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Aiming at the problem of intersection signal control, a method of traffic phase combination and signal timing optimization based
on the improved K-medoids algorithm is proposed. Firstly, the improvement of the traditional K-medoids algorithm embodies in
two aspects, namely, the selection of the initial medoids and the parameter k, which will be applied to the cluster analysis of
historical saturation data. The algorithm determines the initial medoids based on a set of probabilities calculated from the
distance and determines the number of clusters k based on an exponential function, weight adjustment, and elbow ideas.
Secondly, a phase combination model is established based on the saturation and green split data, and the signal timing is
optimized through a bilevel programming model. Finally, the algorithm is evaluated over a certain intersection in Hangzhou,
and results show that this algorithm can reduce the average vehicle delay and queue length and improve the traffic capacity of

the intersection in the peak hour.

1. Introduction

With the rapid development of urban construction and
socioeconomy, traffic congestion, one of China’s urban dis-
eases, not only brings tremendous pressure to urban traffic
management but also seriously affects the harmonious devel-
opment of cities. Many modern transportation facilities and
applications can benefit from better performance of signal
timing schemes [1-4]. For example, space-time road
resources can be allocated more reasonably, the accuracy of
traffic speed prediction can be improved [2], and the opti-
mized signal cycle time and green split scheme can help make
better-coordinated control [4]. In [5, 6], the authors studied
the application of mobile crowdsourcing (MCS) in smart cit-
ies. In [7, 8], the authors integrate geographic and temporal
influences into points of interest (POI) recommendations
to help people find points of interest.

In recent years, several algorithms have been presented in
the literature for traffic signal phase combination and timing
optimization. In [9], the authors studied the dynamic predic-
tion traffic signal control framework for a single intersection
and optimized the signal timing according to the predicted

arrival flow. In [10], a queuing and dissipation model of the
intersection traffic flow was presented, which provided a the-
oretical basis for optimizing the intersection phase and tim-
ing. In [11], the authors considered an adaptive traffic
signal control method based on fuzzy logic. This method
optimized the phase duration and phase sequence. The
results showed that the average queue length, the maximum
queue length, and the parking rate were significantly short-
ened, but only lower queue lengths were considered. In
[12], fog calculation was used to process traffic data, and a
phase combination method based on a genetic algorithm
was presented. The authors in [13] studied dynamic pro-
gramming algorithms to optimize signal timing and phase,
thereby, reducing average vehicle latency. In [14], the Artifi-
cial Bee Colony algorithm was adopted to optimize the signal
cycle time and the green split, reducing the average vehicle
delay and the average queue length, but the algorithm needed
to obtain the vehicle speed online and calculate it. In [15], the
authors considered a dynamic phase control method based
on traffic flow, but it needed real-time detection and calcula-
tion of road conditions, resulting in poor practical applica-
tion effect. In [16], the clustering algorithm was applied to
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process vehicle motion information, which was the basis for
subsequent optimization, but only optimized the signal
timing, excluding phase combination. In [17], a traffic signal
segmentation algorithm based on the two-dimensional clus-
tering was presented. It matched the best timing scheme for
the current traffic conditions through the clustering analysis.
However, the intersection traffic flow model cannot distin-
guish between a left turn and straight vehicles.

In [18], the authors studied the interval data-based
K-means clustering method, and the clustering results can
accurately describe the trend of traffic state evolution at an
urban intersection. In [19], the K-means clustering algorithm
was used to group traffic flows and divide the traffic condi-
tion level and provides a theoretical basis for matching the
most suitable traffic signal control scheme in different situa-
tions. In [20], the author studies a dynamic traffic control
method that predicts congestion by the clustering thought.
In [21], a traffic signal control method based on the
K-means clustering algorithm was presented, and the num-
ber of clusters was defined as two. The authors in [22] studied
the improved affinity propagation (AP) clustering algorithm,
which provided efficient and accurate traffic state informa-
tion for traffic signal control. The average waiting time
was effectively reduced. In [23], the authors studied the
K-means clustering method to optimize the best switching
time of time-of-day (TOD) control scheme, but the number
of clusters needed to be specified in advance, which largely
affected the effectiveness of the method. Similarly, the
authors in [24] used the Kohonen cluster and K-means clus-
ter to optimize TOD breakpoints and proved that K-means
had a better performance. However, it was still necessary to
specify the number of clusters and the initial cluster centers
in advance, which was easy to fall into local optimum.

The existing researches mainly have the following
shortcomings:

(1) the intersection traffic flow model is established with-
out considering all of the flow directions

(2) the practical value of online data acquisition and fre-
quent signal switching solutions is not high

(3) the number of clusters depends heavily on prior or
empirical knowledge

To solve the problems above, this paper proposes a traffic
phase combination and signal timing optimization method
based on the improved K-medoids algorithm. Firstly, the
improved K-medoids algorithm is used to cluster the histor-
ical saturation data, which can select the number of schemes
k more quickly and accurately. Then, the phase combination
model is established since K-medoids correspond to k pairs
of saturation and green split data, which can combine the
flow direction with similar traffic demand to improve the uti-
lization of green time. Finally, the bilevel programming
model is used to optimize the signal cycle time and green split
of each phase, so that the timing scheme can be further opti-
mized based on the phase combination. After clustering, each
medoid composing a scheme library corresponds to a traffic
scheme. In experiments, we choose an appropriate traffic
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scheme according to the Euclidean distance between the
actual traffic saturation and medoids.

The paper is organized as follows: Section 2 introduces
the traditional K-medoids clustering algorithm and its
improvement. Section 3 designs the phase combination and
signal timing optimization algorithm. Section 4 provides
experimental results and comparisons with the traditional
K-medoids algorithm. Section 5 provides conclusions and
describes directions for future research.

2. Improved K-Medoids Algorithm

In this section, we first introduce the traditional k-medoids
algorithm, then, to find better initial medoids and the appro-
priate parameter k, an improvement is introduced. Finally,
we apply the improved k-medoids algorithm to the traffic sat-
uration dataset into k clusters, and each cluster corresponds
to one set of traffic scheme.

2.1. Traditional K-Medoids Algorithm. Clustering is an unsu-
pervised learning algorithm that partitions the origin data
into several clusters, where the data in the same cluster are
similar to each other but different from the data in other
clusters. K-medoids algorithm is a partition-based clustering
algorithm. Compared with K-means clustering, it is less
sensitive to outliers. Among many k-medoids algorithms,
partitioning around medoids (PAM) is one of the most
classical and powerful [25].

K-medoids algorithm first randomly selects k representa-
tive data points as the initial medoids, each medoid corre-
sponds to one cluster. Secondly, Euclidean distance is
applied to calculate the distance between all data and the cho-
sen medoid, each data point will be assigned to the most sim-
ilar medoid. Thirdly, such a new medoid in each cluster is
found to minimize the criterion function within the cluster.
The algorithm will stop until all of the medoids are equal to
the previous ones, otherwise, assign each data to the nearest
medoid and generate k new clusters. The Euclidean distance
dy,,) is used to measure the similarity between all of the data

points and the medoids, which can be calculated as follows:

d(xi,y}.) = \/(xn —)’j1>2 + (xiz _)’jz)2+"’+<xm _yjn)z’

(1)

where x; and y, are both n-dimensional data objects.
The criterion function in within-cluster can be calcu-
lated as:

Ei= ) diyc)” (2)

b;eB,

where B; is the cluster after clustering, b; is the data point
in the cluster B;, and ¢; is the medoid of the cluster B,.
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The criterion function is described as follows:

k
E=) Y Ay, (3)

i=1 b;eB,

where k is the number of clusters.

2.2. The Improvement of K-Medoids Algorithm. For the
K-medoids clustering algorithm, the number of clusters and
the initialization have a great influence on the clustering pro-
cess and results. In [26], a density peak clustering algorithm
is proposed. This algorithm can select medoids and confirm
the correct number of clusters. In [27], the author studied
the K-medoids clustering algorithm based on a subset of can-
didate medoids and gradually increasing the number of clus-
ters, thereby, improving the clustering performance of the
algorithm. In order to reduce the negative impact when the
initial medoids have a low dispersion degree, this paper pro-
poses an initial point probability selection method based on
the Euclidean distance. In addition, in order to reduce the
artificial dependence for selecting initial medoids and avoid
the excessive gap between each cluster, this paper proposes
an optimization for selecting an optimal parameter k based
on exponential function, weight adjustment, and elbow idea.

2.2.1. Improved Method for Selecting Initial Medoids. After
selecting a point in sample data as the first medoid ¢, ran-
domly, the Euclidean distance d;, ., is applied to calculate
the distance between each point b;, and the nearest medoid
¢;, and the probability p, that point b, will be selected as
the next cluster medoid can be calculated as:

d 2
(byoci) = (4)

p = vV
" Zb]eBd(bj,ci)

where B is the dataset, and the probability set P can be
obtained as follows:

P=10,p;,py + Py Py + Pyt 4P, 1 (5)

where 7 is the number of samples in the dataset.
The roulette wheel method is used to select the cluster
medoid ¢;(i > 2) (see Figure 1):

Step 1. We generate a random number r between [0, 1), if r
belongs to the interval [p; + p,+---4+p,_1, Py + Pyt 4P, +P;)
in P, point b; will be the second cluster medoid c,.

Step 2. We recalculate the probabilities that each point in the
dataset will be selected as the next medoid.

Step 3. We select the next medoid according to the probabil-
ity set P and the roulette wheel method.

The steps mentioned above will be repeated until k cen-
ters are selected. The purpose is to make the initial medoids
more discrete, which are closer to the real cluster centers.

b1 P2 Pn

(==}

P P1tP2 P1tpottPyu

FiGUrE 1: Roulette wheel method.

The number of iterations can be reduced, but settle the prob-
lem of trapping in a local optimum.

2.2.2. Improved Method for Selecting the Number of Clusters.
The traditional criterion function in each cluster is the sum of
all data within the cluster, which will make a big difference
among clusters, and the classification will also be uneven.
To settle the problem, this paper uses the exponential func-
tion e* to optimize the criterion function calculation method.
The criterion function in within-cluster can be calculated as:

Z Uojer)”
S, =eib (6)
In order to avoid exponential explosion, the weight coef-
ficient t is employed, and the criterion function S can be cal-
culated as follows:

k ep.d _y_2
S=ye (7)

With the optimization, the criterion function S can be
calculated for different k. Following the increasement of
parameter k, S will decrease. According to the elbow idea,
S drops dramatically at the beginning, then, S reaches an
elbow, finally, the curve of S turns to a plateau. The value
k corresponding to the elbow is regarded as the optimal
number of clusters.

2.3. Clustering with Saturation Data. Traffic saturation data is
a collection of saturation at intersections, a single piece of
data can be described as:

X; = [Xi1> Xigo Xin ) (8)

where 7 is the number of intersections.

The improved K-medoids algorithm described in Section
2.2 is then applied to the traffic saturation data, which divides
the data into k clusters, and the initial cluster medoids are
selected according to the distance probability p,. The phase
and timing optimization can be performed according to the
cluster medoids, and each cluster corresponds to one set of



traffic scheme, which means there will be k sets of initial
traffic schemes.

3. Phase Combination and Signal Timing

In order to improve the adaptability of the traffic schemes for
maching different traffic conditions, we establish the phase
combination model and optimize the signal timing using
the bilevel programming model.

3.1. Phase Combination Model. Signal phase refers to one or
more flow directions displayed by the same signal lamp in a
signal cycle time. The phase combination model mainly ana-
lyzes the conflicts of traffic flows with different directions,
and use clustering ideas to merge nonconflicting flows with
similar traffic characteristics into one phase. A reasonable
combination can effectively reduce the release time of the
green light, improve the utilization of the green light, and
ensure transportation safety.

Two traffic flows are conflicting if there is a collision
point of the vehicle travel path in these two directions. For
example, the traffic flow in the east-west direction and the
south-north direction are conflict, while the traffic flow in
the east-west direction and the west-east direction are com-
patible. The conflict matrix can be constructed as follows:

[0 9 ¢ Pin ]
P 0 @y Pan
C=1|¢5 ¢ O : » )
P(n-1)n
LPn1 P2 Pu(n-1) U

where ¢, indicates whether the flow direction and j is
conflict. If not, the value is 0, otherwise, 1.

The distance matrix is used to represent the difference
between traffic flows, which can be constructed based on
the saturation of flow directions, green signal split data, and
the conflict matrix:

[0 dlZ d13 dln i
d21 0 d23 dZn
D=|dy dy, 0 - s (10)
d(n—l)n
_dnl an dn(n—l) 0 |

where the element d; in the matrix can be calculated as
follows:

2 2
di;= (yi —yj) + ;= (x,-)tl- - xj/\j) + @y (11)

where y, is the traffic flow ratio of the flow direction i, which
reflecting the traffic demand not affected by the signal control
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Input:
The distance matrix D
Output:
The final phase combination scheme D,
Begin
1.fori=1ton, do
2,Forj=1to(i-1),do

3. If dij <1 Then

4. Dfirst'add(dij) ;
5. End If

6. End For

7. End For

8. While ¢;, ¢;, ¢, -+, ¢, = each other, do
9. Deach — [dqcz’ d d d
10. D,;.add(D,,,) ;

11. Seach — Sum(Deach) 5

12. S,u-add(S,,) 5

13. End While

14. S, < Selectmin(S,;)

15. z «<— Theindexof S, in S,y ;

16. Dy «<— Dyyl2] 5

End

€364 65667 Cnflcvz] >

ALGORITHM 1: Phase combination.

scheme. x; is the saturation of the flow direction i, and A, is
the initial green split of the flow direction i.

Since the distance between the flow direction i and j is the
same as the distance between the flow direction j and i, the
distance matrix is symmetric, that is, d;; = d;;. To ensure the
balance of traffic flows in each phase, we optimize the phase
combination according to the distance matrix between flow
directions to make the combination more rational. For a typ-
ical crossroad, four-phase schemes are usually used, each
phase consists of two flow directions, and the same flow
direction traffic must be released only once in one cycle. Con-
sidering the symmetry of the distance matrix and all-zero
values on the main diagonal, only the lower triangle needs
to be processed. Algorithm 1 shows the optimization of the
phase combination. If the distance between two flows is equal
to or greater than 1, these two flows are physically conflicting.
Hence, we select all the flow pairs with their distances less than
1 to form the Dy, vector. If one scheme in the Dy, contains
all flow direction and each direction ¢; only appears once, it
will be saved as D,,, to D,;. Then, we calculate the sum of
the distances in D,,4, and insert it into the S, as S,,4,, and
the index z of the minimum S_; in S, is selected. Finally,
we choose the optimal scheme Dy, ,; according to z in D,,.

For example, there are two schemes here (see Figure 2):
Scheme A takes east left movement and east through move-
ment as one phase, west left movement and west through
movement as another phase. Scheme B takes east left move-
ment and west left movement as one phase, east through
movement and west through movement as another phase,
the distances of above four combinations are 0.2, 0.1, 0.3,
and 0.4, respectively. The scheme A is chosen because the
sum of the first two values is smaller than that of the last
two values.
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FIGURE 2: Schematic diagram of phase scheme comparison.

3.2. Traffic Signal Timing Bi-Level Programming Model. The
bilevel programming model is a system optimization model
with a two-tier hierarchical structure. The upper and lower
levels have their own objective functions and constraints
[28, 29]. The objective functions and constraints of the
upper-level problem are not only related to the upper deci-
sion variables but also depending on the optimal solution
of the lower level problem, while the optimal solution of
the lower level problem is affected by the upper decision
variables.

We establish a traffic signal timing optimization algo-
rithm based on the bilevel programming model. The frame-
work of the traffic signal timing optimization algorithm is
shown in Figure 3.

3.2.1. Establishment of the Bilevel Programming Model. The
signal cycle time is the key control parameter that determines
the quality of traffic signal control in traffic signal timing, and
the saturation can reflect the rationality of the signal cycle
time to some extent. We establish the upper-level program-
ming model with saturation as the decision target, which
can be calculated as:

J =min (|x - x]), (12)

where X is the average saturation of each phase, and x is the
target average saturation.

Under the condition of fixed signal cycle time con-
straints, the mean square error (MSE) of the saturation is
used to evaluate the rationality of green split distribution.
With the MSE, the lower-level programming model can be
established as:

(13)

where N is the number of signal phases. The saturation of
each phase can be calculated as:

X: =

fi
g (14)

where f, is the arrival traffic flow for phase i, g, is the average
of each flow direction saturated flow in phase i, and A, is the
initial green split of phase i.

3.2.2. Solution of the Bilevel Programming Model. The single-
step action set with signal cycle time changes is designed to
obtain the optimal signal cycle time of the upper-level pro-
gramming model, the action set can be expressed as follows:

actionl = [a,,—a,, 0], (15)

where a,, in seconds, is the adjustment step size for cycle
time.

The three elements in action] represent three operations,
including addition, subtraction and invariance, respectively.
For example, if the initial signal cycle time is T, the actionl
is [a,,—ay, 0], and the signal cycle time after each adjustment
according to actionl will be [T+ a,, T — ay, T).

Algorithm 2 shows the optimization for signal cycle time.
Each action of Equation (15) is executed in the initial signal
cycle time T,, and J is calculated by Equation (12) and
(14), which will be inserted into J;. The minimum J,_; in
Jn is selected, if its corresponding action is nonzero, the
action will be taken, and the signal cycle time after execution
will be updated as the initial scheme T, for the next iteration.
The algorithm will loop until the action corresponding to
Jmin 18 zero, and the signal cycle time at this time Now[w] is
regarded as the optimal signal cycle time T/.

Similar to the upper level, to solve the optimal green split
of the lower-level programming model, we design a set of
single-step changes in the green time of each signal phase,
the action set is

action2 = [[a,, ay,—ay,—, ], [A2,—0y, Ay,—a,), [A2,—0y,— a5, Gy),

—y> Oy, Gyy= 0], [=0y, Gy=0y, 4y, [—y,=0y, 4y, 4y,

a,, a4, 0, 0], [0, ay,—a,, 0], [0, a,, 0,~a,],

» [0,~a,, a,,0

[

[

[a3:=a,, 0, 0], [a5, 0,=ay, 0], [a,, 0, 0,=a,],
-

[-a,,0,a,,0

-

J
> [07 0) a2)_a2])
> [0) O)_a2> a2]7 [0) O, 07 0”7

(16)

where a,, in seconds, is the adjustment step size for green
time.

The four elements in action2 represent the adjustment of
green time of each phase in the four-phase scheme. For
example, if the initial green time is [g,, g,, g5, g,), the action2
is [[a,, ay,—a,,—a,],--+,[0,0, 0, 0]] and the green time of each
phase after each adjustment according to action2 will be
g1 + @, 9, + a3, 95 — a3, G4 — W]+ 511> 92> 95> ull-

Algorithm 3 shows the process for green split optimiza-
tion. Considered the premise of the green split optimization
algorithm that the signal cycle time is fixed, the sum of all ele-
ments in the action matrix is zero. According to the initial
scheme of green split, the initial timing scheme is obtained
by multiplying the signal cycle time. Each action of Equation
(16) is executed, respectively, and then ¢ value of the corre-
sponding action can be saved into o,; according to Equation

] ]
a,,0,0, a,], [0,—a,, 0, a,]
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scheme
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Y

Optimize the signal
cycle time

'

Optimize the green split
of each signal phase

The scheme is optimal or the cycle
has reached the upper limit?

Output the current
timing scheme

Take the current timing
scheme as the initial

scheme
]

F1GURE 3: The framework of the traffic signal timing optimization algorithm.

Input:

Output:

The optimal signal cycle time Ty
Begin
1. wy «— Theindex of 0 in actionl ;
2. w «— A number! = wy ;
3. While w! = w,, do

4. For each g; in actionl, do

5. TNowl[i] < Calculate Adjust_T(T, g;) ;
6. End For

7. ],,11 — (I

8. For each TN, in TNow, do

9. J.y-add(Calculate J(TN, f;, 4, A;)) 5
10. End For

11. Jinin <— Selectmin(J ;) ;

12. w «— Theindexof ], inJ,;;

13. If w= =w, Then

14. Ty «— TNow[w];

15. Else

16. T, «— TNow[w];

17. End If

18. End While

End

The initial signal cycle time T, the average arrival traffic flow for each phase f = [f|, f,,--,f,, |, the average of each flow direction
saturated flow in each phase q = [q;, ¢, :*,q,,], the initial green split of each phase X = [A;, A,,:--,A,,] and the action set actionl

ArcoriTHM 2: Signal cycle time optimization.

(13) and (14). Then we select the minimum o;, in o, if its
corresponding action is not [0,0,0,0], the action will be
taken, and the green timing scheme after execution is
updated as the initial scheme g, for the next iteration. The
algorithm will loop until the action corresponding to o, is
[0,0, 0, 0], and the green time of each signal phase at this time

is converted into green split, and the optimal green split
scheme A, is output.

We complete the green split optimization in the lower-
level programming model, which will be fed back to the
upper level. While in the upper level, the signal cycle time
is optimized heuristically and iteratively under the restriction
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Input:

Output:
The optimal green split schemeX, = [A;, A1y, 0,Ap, ]
1. I, «— Theindex of [0, 0, 0, 0] in action2 ;
2.1 — Anumber! =1;
3. Foriin A, do
4. gyadd(AyT);
5. While I! = I, do

6. For each g; in action2, do

7. GNowl[i] «— Calculate Adjust_g(g,, a;) ;
8. End For

9. O — [I;

10. For each GN; in GNow, do

11. o,y-add(Calculate 6(GN,, f 1, q,)) 5
12. End For

13. O min <— Selectmin(o ) ;

14. I «— Theindexof o, ino 5

15,  IfI==1I,do

16. gy < GNowl[I] ;

17. Else

18. go «— GNow(I];

19 End If

20. End While

21. Foriingy, do

22. As-add( g,/ T) s
End

The signal cycle time T, the arrival traffic flow for each phase f = [f}, f,,---,f ], the average of each flow direction saturated flow in each
phase q = [g;, g,,-**,4,,], the initial green split of each phase A; = [Ay;, Ay, *»Ag,)» and the action set action2

ALGgoriTHM 3: Green split optimization.

FI1GURE 4: The actual layout of the intersection.

of the green split, until the scheme is optimal or the cycle
reaches the upper limit.

4. Simulation Experiment and Result Analysis

4.1. Experimental Methods and Experimental Data. The
experiment is simulated in SUMO (Simulation of Urban
Mobility), which is an open-source, highly portable, micro-
scopic, and continuous traffic simulation software. The real-
world intersection, Jianshe 4th Rd and Shixin N Rd in
Xijaoshan District, Hangzhou, China (see Figure 4) is chosen
as the operating environment.

[ A Y B A |

FiGure 5: The simulation layout of the intersection.

According to the traffic laws and regulations in our coun-
try, the right turn movement can pass the intersection at any
time without being controlled by the signal light; thus, only
the left turn and the straight vehicles are considered in the
simulation. Figure 5 shows the simulation structure of the
intersection.

The trafhic flow data were provided by the traffic control
department of Xiaoshan District, Hangzhou, from 7:00
a.m. to 9:00 a.m. on November 20th, 2018. The original data
was the traffic flow data of the signal cycle time and the tim-
ing scheme of the corresponding time, which was processed
into saturation data set for clustering, and then, timing
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TasBLE 1: Traffic flow data of each flow direction in each time period of the intersection (veh/h).

Time LE SE LS SS Lw SW LN SN
7:00 128 242 168 476 92 186 266 368
7:30 202 364 150 980 96 198 320 798
8:00 124 240 184 758 88 164 238 662
8:30 138 275 143 752 98 150 282 760
9:00 118 220 186 576 102 148 224 448
Saturation flow 1529 1641 1347 2360 1286 1606 1722 2228
120000 -
100000 -
=1
S
5 80000 -
&
=}
o
‘£ 60000 -
pd
B
[
£ 40000 -
20000 -
0 -
1 2 3 4 6 7 8 9 10
k
—«— FE
S

FIGURE 6: Algorithm comparison on the saturation dataset.

optimization was carried out based on the original timing
scheme. Then, the data were divided into 5 periods, and flows
of each direction were calculated every half an hour. The traf-
fic flow data at a certain point in time is the average flow of
the adjacent 15 minutes, that is, the traffic flow at 8:00 a.m.
is the average traffic flow from 7:45 a.m. to 8:15 a.m. The
flow data were divided into eight flow directions, such as
the left turn for eastbound movement, the through for east-
bound and so on. The average traffic flow of all lanes in each
flow direction is recorded in Table 1, which has been con-
verted into the hourly traffic flow to the inlet, and the through
flow of each flow direction is also recorded. In this table, “E,”
“S “W,” and “N” refer to eastbound, southbound, west-
bound, and northbound, respectively. “L” and “S” mean left
turn and straight vehicles. For example, “LE” represents the
traffic flow of the left turn in the eastbound movement.

The signal timing scheme generated by the improved
K-medoids clustering algorithm is compared with the
scheme generated by the traditional one to ensure the fair-
ness of the experiment. In order to avoid the exponential
explosion and make the criterion function E and S be in the
same order of magnitude, the weight coefficient t is set as
11000. Additionally, we set the target average saturation §,

TaBLE 2: Performance comparison of the traditional and improved
K-medoids algorithm.

Average execution

Algorithm Number of clusters ?
time(s)

Traditional K-medoids [3-6] 1.764

Improved K-medoids 3 1.623

to 70 according to the actual intersection traffic demand. In
order to avoid missing the optimal timing scheme due to
overlarge step size, the signal cycle time adjustment step a,
and the green time adjustment step a, are both set as 1.

In addition, the proposed algorithm is compared to the
fixed phase scheme and the traffic flow and vector angle
based on the optimization scheme [17].

4.2. Analysis of Results. The criterion functions of different k
using traditional and improved K-medoids algorithm are
shown, expressed by E and S, respectively. As k increases,
the criterion functions decrease, and the rate of decline also
stabilizes. In both cases, the optimal k is 3, while using the
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improved K-medoids, it is easier to reach the result, and the
elbow point can be identified more unambiguously. Figure 6
shows the curves of both algorithms, which is more intuitive.

Table 2 shows the different performances of the tradi-
tional and improved K-medoids algorithm. As for the number
of clusters, in different iterations, the traditional K-medoids
may reach the elbow when k is in range of 3 and 6, which is
ambiguous to identify, while the improved K-medoids can

TaBLE 3: Comparison of three optimization schemes at intersection.

Average vehicle Average queue

delays (s) length (m)
Fixed phase 34.842 13.554
Vector angle 36.304 13.668
Optimized phase 32.380 12.012
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TaBLE 4: Delay comparison of three optimization schemes in flow direction.
Time Fixed phase Vector angle Optimized phase
SS SW LE SS SW LE SS SW LE

7:00 14.44 23.89 35.57 20.66 45.82 37.62 1591 28.88 27.28
7:30 29.81 24.04 40.20 21.35 53.38 41.17 29.82 24.05 40.19
8:00 22.74 23.61 32.67 29.84 55.28 44.68 22.73 23.62 32.67
8:30 35.35 20.92 39.16 27.55 55.99 50.72 29.18 26.45 30.31
9:00 12.21 25.20 34.72 11.79 31.85 29.78 14.92 30.91 21.41
Average 2291 23.53 36.46 22.24 48.46 40.79 22.51 26.78 30.37

always reach the elbow when k = 3. In addition, the improved
K-medoids runs faster than the traditional version, and that
may because we optimize the selection of initial optimizing,
which reduces the number of interactions.

Average vehicle delay and average queue length are used
to evaluate the performance of the proposed algorithm.

Figures 7 and 8 show the curves of optimized phase and
timing schemes under different conditions compared to fixed
schemes that optimize only timing and vector angle-based
schemes. The outperformance of our proposed method can
be seen in all time periods. Table 3 shows the averaged values
of the above two evaluation indexes, we can see that the pro-
posed method outperforms the fixed phase method with
improvements of 2.462s (7.07%), and 1.542m (11.38%) on
the vehicle delay and the queue length, and also shows
improvements of 3.924s (10.81%) and 1.656m (12.16%)
compared to the traffic flow and vector angle-based optimi-
zation scheme.

Table 4 shows the delay comparison of three optimiza-
tion schemes in SS, SW, and LE. We can see that the method
proposed by us has a great improvement on the average vehi-
cle delays in each flow direction compared to the traffic flow
and vector angle-based optimization scheme. In our pro-
posed method, the average vehicle delays of SW and LE is dif-
ferent from that of the fixed phase method, this is because the
phase of SW and LE has changed. Compared with the fixed
phase method, the average vehicle delays of LE in our method
are reduced, but the average vehicle delays of SW are
increased. The main reason is that our method improves
the overall traffic capacity of the intersection rather than
the single flow direction.

5. Conclusions

In this paper, we optimize the traditional K-medoids cluster-
ing algorithm in terms of the clustering number and initial
medoids selection. In order to match the changes of traffic
flow in different time periods adaptively, the phase combina-
tion optimization model is established to optimize the phase,
and the bilevel programming model aims to optimize the sig-
nal timing, which can maximize the utilization of green time.
The proposed algorithm is optimized for each flow direction.
Whereas the flow saturation may be different when the
overall situation is similar, we will study the difference of dif-
ferent flow saturation to achieve the optimal control effect of
the intersection.
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