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Abstract. Locationing problem in Wireless Sensor Networks(WSNs) can be viewed as a general distributed sensor problem. It
is with sensors that can discover other nodes or estimate ranges between nodes, that serve as position references. In this paper,
we show that sensors acquire coarse-grain location awareness by the training protocol. The training protocol which hybrids
the synchronization and training procedure. In this protocol, synchronization and training are combined into one scheme. The
sink node sends two beacons in each slot instead of one. In the training, sensor searching for its location using a binary search
scheme. Our simulation results shown less number of cycles needed for training.
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1. Introduction

Determining the location of devices or objects is important in many applications. For outdoor environ-
ments, the most well-known positioning system is the Global Positioning System (GPS) [6,12], that uses
24 satellites set up by the US. Department of Defense to enable global three-dimensional positioning.
GPS has two levels of accuracy: stand positioning service (SPS) and precise positioning service (PPS).
The accuracy provided by GPS is around 20 to 50 m. GPS is not suitable for wireless sensor networks
for several reasons. First, it is not available in an indoor environment because satellite signals cannot
penetrate buildings. Second, sensor networks have stringent energy constraints, which require special
design.

Much work has been devoted recently to positioning and location tracking in the area of wireless ad
hoc and sensor networks. Location information can be used to improve the performance of wireless
networks and to provide new types of services. For example, it can facilitate routing in a wireless
ad hoc network to reduce routing overhead. This is known as geographic routing [9,12]. Through
location-aware network protocols, the number of control packets can be reduced. Service providers can
also use location information to provide some novel location-aware or follow-me services. For example,
the navigation system based on GPS. A user can tell the system his destination and the system will guide
him there. Phone systems in an enterprise can exploit locations of people to providefollow-me services.
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Other types of location-based services includegeocast [8,10,12], by which a user can request to send
a message to a specific area, andtemporal geocast, by which a user can request to send a message to
a specific area at specific time. In contrast to traditional multicast, such messages are not targeted at a
fixed group of members, but rather at members located in a specific physical area.

However, the random deployment of sensors in wireless sensor networks implies that the sensors
are initially unaware of their exact location. Further, due to limitations in form factor, cost per unit
and energy budget, individual sensors are not expected to be GPS-enabled; moreover, many probable
application environments limit satellite access. It follows that the sensors have to learn either their exact
geographic location or else a coarse-grain approximation of their location. The former task is referred
to aslocalization. Wadaa et al. [13,14] and Xu et al. [11] proposed to refer to the task of endowing
individual sensors with coarse-grain location awareness astraining.

In this paper, we show that sensors acquire coarse-grain location awareness by the training protocol that
imposes a coordinate system onto the network. We propose a simple lightweight and self-organization
training algorithm to train the sensors learn their coarse-grain location. The training protocol combined
the synchronization and training procedure into one scheme. We provide in Section 2 on how the dynamic
system is proposed and in Section 3 the background of our training protocol in which the sensors are in
sleep-awake cycle before the training started. Section 4 discusses the details of the algorithm of hybrid
training protocol. In Section 4.2 we invite the reader to focus on the examples of our training protocol.
We proof our training protocol by the simulation results in Section 5. Concluding remarks in Section 6
complete this paper.

2. Dynamic coordinate system

The process of endowing individual sensor nodes with coarse-grain location awareness leads this paper
naturally to the concept of dynamic coordinate system. The dynamic system is a variant of the well
known polar coordinate system adapted to our needs.

The dynamic coordinate system in polar forms is represented by thecoronas for the range and the
wedges for angles of coverage. This is illustrated by Fig. 1.

In Fig. 1, θ(x) is a polar angle corresponding tox andρ(x) is a polar distance corresponding tox.
Localization means determining for allx in the plane the ordered pair(θ(x), ρ(x)).

Discretize the space by consideringk ranges forρ, namelyr1, r2, . . . , rk such that0 < r1 < r2 <
. . . < rk = R and angular rangesw1, w2, . . . , wm such that0 < w1 < w2 < . . . < wm = 2π. Thus for
a givenx, determine an approximation of its exact location in the form of a circular sector (see Fig. 2).

3. Synchronous vs. asynchronous training

Due to the extreme power limitation and lack of means for changing or recharging batteries, energy
conversation is the most important design requirement for the WSN. It is concluded that theidle listening
is the major source of power waste [2]. Leaving the radio transceiver on for long periods of time will be
significantly reducing the longevity of the WSN. Hence, the sensor radios have to work on a low duty
cycle, called asensor cycle, in which the sensors will be awake only a short period of time (referred as
awake interval) and sleep for the rest of the time.

Referring to Fig. 3, the sensor cycle is on lengthL (slots) [Note: slots are defined arbitrarily but a good
practical value is 675 microsecond per slot]: the sensor is in sleep mode forL− d slots and is awake for
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d slots. We assume the value ofL is fixed during the network lifetime. However, the value ofd and the
beginning of the awake interval can be varied in different protocols.

In order to train the sensors in the network, the sink broadcasts training beacons. Assuming thatk
coronas have to be established, the sinktransmission cycle involvesk broadcasts in eachk-cycle. Thus,
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eachk − cycle consists ofk slots encountered ass1, s2, . . . , sk where slotsj ,(1 � j � k), is intended
to train the sensors in coronak− j + 1. Indeed, the power level that the sink uses in slotj distinguishes
between sensors in slotsk + j − 1 andk − j. We assume the sink can transmit beacons at different
power level. At the highest power level (Pk), the beacon can be received by the sensors in the outmost
coronask. At the lowest power level (P1), the beacon can only be received by the sensors in the corona
s1. The sink repeats the transmission cycle (referred as thesink cycle) in case that some sensors miss the
previous training beacons. To distinguish between sink cycles and sensor cycles, we shall refer to sink
cycles ask-cycles and to the sensor cycles ass-cycles.

Since the sensors are not aware of the beginning time of the training, a training protocol relies on the
sink to synchronize the sensors. Recall the sensors wake up at random according to their internal clock
and alternate between sleep and awake in eachs-cycle. The sink broadcasts a beacon at the highest
power level for L slots to synchronize the sensors. We can limit each sensor be only awake one slot
pers-cycle to save energy. It guarantees that every sensor in the range receives the beacon at least one
time in the synchronization period. After the synchronization period, the sink starts training the sensors.
Figure 4 illustrates. The sink cycle in the protocol proposed by Wadaa et al. in [13] is referred as the
synchronous training protocol and requires that the sensors know the training start time before training.

The sensors can be trained without a synchronization period. Anasynchronous training protocol was
proposed in [11]. The sink cycle in the asynchronous training protocol is illustrated in Fig. 5. In this
type of protocols, the values ofk andL are critical for energy saving. The protocol requires that the
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Fig. 5. Illustrating the sink transmission cycles.

sensors know the value ofk in advance in order to minimize energy consumption.
The sensor determines that it belongs to coronas1 by receiving aP1 beacon. And the sensor determines

that it belongs to coronasi (wherei �= 1) by:

1. Receiving aPsi beacon
2. Failing to receive aPsi−1 beacon

The way thek-cycle is set up, in sloti(1 � i � k) the sink transmitting at a power levelPsi , where
si = k − i + 1.

4. Hybrid training with binary search protocol

In this section, we propose a hybrid training with binary search protocol. In this protocol, synchroniza-
tion and training are combined into one scheme. The sink node sends two beacons in each slot instead
of one. The first beacon (referred assynchronization beacon or SYNC for short, is sent with full power
for sensor synchronization. It contains the total corona number (k) and the current corona number (s).
The second beacon (referred astraining beacon or TRAIN for short, is sent at successively lower power
levels for sensor training. The sink cycle is illustrated in Fig. 6.

We assume that a sensor is awake for one slot in everyk-cycle. Before the training begins, sensors
wake up at random until they receive a SYNC beacon. Thus, the probability of waking up in slotj is 1

k .
By receiving the beacon in a given slotj, (1 � j � k), the sensor determines the following:

– Slot boundaries
– Synchronization to thek-cycles
– The value ofk
– The beginning and end of thek-cycle

Consider a sensor in coronai, (1 � i � k) that wakes up at random in slotj of somek-cycle, as
showed in Fig. 7.

If the sensor receives the synchronization beacon but not the training beacon in slotj, the sensor also
knows that its corona is in range of[s, k]. If the sensor receives both the synchronization beacon and
the training beacon, then it knows its corona is in range of[1, s − 1]. In order to determine its corona
number, the sensor can employ a binary search scheme on its corona number range.
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In the binary search scheme, the sensor starts to listen in the middle of its range and computes its
new range based on whether the training beacon is received. Assume its corona number range is[low,

high], the sensor starts to listen at slot� low+high
2 �, if the training beacon is received, its new range

is [� low+high
2 �, low]. Otherwise its new range is[high, � low+high

2 � + 1]. The procedure continues
until its range boundaries are equal. The boundary gives the sensors corona number. The binary search
scheme introduced here slightly differs from the traditional binary search algorithm. First, the scheme
starts at an arbitrary position instead of the middle of the range. Second, the scheme ends when the
searching range length reaches 1 instead of finding a particular value.

Note that in slotj the sink is transmitting to the intention of coronai, wherei = k+ 1− j. As shown
in Fig. 8, for case 1: ifi < k+ 1− j the sensor receives the TRAIN beacon. It then goes to sleep and to
wake up when the corona number� (k+1−j)+1

2 � is trained in the nextk-cycle.

Clearly, the slot being addressed in corona� (k+1−j)+1
2 � is:

k + 1 −
⌊(k + 1 − j) + 1

2

⌋
= k + 1 −

⌊k − j

2
+ 1

⌋

= k −
⌊(k − j)

2

⌋
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=
⌈k + j

2

⌉
. (1)

This corresponds to the intuition idea that the sensor proceeds by binary search in the range[j + 1, k].
On the other hand, for case 2: ifi > k + 1 − j, then the sensor does not receive the TRAIN beacon.

The sensor goes to sleep and will wake up again when the corona numberk+(k+2−j)
2 is trained in the

nextk-cycle. It is easy to confirm that the slot number assigned to the coronak+(k+2−j)
2 is:

k + 1 −
⌊k + (k + 2 − j)

2

⌋
= k + 1 −

⌊2k + 2 − j

2

⌋

= k + 1 −
⌊2k − j

2
+ 1

⌋

= k −
⌊
k − j

2

⌋

= −
⌊
− j

2

⌋

=
⌈j
2

⌉
. (2)

4.1. Training with binary position search

Let A(i) be a random variables that counts the number ofk-cycles needed on the average to train a
sensor in a fixed coronai. For case 1, letA1(i) be the expected number ofk-cycles needed and it receives
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the beacon in the first-cycle. LetPj be the probability that the sensor wakes up in slotj, we can write:

A1(i) =
k+1−i∑
j=1

Pj

(
1 + �log2 (k + 1 − j)�

)

=
k+1−i∑
j=1

1
k

(
1 + �log2 (k + 1 − j)�

)

=
k + 1 − i

k
+

k+1−i∑
j=1

�log2(k + 1 − j)�
k

=
k + 1 − i

k
+

1
k

k∑
t=1

�log2 t� −
1
k

i−1∑
t=1

�log2 t�. (3)

Our evaluation ofA1(i) relies on the following technical lemma.

Lemma 1. �log2 (k − j)� + 1 = �log2 (k − j + 1)�

Proof: For∀n ∈ N we have:

�log2 n� + 1 = �log2 (n + 1)�
∃!K ∈ N with 2K � n < 2K+1 for someK ∈ N. We haveK � log2 n < K+1 and ifK = �log2 n�

andK � log2 n < log2 (n + 1) � K + 1, consequently,

�log2 (n + 1)� = K + 1.

Thus,

�log2 n� + 1 = K + 1 = �log2 (n + 1)�.
For case 2, letA2(i) be the expected number ofk-cycles needed and the sensor does not receive the

beacon in the first-cycle. LetPj be the probability that the sensor wakes up in slotj, we can write:

A2(i) =
k∑

j=k+2−i

Pj

(
1 + �log2 (j − 1) + 1�

)

=
k∑

j=k+2−i

1
k

(
1 + �log2 j�

)

=
k − (k + 2 − i) + 1

k
+

k∑
j=k+2−i

�log2 j�
k

=
i− 1
k

+
k∑

t=1

�log2 t�
k

−
k+1−i∑

t=1

�log2 t�
k

. (4)
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Thus, we can writeA(i) as:

A(i) = A1(i) +A2(i) (5)

where

A1(i) =
k+1−i∑
j=1

(1
k

+ �log2 (k + 1 − i)�
)

and

A2(i) =
k∑

j=k+2−i

(1
k

+ �log2 j�
)
.

A(i) =
k + 1 − i

k
+

1
k

k∑
t=1

�log2 t� −
1
k

i−1∑
t=1

�log2 t� +
i− 1
k

+
1
k

k∑
t=1

�log2 t� −
1
k

k+1−i∑
t=1

�log2 t�

=
k + 1 − i+ (i− 1)

k
+

1
k

( k∑
t=1

�log2 t� −
i−1∑
t=1

�log2 t� +
k∑

t=1

�log2 t� −
k+1−i∑

t=1

�log2 t
)

= 1 +
1
k

( k∑
t=1

�log2 t� −
i−1∑
t=1

�log2 t� +
k∑

t=1

�log2 t� −
k+1−i∑

t=1

�log2 t�
)

= 1 +
2
k

k∑
t=1

�log2 t� −
1
k

( i−1∑
t=1

�log2 t� +
k+1−i∑

t=1

�log2 t�
)
. (6)

LetE[T ] be the random variable describing the number ofk − cycles needed to train a sensor in the
system, assuming that the total number of corona isk, the expected valueE[T ] that we want to determine
can be written as:

E[T ] =
k∑

i=1

P (i)A(i). (7)

E[T ] =
k∑

i=1

1
k

+
k∑

i=1

k∑
t=1

2
k2

�log2 t� −
k∑

i=1

i−1∑
t=1

1
k2

�log2 t� −
k∑

i=1

k+1−i∑
t=1

1
k2

�log2 t�

= 1 +
2
k

k∑
t=1

�log2 t� −
1
k2

( k∑
i=1

i−1∑
t=1

�log2 t� −
k∑

i=1

k+1−i∑
t=1

�log2 t�
)

= 1 +
2
k

k∑
t=1

�log2 t� −
1
k2

k∑
i=1

i−1∑
t=1

�log2 t� −
1
k2

k∑
i=1

k+1−i∑
t=1

�log2 t�. (8)

Our evaluation ofE[T ] relies on the following summations:
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Claim 1.
∑k

i=1

∑i−1
j=1�log2 j� =

∑k
i=1

∑i
j=1�log2 j� −

∑k
i=1�log2 i�.

Claim 2.
∑k

i=1

∑i
j=1�log j� = (k + 1)

∑k
i=1�log2 i� −

∑k
i=1 i�log2 i�.

Proof:

k∑
i=1

i∑
j=1

�log2 j� =
k∑

i=1

(k + 1 − i)�log i�

=
k∑

i=1

(k + 1)�log2 i� −
k∑

i=1

i�log2 i�

= (k + 1)
k∑

i=1

�log2 i� −
k∑

i=1

i�log i�. (9)

Claim 3.
∑k

i=1

∑i−1
j=1�log2 j� = k

∑k
i=1�log2 i� −

∑k
i=1 i�log2 i�.

Proof:

k∑
i=1

i−1∑
j=1

�log2 j� =
k∑

i=1

i−1∑
j=1

�log2 j� −
k∑

i=1

�log2 i�

= (k + 1)
k∑

i=1

�log2 i� −
k∑

i=1

i�log2 i� −
k∑

i=1

�log i�

= k

k∑
i=1

�log2 i� −
k∑

i=1

i�log2 i�. (10)

Claim 4.
∑k

i=1

∑k+1−i
j=1 �log2 j� =

∑k
i=1

∑i
j=1�j�.

Using the summation results, we have:

E[T ] = 1 +
2
k

k∑
t=1

�t− 1
k2

�
( k∑

i=1

k�log2 i−
k∑

i=1

i�log2 i� + (k + 1)

( k∑
i=1

�log2 i� −
k∑

i=1

i�log2 i�
))

= 1 +
2
k2

k∑
i=1

i�log2 i� −
1
k2

k∑
i=1

�log2 i�. (11)

Our final evaluation forE[T ] relies on the following theorems:
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Theorem 1. Let (an) be an arbitrary sequence of variables. For∀n ∈ N, we have:

n∑
i=1

(ai) = nan −
k−1∑
i=i

i(ai+1 − ai).

Proof: This theorem is useful whenever the differenceai+1 − ai (1 � i � n− 1) is easy to evaluate.

n∑
i=1

(ai) = nan − ([a2 + 2.a3 + . . . + (n− 2).an−1 + (n− 1).an] − [a1 + a2 + . . .

+(n− 1).an−1 + n.an]

= nan − (−a1 − a2 − . . .− an−1 + (n− 1).an)

= a1 + a2 + . . . + an.

Theorem 2.
∑k

α=1(�log2 α�) = k�log2 k� − 2�log2 k� + 1.

Proof: Replacing in Theorem 1(an) by �log2 α� we have:

k∑
α=1

�log2 α� = k�log2 k� −
k−1∑
α=1

α(�log2 (α + 1)� − �log2 α�).

With 2P � n < 2P+1 for someP ∈ N. We haveP � log2 n < P + 1 and consequently,

�log2 n� =
{
P n = 2P

P + 1 2P < n < 2P+1

The value of�log2 (α + 1)� − �log2 α� is either0 or 1. The value is1 wheneveri = 2q for some
1 � q < �log2 n�, and0 everywhere else.

Thus,

k−1∑
α=1

α(�log2 (α + 1)� − �log2 α�) =
�log2 k�−1∑

q=0

2q = 2�log2 k� − 1.

The conclusion follows.

Theorem 3.
∑k−1

i=1 i
2(�log2 (i + 1)� − �log2 i�) = 4�log2 k�−1

3 With 2α � k < 2α+1 for some natural
numberα.

Case 1:k = 2α

Notice that the difference�log2 (i + 1)� − �log2 i� Is non-zero only ifi = 2β for someβ � α − 1.
The value of the corresponding item is22β = 4β. Thus, the value of the sum is:

α−1∑
β=0

4β =
4β+1 − 1

3
=

4α − 1
3

=
4�log2 k� − 1

3
.
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Case 2:2α < k < 2α+1 (we have�log2 k� = α+ 1)
As before, the term is4β. Thus the sum becomes:

α∑
β=0

4β =
4β+1 − 1

3
=

4α+1 − 1
3

=
4�log2 k� − 1

3
.

As claimed.

Theorem 4.
∑k

i=1 i�log2 i� = 1
2

[
k2�log2 k� + k�log2 k� − 2�log2 k� + 1 − 4�log2 k�−1

3

]
.

Proof: Using Theorem 1, we have:

k∑
i=1

i�log2 i� = k2�log2 k� −
k−1∑
i=1

i((i + 1)�log2 (i + 1)� − i�log2 i�)

= k2�log2 k� −
k−1∑
i=1

i2(�log2 (i + 1)� − �log2 i�) −
k−1∑
i=1

i�log2 (i + 1)�. (12)

Consequently

k∑
i=1

i�log2 i� +
k−1∑
i=1

i�log2 (i + 1)� = k2�log2 k� −
k−1∑
i=1

i2(�log2 (i + 1)� − �log2 i�).

Eventually

k∑
i=1

i�log2 i� +
k−1∑
i=1

(i + 1)�log2 (i + 1)� −
k−1∑
i=1

�log2 (i + 1)�

= k2�log2 k� −
k−1∑
i=1

i2(�log2 (i + 1)� − �log2 i�).

Note that:

k−1∑
i=1

(i + 1)�log2 (i + 1)� =
k∑

i=2

i�log2 i� =
k∑

i=1

i�log2 i�

and

k−1∑
i=1

�log2 (i + 1)� =
k∑

i=2

�log2 i� =
k∑

i=1

�log2 i�.

We have

2
k∑

i=1

i�log2 i� =
k∑

i=1

�log2 i� + k2�log2 k� −
k−1∑
i=1

i2(�log2 (i + 1)� − �log2 i�).
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Applying Theorem 3 we have

k∑
i=1

i�log2 i� =
1
2

[
k2�log2 k� +

k∑
i=1

�log2i� − 4�log2k� − 1
3

]

=
1
2

[
k2�log2 k� + k�log2 k� − 2�log2 k� + 1 − 4�log2 k� − 1

3

]
. (13)

Now, we can evaluate the value ofE[T ]:

E[T ] = 1 +
2
k2

k∑
i=1

i�log2 i� −
1
k2

k∑
i=1

�log2 i�

= 1 − 1
k2

(
k�log2 k� − 2�log2 k� + 1

)
+

2
k2

(1
2

(
k2�log2 k� +

k∑
i=1

�log2 i� −
4�log2 k� − 1

3

))

= 1 + �log2 k� −
4�log2 k� − 1

3k2
. (14)

4.2. Summary

We summaries the protocol performance with example as the following.
Fork = 8, we assume that the sensor is awake in the first cycle when the sink is trained for the corona

number 6, which isk + 1 − j = 6, thenj = 3, and the actual corona number,s = 5. In this case, the
sensor will not receives the beacon but it will learn to awake in the nextk-cycle when the sink is training
the corona number,� k−j+2

2 � = 3.
The sensor also knows that its correct corona range is[k + 1 − j, 1] = [6, 1]. In cycle 2 as shown in

Fig. 9, the sensor will awake at slotk − k−j+2
2 + 1 = 6. At this slot, the sensor does not receive the

beacon because it needs more power compare to the sensors in corona number 3. The searching range
for the sensor is changed to [6,3]. The sensor continues learning to awake in cycle-3 when the sink is
trained for the corona6+3

2 = 4, which is in slotk − 4 + 1 = 5. The sensor does not receive the beacon.
The searching range for the sensor is changed to [6,4]. In cycle-4, the sensor will awake when the corona
6+4
2 = 5 is trained, which is in slotk − 5 + 1 = 4. In this slot, the sensor receives the beacon and the

searching range is [5,4]. Now, the boundaries are different by 1. The actual corona number will be the
last slot when the sensor awakes and receives the beacon. It is in corona number 5.

In Example 2 as shown in Fig. 10 will do the same method of training fork = 8, j = 7 ands = 6.
The expected of k-cycles needed as shown in the figure is 3.

5. Simulation

In our simulation, sensors are deployed uniformly at random in a field of size 700 m× 700 m. A sink
node is placed in the middle of the field at (360, 360). The numberk of coronas is 64 and each corona
has a width of 10 meters. Hence, the length of a k-cycle is 64 time slots (a slot is 10 milliseconds). The
sensors wake up at random to simulate the asynchronous effect.

For each sensor, the first wake-up time is generated uniformly at random in the interval(0, L), where
L = 100. Hence, each sensor will wake up at a random time between that first and the 100-nd time slot.
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Fig. 9. Illustrating the example for hybrid training cycles.

Fig. 10. An example fork = 8, s = 6, j = 7 in hybrid training cycles.

Figures 11 and 12 show the performance of the binary search scheme. We plotted the expected number
of k-cycles needed to train the sensor node, E[T], for differentk as shown in Fig. 11. As anticipated,
the total time slot number needed for training isT = L+ k(log2 k − 1) + 1 = 149, and our simulation
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Fig. 11. Expected awake time slots.

Fig. 12. Total training time for binary search.

shown in Fig. 12 is144.
The difference may occurs depend on the number of sensor nodes deployed in the interest area and the

number of corona being established during the training period. We prefer to use 64 coronas for< 500
sensor nodes.

In Fig. 13 we plotted the difference values ofE[T ] in theoretical and simulation results. Our simulation
results shown less number of cycles needed compare to theoretical results. The difference number of
cycles shown is in the range of[0.1, 0.6].

6. Concluding remarks

In this work we have proposed a localization algorithm by training the sensors to impose a coordinate
system onto the network. The algorithm is simple and self-organization to train the sensors to learn
their coarse-grain location. This algorithm which hybrids the synchronization and training procedure
to reduce the sink-cycle that has to be transmitted by the sink for 64 coronas. From these results,
multiple-training can be implemented to this protocol which involves more than one sinks establish the
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Fig. 13. Comparison of expected awake time slots.

same protocol. For this reason, the results of total training time can be varied and to be an exciting area
for further work.
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