nal Node() code simply adds the new node to the main mem-
ory tree (Figure 4). The node is buffered in this main-mentogg since it only can be
processed until its complete subtree has been describeglths bulkload interface.

Whenendl nt er nal Node() is called (Figure 5), the current node’s subtree has
been completely visited by the depth-first traversal, arahit be processed. The func-
tionpruneCurrent Cl ust er () is called to guarantee that the node’s subtree is smaller
than the cluster limit. Then, the parent of the current nogleomes the new current node,
and its weight is increased by the subtree weight of the nodeliichendBul kil oad()
was called. Finally, if the size of the main memory tree betflogrcurrent node has reached
a certain constant threshold, we start to create physicards to reduce the amount of
memory occupied by the bulkload, even if the cluster limis mot been reached. The
threshold is callednemory limit. It is the cluster limit times an integenemory factor m.

In Sec. 6, we will show that above the Natix default= 5, the performance gains are
negligible.

Figure 6 shows the code for pruning the main-memory treehdfdubtree below the
current node together with standalone record header is taamn the cluster limit, then the
children of the node are clustered into physical records thé size of the main memory
subtree falls below the cluster limit. Th&&NOREPROXI ES identifier is explained below.

During pruning of the tree, physical records are createdwvhontain subtrees of the
main-memory tree. These main-memory subtrees are replitiednain-memory proxy
nodes. Therefore, even after creating clusters and remdbie nodes from the main-
memory tree, the remaining proxy nodes may still cause th&eeito be larger than the
cluster limit. Hence, in th@hi | e loop the proxy nodes themselves are grouped into clus-
ters and physical records are created for them, possiblgvieral levels, until the subtree
fits into the cluster limit.

Thecl ust er Chi | dren() function (Figure 7) determines the cluster boundaries,

10

voi d SEG XM.Segnent : : cl ust er Chi | dren(Bul kl oadCont ext *context, C usterMde m

Bul kl oadNode *current=context->current();
Bul kl oadNode x| astsplit=current->lastChild();

I ast split=findd usterBoundRi ght (context,|astsplit, node);

while(lastsplit!=0 &&
current->wei ght() + clusterOverhead() > clusterLimt())
{

Bul kl oadNode* firstsplit;

firstsplit=findd usterBoundLeft(context,|astsplit, node);

RI D t arget =cr eat eRecord(context,firstsplit,lastsplit,false);
Bul kl oadNode* nextsplit=firstsplit->leftSibling;

repl aceWthProxy(context,current,firstsplit,lastsplit,target);
| astsplit=nextsplit;

| ast split=findd usterBoundRi ght (context,|astsplit, node);

Figure 7: Code focl ust er Chi | dren()

moves clustered subtrees into physical records, and epthe subtrees with proxies in
the main-memory tree. Note that the grouping of child nodés ¢lusters proceeds from
right to left, making sure that nodes further to the rightm@re likely to be clustered, as
specified in our requirements.

Instead of showing code, we will only briefly describe the déovevel func-
tions required bycl usterChildren(). The findd usterBoundRi ght ()
and f i ndd ust er BoundLeft () functions determine the interval of those chil-
dren of the current node that are to be included in a new palysiecord.
fi ndd ust er BoundRi ght () looks for nodes satisfying a predicate that depends on
thenode parameter. The search starts at the second argunaaritspl i t and contin-
ues to the left siblings. Ifrode == | GNOREPROXI ES, then the predicate is true for all
non-proxy nodes. Otherwise, any node qualifies.

fi ndd ust er BoundLef t () moves further right starting from the rightmost node
of the new partition. It includes nodes into the interval \hhey satisfy the same pred-
icate as above, and while the closed interval of subtreeadmmibyf i r st split and
| ast split still fits into a physical record.

creat eRecor d() is straightforward and creates new subtree records frommtie-
memory representations. If main-memory proxy nodes atadied in the subtree, they are
inserted into the physical record, and their target resqudient pointer is updated to refer
to the new physical record.

repl aceW t hProxy() removes the main-memory representation of the subtrees
that have been moved to a record and inserts a proxy instead.

Memory management The main-memory representation consists of a large amdunt o
small objects. In the case of literals, these are even chbkrisize.

In spite of this, memory management is not expensive duruigldad. Memory is
allocated for the nodes during a depth-first traversal. ptlidirst preorder, all nodes of
a subtree form a consecutive interval of nodes. This makpsssible for the bulkload
component to use a special memory management techniquaep&hm@l memory manager
requests memory in blocks of constant size from the operaystem, adding nodes to
blocks in depth-first preorder as they are delivered to thiddmd component. The orderin
which the blocks are used is maintained in a list. When a selstmain memory represen-
tation is no longer used, the interval of blocks which onlptain nodes of this subtree can
be deallocated in a per-block fashion, without regardiegidividual nodes on the blocks.

11

Aborting Import Operations A documentimport may be aborted, for example because
validation fails half-way through a document. For such sasige bulkload interface pro-
vides anabor t Bul kl oad() method. A call to this routine removes both the current
main-memory structure and the partially materialized aoent on disk.

Deallocating the whole main-memory structure is done insdu@e way as removing
subtrees (see above). However, there are two approachéds lrmwlement removal of the
on-disk structures, depending on whether Natix recovedgdés enabled or not.

With enabled recovery, a transaction savepoint is takeimglregi nBul kl oad() .
Uponabor t Bul kl oad(), the transaction is rolled back to that savepoint, and reinov
of the data structures on disk is automatically handled bydkovery subsystem'’s rollback
routines.

Without recovery support, the bulkload component first sache main-memory struc-
ture for proxy nodes, and deletes the referenced recoggigely descending into further
proxy nodes if present. After removing the subtree recorois fdisk, the main-memory
tree is deallocated.

6 Evaluation

This section presents experimental results to assess tfoeemance of the Natix Bulkload
Component. We examine the effect of sibling clustering, dbalability with respect to
document size, and compare Natix to other XDSs.

6.1 Document Collections

We performed experiments using three document collectibms first is the XMark bench-
mark [14] using scaling factors of x 0.2 with n € {1...5}. The second is a sythetic
document collection generated using the ToXgene data gemgl]. The DTD as well as
the generator template file are listed in the appendix. Thalest document contains 50
employees, 100 students, 10 lectures and 30 exams. We tghérdocuments. With each
document we quadrupled these numbers, so that the biggasindmt contains 51200 em-
ployees, 102400 students, 10240 lectures and 30720 exdnssleadds to document sizes
between 59kB and 43MB.

6.2 Environment

The system used for the experiments ran on two machines.

Machine NEWwas used for all experiments except for the comparison toottier
benchmark results (Sec. 6.4.4). It was equipped with 512MB1Ra Pentium IV CPU
with 2.4 GHz, and an UltraWide SCSI hard disk. The operatygiesn was SUSE Linux
9.3 with kernel version 2.6.11.

MachineQOLD was used to reproduce the environment from [14], and had ®BLaM
RAM, a Pentium Il running at 600 MHz, and an Ultra Wide SCSildi

Natix was compiled with g++ 3.3.5 using optimization leved.O

The measured times are the total elapsed time to import tbendent, including full
logging and recovery support. A main memory page buffer witfiicient memory to hold
the whole document was used. The times do not include systetostime (about 0.1s),
and the page buffer was not flushed during bulkload. Howé#wvetjmes do include commit
processing and flushing of the log.

For the comparison to MonetDB [3], we used Monet Databasees&f4.8.0 with the
Pathfinder module as publicly distributed. We present thgoirntimes reported by the
Monet console.

12

Method Clusters
Kundu (Optimal Single Child Clustering) 30198
Natix (Sibling Clusteringm = 1) 33929
Natix (Sibling Clusteringm = 2) 22852
Natix (Sibling Clusteringm = 3) 22117
Natix (Sibling Clusteringm = 5) 21895
Natix (Sibling Clusteringin = 10) 21779
Natix (Sibling Clusteringmm = o) 21692

Table 1: Number of Clusters for XMark SF 0.2

6.3 Algorithms

For Natix, we implemented the algorithm as explained in #énigle, using a default value
of m = 5 except where stated otherwise. A disk page size of 8K was, aselthe cluster
limit was set to 2K to avoid fragmentation (see Sec. 4.2.2).

We also implemented a modified variant of the Kundu algoritbreompare our ap-
proach against optimal partitioning without sibling potis. We had to modify Kundu to
incorporate the fact that the weight of a cluster is modifigdh® additional proxy nodes.
This was done using three modifications. First, while prsiteggsa node, the weight of
added proxies was added to the node. Second, nodes whoda weg smaller than or
equal to a proxy node were always clustered with their patestause clustering them
would not decrease the weight of the parent node. Third, thedki algorithm has to deal
with the case that the physical representation for a singdkenvith proxies for all its chil-
dren and small nodes clustered with the parent does not dittiré cluster limit. In this
case, and only in this case, we used the same approach asNatiReAlgorithm, namely
to partition the proxy nodes and the small regular nodes frigint to left by clustering
them into "intermediate clusters” of maximal weight whickene referenced by a proxy
in the parent’s cluster (Sed ust er Chi | dren() in Sec. 5.2.2). As we will see in the
experimental results, this rarely occurs.

6.4 Results
6.4.1 The Importance of Sibling Clustering

With the first series of experiments, we wanted to illustthteimportance of sibling clus-
tering.

Hence, we took the XMark document with scaling factor 0.2doicing a document
about 20MB in size, and bulkload it using the modified Kundd &me Natix algorithm.
For the Natix algorithm, we used different values for thgparameter (see Sec. 5.2.2).

The number of clusters generated are shown in Table 1. Thdistbundu algorithm
produces about 50% more clusters than the Natix algorithth waluesm > 1. This
demonstrates that even a heuristic for sibling clustering significantly outperform the
optimal single child clustering case. Note that the numlb@odes for which intermediate
clusters (see above) had to be created for the Kundu algoritas less than 750, and did
not significantly distort the results.

Form = 1, the Natix algorithm does not perform well. This is expecteetause once
it reaches that limit, it immediately creates new clustersahy additional node, instead of
delaying clustering decisions until more siblings are ladé. It performs even worse than
the Kundu algorithm, because it degenerates to a non-ofdinge child clustering.

Form > 1, the number of clusters quickly converges against the lzest achievable
by the Natix algorithm with unlimited memory, which is showmthe last row.

13

Document]| Size (L0° bytes) || MonetDB | Natix |

xmark 0.2 22514 2.16s| 5.34s
xmark 0.4 46693 4,52s| 10.76s
xmark 0.6 70322 9.88s| 16.46s
xmark 0.8 93560 12.03s| 22.74s
xmark 1.0 105264 16.03s| 27.98s
unil.xml 58 0.03s| 0.02s
uni2.xml 166 0.04s| 0.09s
uni3.xml 673 0.08s| 0.19s
uni4.xml 2704 0.31s| 0.81s
uni5.xml 11053 3.27s| 3.08s
uni6.xml 44360 28.70s| 13.67s

Table 2: Import times (seconds) for Natix and MonetDB

Document Size XC | Natix
SigmodRecord.xm| 467K | 2.82s| 0.27s
mondial-3.0.xml 1.8M | 22.69s| 0.58s
partsupp.xml 22M | 6.54s| 0.49s
uwm.xml 23M | 6.78s| 0.91s
orders.xml 5.2M | 18.86s| 1.25s

Table 3: Comparison with XC (Import time)

6.4.2 Scalability

In our second experiment, we wanted to show the scalabilityioapproach, and compare
it to the scalability of a non-clustering approach.

We imported the two document collections into Natix and M@&¢Pathfinder [3].
MonetDB is a relational main-memory DBMS that stores XML asaloy relations in which
the nodes are stored in preorder, i.e. in the order deliveydtie parser. In such a format,
no clustering is required, but only a preorder traversalpsrted as efficient access path,
and updates may be costly.

The results from Table 2 show that the Natix Bulkload Aldamitexhibits a running
time linear in the document size. For the XMark documentsn®bBB is about twice as
fast, and also scales linearly. For the uni documents, thix Nehaviour does not change,
the scalability and bulkload speed remain similar to the XiMtaase. MonetDB, however,
shows a different behaviour and is slower and scales worgew#¥e not able to find the
cause.

We conclude that the clustering approach employed by Natifopms and scales ade-
guately, and can keep up with a non-clustering approach.

6.4.3 Comparison with XC

XC is a XML clustering algorithm developed at the IBM WatsoasRarch Center in York-
town heights [5] (See Sec. 4.1). Their optimized versionuies is a workload-directed al-
gorithm that generates good clusterings tailored to preshoconfigured workloads. How-
ever, it does not have acceptable performance for onliiddads. We show some of their
results in Table 3. The table also includes Natix import srfae the same documents.
The XC system is written in C++, and the experiments weregoeréd on an x86-
based Linux system with 1.7 GHz CPU speed. The Natix resudi® wbtained on our
MachineNEWWwith 2.4 GHz. The results show running times for Natix which faster by

14

System Bulkload time
(Seconds)
System A (from [14]) 414
System B (from [14]) 781
System C (from [14]) 548
Natix 215

Table 4: XML Bulkload Times for various systems

about an order of magnitude. This diffence is clearly beyttreddifference in processor
speed. In addition, their heuristical algorithm only penfs single child clustering, which

is inferior to sibling clustering with respect to the numladrclusters, as demonstrated
above.

6.4.4 Comparison with Other Published Results

Published bulkload performance results for XDS systemgane and far between. The
only comparable numbers we could find were from the XMark bemark by Schmidt
et al. [14]. They compare bulkload performance for XMarklisgafactor 1 on various
anonymous mass-storage systems. We repeat some of theis iesTable 4.

We limit our comparison to the disk-based systems, omittiregr numbers for purely
main-memory based systems, as we do not know whether themmaimory based systems
perform logging or checkpointing, and wether the numbefigeethat. The remaining
systems are relational DBMS, and called "System A”, "Sys&hand "System C” in the
paper. No details about the employed mappings from docisrterntelations are given,
except that systems A and B do not require a DTD, while systemag@ires to manually
generate a relational schema from a DTD.

Table 4 also includes a measurement of Natix’s bulkloadyperénce for the same doc-
ument. We used our Machir@.D, which is very similar to the one described in Schmidt
et al. [14], except that it has less main memory (512MB comgo their 1 GB), and a
slightly faster processor (600Mhz compared to their 550Mhz

Although Natix outperforms the relational systems by festmetween 1.9 and 3.6, few
is known about the exact configurations and techniques es&tdite XML in the relational
systems. Hence, it is unclear to what extent the numbersanparable.

7 Conclusion and Future Work

This article discusses the Natix Bulkload Component, a rfeodfithe Natix XML Data
Store that is responsible for efficiently converting exé@édocuments into the Natix storage
format.

In our requirements analysis, we argued that a bulkload omept for XML must ad-
dress three important issues: First, it must be efficientiamited in its usage of resources
such as computing power and memory. Second, the interfattes tbulkload component
must closely match the format in which external documerdsiativered, avoiding expen-
sive representation changes. Third, the generated mmsgtbrage layout must be of high
quality.

We clarified that for tree-structured data such as XML, a lgghlity of the storage
layout is equivalent to a small number of generatieters. Clusters represent subsets of
the document tree that are closely related with respect ¢ardent structure, and that fit
on a disk page. In the context of the Natix storage format,samilar approaches, such
a cluster is a subset of the document nodes that is conneietgudirent-child and sibling
relationships.

15

We assessed a number of existing algorithms for our purp&ses the best candidate,
the tree clustering algorithm by Kundu and Misra, failed tw@ess all requirements, in
particular because it keeps the whole document in memodybanause it does not cluster
siblings.

Hence, we transformed the approach by Kundu and Misra intwel elustering heuris-
tic, the Natix Bulkload Algorithm. Albeit not optimal, thedgorithm uses sibling clustering
to produce 30% less clusters than an optimal single-chiisteting. The algorithm has lin-
ear complexity with respect to the document size, while gisipace proportional to the
document tree height.

We presented experimental results, which demonstratetneetitiveness of our bulk-
load component on several fronts: (1) We show that siblingtering is superior com-
pared to single-child clustering. (2) Our algorithm scdlasarly with small constants.
(3) Compared to highly efficient relational bulkload teajues that materialize the docu-
ment in preorder as it arrives, the performance penaltytthatto be paid for clustering is
acceptable. (4) Our bulkload component is faster by at leasirder of magnitude than
existing workload-directed approaches that derive tHastering decisions primarily from
expected access patterns.

In the future, we want to improve our heuristics for siblingstering. We also want
to incorporate information about access patterns into lgarighm without compromising
bulkload performance.

References

[1] Denilson Barbosa, Alberto Mendelzon, John Keenleysatel Kelly Lyons. ToX-
gene: a template-based data generator for XMLS{BMOD Conference, 2002.

[2] Kevin Beyer, Roberta J. Cochrane, Vanja Josifovski, Bileewein, George Lapis,
Guy Lohman, Bob Lyle, Fatm®zcan, Hamid Pirahesh, Normen Seemann, Tuong
Truong, Bert Van der Linden, Brian Vickery, and Chun Zhangst&m RX: One Part
Relational, One Part XML. '58iGMOD Conference, pages 347-358, 2005.

[3] P. A.Boncz, T. Grust, S. Manegold, J. Rittinger, and dibdreer. Pathfinder: Relational
XQuery Over Multi-Gigabyte XML Inputs In Interactive TimeTechnical Report
INS-E0503, CWI, March 2005. MonetDB 4.8.0, Pathfinder 0.8.0

[4] Rajesh Bordawekar and Oded Shmueli. Flexible workleadie clustering of
XML documents. InDatabase and XML Technologies, Second International XML
Database Symposium, XSym, pages 204-218, 2004.

[5] Rajesh Bordawekar and Oded Shmueli. Flexible worklea@re clustering of XML
documents. Technical report, IBM T.J. Watson Researchezeviorktown Heights,
May 2004.

[6] Thorsten Fiebig, Sven Helmer, Carl-Christian KannejdduMoerkotte, Julia Neu-
mann, Robert Schiele, and Till Westmann. Anatomy of a NatiV. base manage-
ment systemV/LDB Journal, 11(4):292-314, 2003.

[7] Carl-Christian Kanne, Matthias Brantner, and Guido kkoéte. Cost-sensitive re-
ordering of navigational primitives. 18 GMOD Conference, pages 742—753, 2005.

[8] Carl-Christian Kanne and Guido Moerkotte. Efficientrsige of XML data. Techni-
cal Report TR-1999-008, Department for Mathematics and fiider Science, Uni-
versity of Mannheim, June 1999.

[9] Carl-Christian Kanne and Guido Moerkotte. Efficientrstige of XML data. InCDE,
page 198, 2000.

16

[10] Sukhamay Kundu and Jayadev Misra. A linear tree partitig algorithm.SIAM J.
Comput., 6(1):151-154, March 1977.

[11] Joseph A. Lukes. Efficient algorithm for the partitingiof trees. IBM Journal of
Research and Development, 18(3):217-224, 1974.

[12] David Megginson. SAX: A simple API for XML. Technical pert, Megginson
Technologies, 2001.

[13] Mario Schkolnick. A clustering algorithm for hieraiichl structures.ACM Trans.
Database Syst., 2(1):27-44, 1977.

[14] Albrecht Schmidt, Florian Waas, Martin Kersten, Miehd. Carey, loana Manolescu,
and Ralph Busse. XMark: A benchmark for XML data managemen{LDB Conf.,
pages 974-985, 2002.

[15] Manolis M. Tsangaris and Jeffrey F. Naughton. On thdgrarance of object clus-
tering techniques. In Michael Stonebraker, editenmpceedings of the 1992 ACM
SIGMOD International Conference on Management of Data, San Diego, California,
June 2-5, 1992, pages 144-153. ACM Press, 1992.

[16] Daniel Veillard. The XML C library for gnome. Project WeSite, 2002.

A DTD for the example documents

<IELEMENT university (employee|student«|lectures|exams)x>

<IELEMENT employee (name, (profess¢research-assistant)?}
<!ATTLIST employee id ID #REQUIRED

<IELEMENT professor (degrefp room| teachest| examines)x>
<IELEMENT degree (#PCDATA)

<!ELEMENT room (#PCDATA)>

<!ELEMENT teaches EMPTY¥

<!IATTLIST teaches lecture IDREF #REQUIRED

<!ELEMENT examines EMPTY¥

<IATTLIST examines lecture IDREF #REQUIRED

<IELEMENT research-assistant (researchtopic|worksfork>
<!ELEMENT research-topic (#PCDATA)>>

<!ELEMENT worksfor EMPTY>

<!ATTLIST worksfor professor IDREF #REQUIRED

<!ELEMENT student (nam¢ semestef examination | attends)>
<IATTLIST student id ID #REQUIRED

<IELEMENT attends EMPTY¥

<!IATTLIST attends lecture IDREF #REQUIRED

<IELEMENT name (#PCDATA}

<IELEMENT semester (#PCDATA}

<!ELEMENT examination EMPT¥

<IATTLIST examination id IDREF #REQUIRED

<!IELEMENT lecture (helpergtitie|credits|attendieg lecturer?x>
<IATTLIST lecture id ID #REQUIRED

<!ELEMENT title (#PCDATA)>

<!ELEMENT credits (#PCDATA)

<IELEMENT lecturer EMPTY

<IATTLIST lecturer professor IDREF #REQUIRED

<IELEMENT attendies (attendeg>

<IELEMENT attendee EMPTY¥

17

<IATTLIST attendee student IDREF #REQUIRED
<IELEMENT helpers (helpex)>

<!ELEMENT helper EMPTY

<IATTLIST helper student IDREF #REQUIRED

<IELEMENT exam (gradébelongstol examinerl examinee3}>
<IATTLIST exam id ID #REQUIRED-

<IELEMENT grade (#PCDATAp

<!ELEMENT belongsto EMPT¥

<IATTLIST belongsto lecture IDREF #REQUIRED

<!ELEMENT examiner EMPTY
<IATTLIST examiner professor IDREF #REQUIRED

<!ELEMENT examinee EMPTY¥
<IATTLIST examinee student IDREF #REQUIRED

B ToXgene template file

<?xml version="1.0"2

<!DOCTYPE tox—template SYSTEM "http ://www.cs.toronto.edu/tox/toxgehToXgene2.dtd”
[

<!ENTITY num_employees "50%

<IENTITY num_students "100%

<!ENTITY num_helpers "5">

<IENTITY num_lectures "10"

<!ENTITY num_exams "30™>
1>

<tox—template>

<l— define the distributions for grades, semester and credits

<tox—distribution name="gradedistr” type="normal” mininclusive ="1"
maxInclusive ="5" mean="2.5" variance ="}

</tox—distribution>

<tox—distribution name="semestedistr” type="normal” mininclusive ="1"
maxlInclusive ="15" mean="5" variance ="3%
</tox—distribution>

<tox—distribution name="swsdistr” type="normal” minlnclusive ="2"
maxlnclusive ="6” mean="3" variance ="2%
</tox—distribution>

<tox—distribution name="matrnrdistr” type="uniform” mininclusive ="1"
maxInclusive="&numstudents ;" >
</tox—distribution>

<l— define all other simple types—>
<simpleType name="nameype”>
<restriction base="string®
<tox—string type="Iname’t
<lrestriction>
<IsimpleType>

<simpleType name="degre¢ype”>
<restriction base="string?
<tox—string minLength="2" maxLength="2"%
<Irestriction>
<IsimpleType>

18

<simpleType name="roomype”>
<restriction base="string?
<tox—string minLength="2" maxLength="3"f%
<lrestriction>
<I/simpleType>

<simpleType name="researchtopitype™
<restriction base="string?
<tox—string/>
<lrestriction>
<IsimpleType>

<simpleType name="semestetype”™>
<restriction base="positivelnteger”’
<tox—number tox-distribution="semesterdistr”/>
<Irestriction>
<I/simpleType>

<simpleType name="graddype”™>
<restriction base="nonNegativelnteges”
<tox—number tox-distribution="gradedistr"/>
<lrestriction>
<IsimpleType>

<simpleType name="swdype”>
<restriction base="nonNegativelnteges”
<tox—number tox-distribution="swsdistr”/>
<lrestriction>
<IsimpleType>

<tox—list name="lecturenamedist” readFrom="lecturenames .xml>
<element name="lecture?
<complexType-
<element name="title” type="string™
</complexType-
<lelement>
</tox—list >

<simpleType name="lkey?
<restriction base="positivelnteger”
<tox—number sequential="yes¥
<Irestriction>
<I/simpleType>

<tox—list name="lecturelist”>
<element name="lecture”
minOccurs="&numlectures ;” maxOccurs="&numlectures ;™
<complexType-

<element name="id%*
<tox—expr value=""L'#"lkey"/>
<lelement>

<element name="title” type="string®
<simpleType>
<restriction base="string?
<tox—scan path="[lecturenamesist/lecture]”>
<tox—expr value="[title]"/>
</tox—scamn>
<Irestriction>
</simpleType>
<l/element>

<element name="credits” type="swsype"/>

19

</complexType-
<lelement>
</tox—list >

<simpleType name="skey®
<restriction base="positivelnteger”
<tox—number sequential="yes¥%
<lrestriction>
<IsimpleType>

<tox—list name="studentlist” unique="student/id%
<element name="student” minOccurs="&nwmtudents ;"
maxOccurs="&numstudents ;>
<complexType-
<element name="id*
<tox—expr value="'S’'# skey"H>
<lelement>

<element name="name’
<simpleType>
<restriction base="string?
<tox—string type="InameX</tox—string>
<Irestriction>
</simpleType>
<lelement>

<element name="semester” type="semesigme" />

<element name="attends” minOccurs="0" maxOccurs="&nulmctures ;>

<simpleType>
<restriction base="string?
<tox—sample path="[lecturelist/lecture/id]”
<tox—expr value ="[!]"/>
</tox—sample>
<lrestriction>
</simpleType>
</element>

</complexType-
<lelement>
</tox—list>

<simpleType name="ekey®
<restriction base="positivelnteger”’
<tox—number sequential="yes¥%
<Irestriction>
<I/simpleType>

<simpleType name="studentistr”>
<restriction base="positivelntegeyr”
<tox—number tox-distribution="matrnrdistr”/>
<Irestriction>
<IsimpleType>

<tox—list name="examlist">
<element name="exam” type="exarnype”
minOccurs="&numexams;” maxOccurs="&numexams;™
<complexType-
<element name="id*
<tox—expr value=""E'#"ekey”/>
</element>

<element name="examiner” type="string®

<element name="student’
<tox—expr value="'S’'# studentdistr”/>

20

duplicates="no%

<lelement>

<element name="lecture?
<simpleType>
<restriction base="string?
<tox—sample path="[lecturelist/lecture/id]” duplicates="no%>
<tox—expr value ="[!]"/>
</tox—sample>
<Irestriction>
</simpleType>
</element>

<element name="grade” type="gradgype”’/>
</complexType-
<lelement>
</tox—list >

<simpleType name="emkey
<restriction base="positivelntegeyr”
<tox—number sequential="yes¥
<lrestriction>
<IsimpleType>

<tox—list name="employeelist”>
<element name="employee”
minOccurs="&numemployees;” maxOccurs="&numemployees;>
<complexType-
<element name="id%
<tox—expr value=""EM'#~ emkey”/>
<lelement>
<element name="name” type="namtgpe” />
<tox—alternatives>
<tox—option odds="10>
<element name="professor’

<complexType>
<element name="degree” type="degretgpe”/>

<element name="room” type="roontype”/>
</complexType-
<lelement>
</tox—option>
<tox—option odds="50"
<element name="researchassistant®

<complexType-
<element name="researchtopic” type="researchtopictype”/>

<element name="worksfor” type="string¥
</complexType-
<lelement>
</tox—option>
<tox—option odds="40"/>
</tox—alternatives>
</complexType-
<lelement>
</tox—list >

<simpleType name="|2key?
<restriction base="positivelnteger”’
<tox—number sequential="yes¥
<lrestriction>
<I/simpleType>

<tox—list name="werliestwas?®
<element name="entry” minOccurs="&nunhectures ;”

maxOccurs="&numlectures ;™

<complexType-
<element name="id%

21

<tox—expr value=""L'#712key"/>
</element>
<tox—sample path="[employedist/employee]”
where="GEQ(COUNT[professor/degree],1)” name=3e"
<element name="lecturer”
<tox—expr value="[$e/id]"/>
</element>
</tox—sample>
</complexType-
</element>
<ltox—list>

<simpleType name="e2key
<restriction base="positivelnteger”
<tox—number sequential="yes¥
<lrestriction>
<I/simpleType>

<tox—Ilist name="werprueftwas?
<element name="entry” minOccurs="&numxams;”
maxOccurs="&numexams;™>
<complexType-
<element name="id%
<tox—expr value=""E'#"e2key"t
</element>
<tox—sample path="[employedist/employee]”
where="GEQ(COUNT[professor/degree],1)” name=3e"
<element name="examiner’
<tox—expr value="[$e/id]"/>
</element>
</tox—sample>
</complexType-
<lelement>
<ltox—list>

<tox—document name="uni” DTBfile="uni.dtd">
<element name="university?®
<complexType-

<element name="lecture”
minOccurs="&numlectures ;” maxOccurs="&numlectures;”>
<complexType-
<tox—scan path="[lecturelist/lecture]” name="I1">
<attribute name="id%
<tox—expr value="[id]"/>
<lattribute>
<element name="title*
<tox—expr value="[title]"/>
<lelement>

<element name="credits¥
<tox—expr value="[credits]"'/>
</element>

<element name="helpers”’
<complexType-
<element name="helper” minOccurs="0"

maxOccurs="&numhelpers;™

<complexType-

<tox—sample path="[studentist/student]”
duplicates="no%
<attribute name="student’
<tox—expr value="[$s/id]"/>
<lattribute>

</tox—sample>

</complexType-

22

name="s”

<lelement>
</complexType-
<lelement>

<element name="attendies”
<complexType-
<tox—foreach path="[studentlist/student]” name="s%
<tox—foreach path="[$s/attends]” name="k"
<tox—if expr="EQ([!],[$!I/id])" >
<tox—then>
<element name="attendee?
<complexType-
<attribute name="student’
<tox—expr value="[$s/id]"/>
<lattribute>
</complexType-
</element>
</tox—then>
</tox—if >
</tox—foreach>
</tox—foreach>
</complexType-
<lelement>

<tox—foreach path="[werliestwas /entry]” name="g"
<tox—if expr="EQ([$!I/id],[id])" >
<tox—then>
<element name="lecturer
<complexType
<attribute name="professop’
<tox—expr value="[$e/lecturer]’t
<lattribute>
</complexType-
</element>
</tox—then>
</tox—if >
</tox—foreach>

</tox—scamn>
</complexType-
<lelement>

<element name="exam”
minOccurs="&numexams;” maxOccurs="&nunmexams;”>
<complexType-
<tox—scan path="[examlist/exam]” name="e%

<attribute name="id%
<tox—expr value="[id]"/>
<lattribute>

<element name="grade’
<tox—expr value="[grade]"t
<lelement>

<element name="belongsto”
<complexType
<attribute name="lecture?
<tox—expr value="[lecture]"t
<lattribute>
</complexType-
<lelement>

<tox—foreach path="[werprueftwas/entry]” name="w"
<tox—if expr="EQ([$e/id],[id])">

23

<tox—then>
<element name="examiner’

<complexType-

<attribute name="professop”
<tox—expr value ="[$w/examiner]'t

<lattribute>

</complexType-

</element>
</tox—then>
</tox—if >
</tox—foreach>

<element name="examineg”
<complexType
<attribute name="student’
<tox—expr value="[student]"t
<lattribute>
</complexType-
</element>

</tox—scamn>
</complexType-
</element>

<element name="employee”
minOccurs="&numemployees;”

<complexType>
<tox—scan path="[employedist/employee]” name="e*

<attribute name="id%
<tox—expr value="[id]"/>

<lattribute>

<element name="name’
<tox—expr value ="[name]"5

</element>

maxOccurs="&nunemployees;>

<tox—if expr="GEQ(COUNT[professor/degree],1}®
<tox—then>
<element name="professor’
<complexType-

<element name="degreg”
<tox—expr value="[professor/degreel¥

<lelement>

<element name="room?
<tox—expr value="[professor/room]”

</element>

<tox—foreach path="[werliestwas /entry]” name="w"
<tox—if expr="EQ([$e/id],[lecturer])”>
<tox—then>
<element name="teaches”
<complexType
<attribute name="lectures
<tox—expr value="[$w/id]"/>
<lattribute>
</complexType-
<lelement>
</tox—then>
</tox—if >
</tox—foreach>

<tox—foreach path="[werprueftwas/entry]” name="w’
<tox—if expr="EQ([$e/id],[examiner])™>

<tox—then>
<element name="examines”

24

<complexType
<attribute name="lectures
<tox—expr value="[$w/id]"/>
<lattribute>
</complexType-
<lelement>
</tox—then>
</tox—if >
</tox—foreach>
</complexType-
</element>
</tox—then>
</tox—if >

<tox—if expr="GEQ(COUNT[researchassistant/researchtopic],1)">
<tox—then>
<element name="researchassistant®
<complexType-
<tox—sample path="[employedist/employee]” name="e2"
where="GEQ(COUNT[professor/degree],1}"
<element name="worksfor®
<complexType-
<attribute name="professop”
<tox—expr value="[$e2/id]"/>
<lattribute>
</complexType-
<lelement>
</tox—sample>
<element name="researchtopic”>
<tox—expr
value ="[$e/researchassistant/researchtopic]”/ >
</element>
</complexType-
</element>
</tox—then>
</tox—if >
</tox—scamn>
</complexType-
</element>

<element name="student”
minOccurs="&numstudents ;
<complexType-
<tox—scan path="[studentlist/student]” name="s%

”

maxOccurs="&nunstudents ;>

<attribute name="id%
<tox—expr value="[id]"/>
<lattribute>

<l——<attribute name="attends” toxminOccurs="0"
tox—maxOccurs="5" separator="¢¢
<simpleType>
<restriction base="string®
<tox—scan path="[$s/attends}
<tox—expr value ="[!]"/>
</tox—scamn>
</restriction>
</simpleType>
<lattribute> —>

<tox—foreach path="[$s/attends}
<element name="attends”
<complexType-
<attribute name="lecture?®
<tox—expr value ="[!]"/ >
<lattribute>

25

</complexType-
<lelement>
</tox—foreach>

<element name="namg<tox—expr value ="[name]’t</element>
<element name="semestexXtox—expr value ="[semester]®% </element>

<tox—foreach path="[examlist/exam]”
where="EQ([student],[$s/id])” name="¢*
<element name="examination”

<complexType-
<attribute name="id%
<tox—expr value="[id]"/>
<lattribute>
</complexType-
<lelement>
</tox—foreach>

</tox—scamn>
</complexType-
<lelement>

</complexType-
</element>

</tox—document-

</tox—template>

26

