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Time delay is a frequently encountered phenomenon in some practical engineering systems and introducing time delay into a
system can enrich its dynamic characteristics. ­ere has been a plenty of interesting results on fractional-order chaotic systems or
integer-order delayed chaotic systems, but the problem of synchronization of fractional-order chaotic systems with time delays is
in the primary stage. Combination synchronization of three di�erent fractional-order delayed chaotic systems is investigated in
this paper. It is an extension of combination synchronization of delayed chaotic systems or combination synchronization of
fractional-order chaotic systems. With the help of stability theory of linear fractional-order systems with multiple time delays, we
design controllers to achieve combination synchronization of three di�erent fractional-order delayed chaotic systems. In addition,
numerical simulations have been performed to demonstrate and verify the theoretical analysis.

1. Introduction

Since it was reported that nature and engineering �elds
existed in many fractional dimensions in 1983 [1], fractional
calculus has attracted researchers from academia and in-
dustry. More and more researches have shown that frac-
tional-order di�erential equations are useful tools to
investigate complex dynamical behaviors and describe
various physical and engineering systems. Time delays are
found to exist widely in real world systems, such as elec-
tronic circuits, chemical, and economical systems [2–7]. It is
very necessary to include time delays into a system to model
a real-world application. ­erefore, scientists from various
�elds begin to focus on the study of fractional-order delayed
di�erential equations (FDDEs), due to their wide potential
applications. Many chaotic systems of FDDEs were pro-
posed and their synchronizations were studied. ­e frac-
tional-order delayed Liu system was presented and the
existence of chaos was investigated in [8], and the impulsive
synchronization and robust predictive synchronization
were investigated in [9, 10], respectively. ­e nonlinear
dynamics and chaos were studied for the fractional-order
delayed �nancial system in [11], and the sliding-mode

synchronization was investigated in [12]. In [13], hybrid
projective synchronization between the two aforementioned
systems was done.­e fractional-order delayed Chen system
was considered in [14], and its adaptive synchronization was
investigated in [15].

All the synchronization schemes mentioned above are
based on the usual drive-response method, which only has
one drive system and one response system. In [16], Luo et al.
generalized the usual drive-response synchronization
scheme to combination synchronization, which has two
drive systems and one response system. Combination
synchronization has stronger antidecode and antiattack
ability than that of the drive-response synchronization in
secure communication, because the origin message can be
divided into two segments and each segment can be sepa-
rated into two distinct drive systems. ­e authors [17] ap-
plied robust adaptive sliding-mode control method to
investigate combination synchronization of Lorenz system
with time delay. In [18], phase and antiphase combination
synchronization of three delayed systems were studied using
active control.­e adaptive function projective combination
synchronization of three fractional-order chaotic systems
was investigated in [19]. Jiang et al. [20] analyzed complex
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combination synchronization of three fractional-order
chaotic complex-variable systems. Delavari and Moha-
deszadeh [21] proposed adaptive sliding-mode control
method for synchronization of nonidentical fractional-order
chaotic and hyperchaotic systems. In [22], combination
synchronization of a new fractional-order Lorenz-like sys-
tem with two stable node-foci was analyzed with the help of
nonlinear feedback control method. Although fractional-
order delayed chaotic systems were considered in the lit-
erature [23], the method used for synchronization was not
combination synchronization. .e generalization of com-
bination-combination synchronization of chaotic n-di-
mensional fractional-order dynamical systems is studied in
[24]. .ere exist many works focusing on the combination
synchronization of integer-order delayed chaotic systems;
however, the conclusions on those works cannot be used on
fractional-order delayed chaotic system directly. .e
problem of combination synchronization of fractional-order
delay chaotic system is still an open challenging problem.

Motivated by the above analysis, we consider combi-
nation synchronization of three fractional-order delayed
chaotic systems, which is an extension of combination
synchronization of delayed chaotic systems or combination
synchronization of fractional-order chaotic systems. .e

Adams-Bashforth-Mounton method is used for numerical
solutions of fractional-order delay chaotic system.

2. Preliminaries

Fractional calculus is an old mathematical topic and is an
extension of integration and differentiation to noninteger-
order fundamental operator aDr

t , which is described by

aD
r
t �

dr

dtr
, r> 0,

1, r � 0,

􏽚
t

a
(dτ)

− r
, r< 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1)

One of the commonly used definitions for the fractional-
order differential operator is the Caputo definition [25, 26],
which is defined as

aD
r
t f(t) �

1
Γ(n − r)

􏽚
t

a

f(τ)

t − τ
􏼠 􏼡

r− n+1

dτ, (2)

where 1< r< n.
.e following is the n-dimensional linear fractional-

order differential system with multiple time delays:

Dα1x1(t) � a11x1 t − τ11( 􏼁 + a12x2 t − τ12( 􏼁 + · · · + a1nxn t − τ1n( 􏼁,

Dα2x2(t) � a21x1 t − τ21( 􏼁 + a22x2 t − τ22( 􏼁 + · · · + a2nxn t − τ2n( 􏼁,

⋮

Dαn xn(t) � an1x1 t − τn1( 􏼁 + an2x2 t − τn2( 􏼁 + · · · + annxn t − τnn( 􏼁,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where αi is the order of the fractional derivative, which is real
and lies in (0, 1), xi(t) is the state variable, τij > 0 is the time
delay, the initial value xi(t) � ϕi(t) is given by − max τij �

− τmax ≤ t≤ 0, A � [aij] ∈ Rn×n is the coefficient matrix.
In order to study the stability of system (3), we first take

Laplace transform on system (3) and have

Δ(s) · X(s) � b(s), (4)

where X(s) � (X1(s), X2(s), . . . , Xn(s))T is the Laplace
transform of x(t) � (x1(t),x2(t), . . . ,xn(t))T,b(s) � (b1(s),

b2(s), . . . ,bn(s))T is the remaining nonlinear part, and the
characteristic matrix of system (3) is

Δ(s) �

sα1 − a11e
− sτ11 − a12e

− sτ12 · · · − a1ne− sτ1n

− a21e
− sτ21 sα2 − a22e

− sτ22 · · · − a2ne− sτ2n

⋮ ⋮ ⋱ ⋮

− an1e
− sτn1 − an2e

− sτn2 · · · sαn − anne− sτnn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(5)

Here are some results for system (3).

Theorem 1 (see [27]). If all the roots of the characteristic
equation det(Δ(s)) � 0 have negative real parts, then the zero

solution of system (3) is Lyapunov globally asymptotically
stable.

Corollary 1 (see [27]). If α1 � α2 � · · · � αn � β ∈ (0, 1), all
the eigenvalues λ of the coefficient matrix A satisfy
|arg(λ)|> βπ/2, and the characteristic equation det(Δ(s)) �

0 has no purely imaginary roots for any τij > 0, i,

j � 1, 2, . . . , n, then the zero solution of system (3) is Lya-
punov globally asymptotically stable.

3. Combination Synchronization of Three
Fractional-Order Delayed Systems

In this section, we investigate combination synchronization
of three different fractional-order delayed systems.

.e following system is considered as the first drive
system:

D
α
x(t) � x(t) + x(t − τ) + A(x(t), x(t − τ)),

x(t) � x(0), t ∈ [− τ, 0].
(6)

.e following system is taken as the second drive system:
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D
α
y(t) � y(t) + y(t − τ) + B(y(t), y(t − τ)),

y(t) � y(0), t ∈ [− τ, 0].
(7)

And the following system is used as the response system:

D
α
z(t) � z(t) + z(t − τ) + C(z(t), z(t − τ)) + U,

z(t) � z(0), t ∈ [− τ, 0],
(8)

in which α ∈ (0, 1) is the order of the fractional differential
equations, τ > 0 is the time delay, U � (U1, U2, U3) is the
controller vector to be designed later, x � (x1, x2, . . . ,

xn)T ∈ Rn, y � (y1, y2, . . . , yn)T ∈ Rn, and z � (z1, z2, . . . ,

zn)T ∈ Rn are state vectors, and A : R2n⟶ Rn, B :

R2n⟶ Rn, and C : R2n⟶ Rn are continuous vector
functions.

.e error state vector is defined as

e(t) � Fz(t) − Gx(t) − Hy(t), (9)

where e(t) � (e1, e2, . . . , en)T ∈ Rn, F � diag f1, f2, . . . ,􏼈

fn} ∈ Rn×n, G � diag g1, g2, . . . , gn􏼈 􏼉 ∈ Rn×n, and H �

diag h1, h2, . . . ,􏼈 hn} ∈ Rn×n are real scaling matrix.

Definition 1 (see [21]). .e drive systems (6) and (7) and the
response system (11) are defined to be combination syn-
chronization if there are three constant matrixes,
F, G, H ∈ Rn and F≠ 0 such that

lim
t⟶+∞

‖Fz(t) − Gx(t) − Hy(t)‖ � 0, (10)

where ‖ · ‖ stands for the matrix norm.

Remark 1. If the scaling matrix G � 0 or H � 0, the com-
bination synchronization mentioned above is correspond-
ingly simplified to hybrid synchronization.

Remark 2. When τ � 0, the combination synchronization
scheme of fractional-order delayed systems is simplified to
the combination synchronization scheme of fractional-order
systems.

To achieve combination synchronization of the above
systems, a nonlinear controller is constructed:

U � 􏽥Ke(t) + GA(x(t), x(t − τ)) + HB(y(t), y(t − τ))

− FC(z(t), z(t − τ)),

(11)

where 􏽥K � K − I, I is an n-dimensional identity matrix, and
K � diag k1, k2, . . . , kn􏼈 􏼉 is a feedback gain matrix.

From equations (6)–(8) and (11), we can get the fol-
lowing error system:

D
α
e(t) � (􏽥k + I)e(t) + e(t − τ) � Ke(t) + e(t − τ). (12)

When we use the controllerU to control fractional-order
delay-delayed response system, the combination synchro-
nization problem of the two fractional-order delayed drive
systems (6) and (7) and fractional-order delayed response
system (8) is changed into the analysis of the asymptotical
stability of system (15).

According to Corollary 1, we can have the following
sufficient condition to achieve combination synchronization
between systems (6) and (7) and system (8).

Theorem 2. Combination synchronization between the drive
systems (6) and (7) and the response system (8) can be
achieved if there exists a matrix K � diag k1, k2, . . . , kn􏼈 􏼉 in
equation (15) such that ki < (− 1/sin(απ/2))(i � 1, 2, . . . , n).

Proof. A � K + I is the coefficient matrix for the fractional-
order delayed error system (12). Because ki <
(− 1/sin(απ/2)), α ∈ (0, 1), the eigenvalues of A are
λi � ki + 1< 0 (i � 1, 2, . . . , n). .erefore, |arg(λ)|> π/2>
απ/2 holds.

Taking Laplace transform on equation (15) gives

Δ(s) · E(s) � s
α− 1

e(0) + e(0)e
− sτ

􏽚
0

− τ
e

− sτdx, (13)

where E(s) is the Laplace transform of e(t), e(0) �

Fz(0) − Gx(0) − Hy(0), and Δ(s) � saI − K − e− sτI is the
characteristic matrix. Consequently

det(Δ(s)) � s
α
I − K − e

− sτ
I

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � s

a
− k1 − e

− sτ
( 􏼁

· s
a

− k2 − e
− sτ

( 􏼁 . . . s
a

− kn − e
− sτ

( 􏼁 � 0.

(14)

Suppose

s
a

− ki − e
− sτ

( 􏼁 � 0, i � 1, 2, . . . , n, (15)

has a root s � wi � |w|(cos(π/2) + i sin( ±π/2)). .en

|w|
α cos

απ
2

􏼒 􏼓+ isin
±απ
2

􏼒 􏼓􏼒 􏼓 − ki − cos(ωτ)+ isin(ωτ) �0.

(16)

Separating the real and imaginary parts in system (16)
yields

|w|
α cos

απ
2

􏼒 􏼓 − ki � cos(ωτ),

|w|
α sin
±απ
2

􏼒 􏼓 � − sin(ωτ).

(17)

From system (17), we have

|w|
2α

− 2ki cos
απ
2

􏼒 􏼓|w|
α

+ k
2
i − 1 � 0. (18)

Because ki < (− 1/sin(απ/2)), α ∈ (0, 1), then the dis-
criminant of the roots satisfies

Δ � − 2ki cos
απ
2

􏼒 􏼓􏼒 􏼓
2

− 4 k
2
i − 1􏼐 􏼑

� 4 1 − k
2
i sin

2 απ
2

􏼒 􏼓􏼒 􏼓

< 0,

(19)

which means that equation (18) has no real solutions.
Consequently, equation (14) has no purely imaginary roots.
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According to Corollary 1, the zero solution of the fractional-
order delayed error system (12) is globally asymptotically stable;
i.e., combination synchronization is obtained between the drive
systems (6) and (7) and the response system (8).

.e completes the proof. □

4. Numerical Simulations

In what follows, numerical simulations are performed to
illustrate the above-proposed combination synchronization
of three different fractional-order delayed systems.

.e fractional-order delayed financial system [14] is
considered as the first drive system:

Dαx1 � x3 − a1x1 + x1x2(t − τ),

Dαx2 � 1 − b1x2 − x2
1(t − τ),

Dαx3 � − x1(t − τ) − c1x3.

⎧⎪⎪⎨

⎪⎪⎩
(20)

System (20) exhibits a chaotic attractor, as shown in
Figure 1.

System (20) can be rewritten as

D
α
x(t) � x(t) + x(t − τ) + A(x(t), x(t − τ)),

x(t) � x(0), t ∈ [− τ, 0],
(21)

where

A(x(t),x(t − τ)) �

x3 − a1 +1( 􏼁x1 + x1x2(t − τ) − x1(t − τ)

1 − b1 +1( 􏼁x2 − x2
1(t − τ) − x2(t − τ)

− x1(t − τ) − c1 +1( 􏼁x3 − x3(t − τ)

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠.

(22)

.e fractional-order delayed Liu system [11] is con-
sidered as the second drive system:

Dαy1 � a2 y2 − y1( 􏼁,

Dαy2 � b2y1(t − τ) − y1y3,

Dαy3 � − c2y3(t − τ) + 4y2
1.

⎧⎪⎪⎨

⎪⎪⎩
(23)

System (23) displays a chaotic attractor, as shown in
Figure 2.

System (23) can be rewritten as

D
α
y(t) � y(t) + y(t − τ) + B(y(t), y(t − τ)),

y(t) � y(0), t ∈ [− τ, 0],
(24)

where

B(y(t), y(t − τ)) �

a2 y2 − y1( 􏼁 − y1 − y1(t − τ)

b2y1(t − τ) − y1y3 − y2 − y2(t − τ)

− c2 + 1( 􏼁y3(t − τ) + 4y2
1 − y3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(25)

.e fractional-order delayed Lorenz system [15] is the
response system given by

Dαz1 � a3 z2 − z1( 􏼁 + U1,

Dαz2 � c3z1 − z2 − z1z3 + U2,

Dαz3 � z1z2 − b3z3(t − τ) + U3,

⎧⎪⎪⎨

⎪⎪⎩
(26)

where U1, U2, and U3 are controllers to be determined later.
Without the controllers, system (26) displays a chaotic
attractor, as shown in Figure 3.

System (26) can be rewritten as

D
α
z(t) � z(t) + z(t − τ) + C(z(t), z(t − τ)) + U,

z(t) � z(0), t ∈ [− τ, 0],
(27)

where

C(z(t), z(t − τ)) �

a3 z2 − z1( 􏼁 − z1 − z1(t − τ)

c3z1 − 2z2 − z1z3 − z2(t − τ)

z1z2 − b3 + 1( 􏼁z3(t − τ) − z3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(28)

In the following analysis, we suppose that F � diag(f1,

f2, f3), G � diag(g1, g2, g3), andH � diag(h1, h2, h3).
.e error states are defined by

e1 � f1z1 − g1x1 − h1y1,

e2 � f2z2 − g2x2 − h2y2,

e3 � f3z3 − g3x3 − h3y3,

⎧⎪⎪⎨

⎪⎪⎩
(29)

such that

lim
t⟶∞

f1z1 − g1x1 − h1y1
����

���� � 0,

lim
t⟶∞

f2z2 − g2x2 − h2y2
����

���� � 0,

lim
t⟶∞

f3z3 − g3x3 − h3y3
����

���� � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(30)
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Figure 1: Chaotic attractor of financial system: α � 0.92, τ � 0.01.
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Figure 2: Chaotic attractor of Liu system: α � 0.92, τ � 0.01.
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Subtracting (20) and (23) from (26), the error dynamical
systems are obtained as follows:

Dαe1 � f1D
αz1 − g1D

αx1 − h1D
αy1,

Dαe2 � f2D
αz2 − g2D

αx2 − h2D
αy2,

Dαe3 � f3D
αz3 − g3D

αx3 − h3D
αy3.

⎧⎪⎪⎨

⎪⎪⎩
(31)

Substituting equations (20), (23), and (26) into equation
(31) gives

Dαe1 � f1 a3 z2 − z1( 􏼁􏼂 􏼃 − g1 x3 − a1x1 + x1x2(t − τ)􏼂 􏼃

− h1 a2 y2 − y1( 􏼁􏼂 􏼃 + f1U1,

Dαe2 � f2 c3z1 − z2 − z1z3( 􏼁 − g2 1 − b1x2 − x2
1(t − τ)( 􏼁

− h2 b2y1(t − τ) − y1y3( 􏼁 + f2U2,

Dαe3 � f3 z1z2 − b3z3(t − τ)( 􏼁 − g3 − x1(t − τ) − c1x3( 􏼁

− h3 − c2y3(t − τ) + 4y2
1( 􏼁 + f3U3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

Here are our results.

Theorem 3. Combination synchronization between the
driven systems (20) and (23) and the response system (26) can
be obtained by presenting controllers as follows:

U1 �
1

f1
k1 − 1( 􏼁 f1z1 − g1x1 − h1y1( 􏼁 + g1 x3 − a1 + 1( 􏼁x1 + x1x2(t − τ) − x1(t − τ)( 􏼁􏼈

+ h1 a2 y2 − y1( 􏼁 − y1 − y1(t − τ)( 􏼁 − f1 a3z2 − a3 + 1( 􏼁z1 − z1(t − τ)( 􏼁􏼉,

U2 �
1

f2
k2 − 1( 􏼁 f2z2 − g2x2 − h2y2( 􏼁 + g2 1 − b1 + 1( 􏼁x2 − x

2
1(t − τ) − x2(t − τ)􏼐 􏼑􏽮

+ h2 b2y1(t − τ) − y1y3 − y2 − y2(t − τ)( 􏼁 − f2 c3z1 − 2z2 − z1z3 − z2(t − τ)( 􏼁􏼉,

U3 �
1

f3
k3 − 1( 􏼁 f3z3 − g3x3 − h3y3( 􏼁 + g3 − x1(t − τ) − c1 + 1( 􏼁x3 − x3(t − τ)( 􏼁􏼈

+ h3 − c2 + 1( 􏼁y3(t − τ) + 4y2
1 − y3( 􏼁 − f3 z1z2 − b3 + 1( 􏼁z3(t − τ) − z3( 􏼁􏼉.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

Corollary 2
(i) Suppose that g1 � g2 � g3 � 0, and f1, f2, and f3

are nonzero, projective synchronization between the

drive system (23) and the response system (26) can be
obtained by presenting controllers as follows:

U1 �
1

f1
k1 − 1( 􏼁 f1z1 − h1y1( 􏼁 + h1 a2 y2 − y1( 􏼁 − y1 − y1(t − τ)( 􏼁 − f1 a3z2 − a3 + 1( 􏼁z1 − z1(t − τ)( 􏼁􏼈 􏼉,

U2 �
1

f2
k2 − 1( 􏼁 f2z2 − h2y2( 􏼁 + h2 b2y1(t − τ) − y1y3 − y2 − y2(t − τ)( 􏼁 − f2 c3z1 − 2z2 − z1z3 − z2(t − τ)( 􏼁􏼈 􏼉,

U3 �
1

f3
k3 − 1( 􏼁 f3z3 − h3y3( 􏼁 + h3 − c2 + 1( 􏼁y3(t − τ) + 4y

2
1 − y3􏼐 􏼑 − f3 z1z2 − b3 + 1( 􏼁z3(t − τ) − z3( 􏼁􏽮 􏽯.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

100

z3
0

–100–50

0z1

–100

0

100

50

z2

Figure 3: Chaotic attractor of Lorenz system: α � 0.92, τ � 0.1.
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(ii) Accordingly, suppose that h1 � h2 � h3 � 0, and
f1, f2, and f3 are nonzero, projective synchroni-
zation between the drive system (20) and the

response system (26) can be obtained by presenting
controllers as follows:

U1 �
1

f1
k1 − 1( 􏼁 f1z1 − g1x1( 􏼁 + g1 x3 − a1 + 1( 􏼁x1 + x1x2(t − τ) − x1(t − τ)( 􏼁 − f1 a3z2 − a3 + 1( 􏼁z1 − z1(t − τ)( 􏼁􏼈 􏼉,

U2 �
1

f2
k2 − 1( 􏼁 f2z2 − g2x2( 􏼁 + g2 1 − b1 + 1( 􏼁x2 − x

2
1(t − τ) − x2(t − τ)􏼐 􏼑 − f2 c3z1 − 2z2 − z1z3 − z2(t − τ)( 􏼁􏽮 􏽯,

U3 �
1

f3
k3 − 1( 􏼁 f3z3 − g3x3( 􏼁 + g3 − x1(t − τ) − c1 + 1( 􏼁x3 − x3(t − τ)( 􏼁 − f3 z1z2 − b3 + 1( 􏼁z3(t − τ) − z3( 􏼁􏼈 􏼉.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

Corollary 3. Suppose that g1 � g2 � g3 � 0, h1 � h2 �

h3 � 0, and f1, f2, and f3 are nonzero, system (26) can be
stabilized to its equilibrium O(0, 0, 0) with the following
controllers:

U1 �
1

f1
k1 − 1( 􏼁 f1z1( 􏼁 − f1 a3z2 − a3 + 1( 􏼁z1 − z1(t − τ)( 􏼁􏼈 􏼉,

U2 �
1

f2
k2 − 1( 􏼁 f2z2( 􏼁 − f2 c3z1 − 2z2 − z1z3 − z2(t − τ)( 􏼁􏼈 􏼉,

U3 �
1

f3
k3 − 1( 􏼁 f3z3( 􏼁 − f3 z1z2 − b3 + 1( 􏼁z3(t − τ) − z3( 􏼁􏼈 􏼉.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

In the numerical simulations, the system parameters are
set as a1 � 3, b1 � 0.1, c1 � 1, a2 � 10, b2 � 40, c2 � 2.5,

a3 � 10, b3 � 8/3, and c3 � 28, respectively. For simplicity,
suppose f1 � f2 � f3 � 1, g1 � g2 � g3 � 1, and h1 � h2 �

h3 � 1. Ce initial values for all of the systems are set as

(x1(0), x2(0), x3(0)) � (0.1, 4, 0.5), (y1(0), y2(0), y3(0)) �

(1.2, 2.4, 11), and (z1(0), z2(0), z3(0)) � (− 8, 2, 3), re-
spectively. Figures 4–6 display time responses of the combi-
nation synchronization errors e1, e2, and e3. From
Figures 4–6, we can observe that error states converge to zero;

t

e1

–30

–20

–10

0

10

0 1 2 3 4 5 6 7

Figure 4: Combination synchronization errors e1 between drive systems (20) and (23) and response system (26).

6 Complexity



–5

–4

–3

–2

–1

0

1

t
0 1 2 3 4 5 6 7

e2

Figure 5: Combination synchronization errors e2 between drive systems (20) and (23) and response system (26).
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Figure 6: Combination synchronization errors e3 between drive
systems (20) and (23) and response system (26).
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Figure 9: Time responses for state x3 + y3 versus z3.
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Figure 7: Time responses for state x1 + y1 versus z1.
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Figure 8: Time responses for state x2 + y2 versus z2.
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i.e., combination synchronization is achieved. Figures 7–9
illustrate the time responses of the states x1 + y1 versus z1,
x2 + y2 versus z2, x3 + y3 versus z3, respectively.

5. Conclusions

In this paper, we investigate combination synchronization of
three different fractional-order delayed chaotic systems by
generalizing combination synchronization of delayed cha-
otic systems or combination synchronization of fractional-
order chaotic systems. With the help of the stability theory
for linear fractional-order systems with multiple time delays,
controllers are proposed to achieve combination synchro-
nization of three different fractional-order delayed chaotic
systems. In addition, projective synchronization [28] of
three different fractional-order delayed chaotic systems is a
special case of our work. Numerical simulations are pre-
sented to demonstrate and verify the applicability and
feasibility of our theoretical analysis.
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