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)e explosive growth in network traffic in recent times has resulted in increased processing pressure on network intrusion
detection systems. In addition, there is a lack of reliable methods for preprocessing network traffic generated by benign ap-
plications that do not steal users’ data from their devices. To alleviate these problems, this study analyzed the differences between
benign and malicious traffic produced by benign applications and malware, respectively. To fully express these differences, this
study proposed a new set of statistical features for training a clustering model. Furthermore, to mine the communication channels
generated by benign applications in batches, a semisupervised clustering method was adopted. Using a small number of labeled
samples, our method aggregated historical network traffic into two types of clusters. )e cluster that did not contain labeled
malicious samples was regarded as a benign traffic cluster. )e experimental results were compared using four types of clustering
algorithms. )e density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm was selected to mine
benign communication channels. We also compared our method with two other methods, and the results demonstrated that the
benign channels mined through our method were more reliable. Finally, using our method, 1,811 benign transport layer security
(TLS) channels were mined from 18,357 TLS communication channels. )e number of flows carried by these benign channels
comprised 65.37% of the entire network flows, and no malicious flow was included in our results, which proves the effectiveness of
our method.

1. Introduction

Most of the communications making up internet traffic are
generated by benign applications. If these communications
are directly imported into the network intrusion detection
system (NIDS) without any preprocessing, they invariably
impose huge computational pressure on the NIDS. )ere-
fore, the exclusion of benign network traffic in advance is a
widely adopted strategy in the industry.

Before encryption technology was popularized on the
internet, antimalware manufacturers could recognize net-
work traffic using the deep packet inspection (DPI) method.
However, with the popularization of the transport layer
security (TLS) protocol [1], the malware also gradually

adopted this protocol to complete command and control
(C&C) communication. )is led to a gradual failure in
identifying network traffic using the DPI method. In re-
sponse to this situation, some security vendors use the server
name field or the domain name field in the certificate to
preprocess the TLS traffic generated by benign applications.
However, server names and certificates are easily forged by
malware, making this preprocessing strategy unreliable.

Currently, the most efficient preprocessing method uses
IP whitelisting technology. However, there is a lack of re-
liable IP whitelist sources on the internet. )reat intelligence
communities such as AlienVault [2], IBMX-Force Exchange
[3], and Recorded Future [4] usually provide available IP
blacklist resources that are used by malware, but seldom
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present whitelist resources. Furthermore, the IP whitelist
usually needs to be updated occasionally to ensure its val-
idity. )erefore, it is necessary to provide a fast and reliable
method for collecting IP whitelist.

)e reverse domain name lookup method can be used to
obtain benign IP addresses based on the collection of benign
domain names. However, under the primary domain name,
there are usually many subdomains that bind to different IP
addresses. As a result, it is difficult to enumerate all of the
subdomains. Nevertheless, because the domain name
whitelists are usually on the order of millions, using the
reverse domain lookup method to collect the IP whitelist is
significantly inefficient. In addition, the reliability of the IP
whitelist is based on the reliability of the domain name
whitelist, which makes it difficult to guarantee that all IP
addresses in the whitelist are benign.

In recent years, classification and clustering techniques
based on machine learning have been widely used in the
identification of encrypted communication traffic. Addi-
tionally, there have been numerous studies on the appli-
cation of coarse classification models [5–7] and clustering
models [8–11] for preprocessing network traffic. Classifi-
cation models usually require a large number of labeled
samples for training, which results in the improved ability of
the classification model to identify the trained samples. In
other words, in the classification results of the coarse
classification model for identifying malicious traffic, the
nonmalicious class cannot be regarded as the benign class,
because it may contain untrained malicious network traffic.
For the clustering model, it is difficult to ensure the purity of
the samples in the clusters based only on the single flow-
based features [12]. In particular, if the benign cluster
contains malicious samples, it will produce many false
negatives in the NIDS.

Our study demonstrates that there are many differences
between benign and malicious samples in TLS communi-
cation channels, such as the amount of inbound and out-
bound traffic, the connected devices, and the
communication frequency. Based on these differences, the
features of TLS communication channels can be extracted
and a clustering model for benign applications can be
established. Our network traffic preprocessing method can
be realized by excluding the benign traffic contained in a
cluster. )erefore, the contributions of this study are as
follows:

(1) )is study proposes a new network traffic pre-
processing method based on a semisupervised
model. To distinguish it from the traditional single
flow-based features, this study presents a new set of
statistical features for building a clustering model
based on the TLS communication channels.

(2) )is study proposes a new feature selection method.
In the proposed method, the spectral clustering
feature selection algorithm is used to select the top-
200 features based on unlabeled samples. Further, by
redesigning the evaluation algorithm, the wrapper
method based on a semiunsupervised model is used
to further select the best performing feature subset.

(3) Experimental results show that the preprocessing
method proposed in this study can identify 1,811
benign TLS communication channels from 18,357
TLS communication channels. )ese channels carry
65.37% of the entire TLS flows. Furthermore,
through contrast experiments, the proposed pre-
processing method was verified to perform better
than two other machine learning-based methods.

2. Related Work

)e geometric growth in network traffic in recent times has
resulted in increased processing pressure in the detection of
malicious communication. Although the traditional pre-
processing method based on DPI technology can accurately
identify unencrypted communication traffic, it cannot cope
with the currently increasing encrypted communication
traffic. Machine learning technology has been used exten-
sively in the identification of encrypted traffic and is mainly
divided into classification and clustering algorithms. By
applying a supervised learning algorithm, the coarse clas-
sification model [5–7] is used to preprocess network traffic,
whereas the fine classification model [13–15] is used to
identify the type of network traffic accurately. )e clustering
model [8–11] based on unsupervised learning algorithms is
mainly used to identify unknown network applications and
can also be used as a preprocessing method.

2.1. Supervised Learning Model. )e coarse classification
model is usually used for preprocessing before identifying
the type of network traffic. Zhao [5] proposed a three-layer
classifier to detect known and unknown network traffic. )e
first layer consists of a coarse classification model (a binary
classifier), which is mainly used to quickly identify the
unknown network traffic and thus reduce the processing
pressure of the fine classification model. A similar process
can be seen whereby the coarse classification model of the
first layer is mainly used to exclude the benign traffic, the
second layer is used to classify the different types of mali-
cious traffic, and the third layer is used to identify different
malware families [6]. However, in this process, the pre-
processing method of the first layer is not described in detail,
and its impacts on the detection results are rarely evaluated.
To deal with the problem of accurately identifying abnormal
network traffic, a two-stage deep learning detection model
[7] has been proposed. )is method introduced a detailed
design scheme of the first stage’s binary model and used the
probability score value calculated from the binary model as
the second stage’s input. Experiments show that this method
has an accuracy rate of 99.996% for the KDD99 dataset and
89.134% for the UNSW-NB15 dataset, which are higher than
those of other current methods. However, because such
methods do not exclude normal samples in the first stage,
they reduce the efficiency of the entire detection model.
Additionally, all the methods that are based on the super-
vised model process network flow individually and cannot
process network flows in batches, which leaves room for the
further improvement of preprocessing efficiency.
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2.2. Unsupervised Learning Model. Unsupervised learning
algorithms are also widely adopted in the preprocessing of
network traffic. Zhang [9] used an unsupervised model to
preprocess the network traffic to find zero-day network
traffic clusters. )ey then used the zero-day traffic and la-
beled samples to train a binary classifier that was used to
identify zero-day traffic more effectively. Experiments show
that their method can more accurately recognize known
network applications and also identify zero-day network
applications. Similar methods can also be found in the re-
search of Zhao [10]. )ey used a clustering model to achieve
two preprocessing goals, namely, screening out unknown
network traffic and expanding more labeled samples based
on a few known samples. Experiments show that their
method can improve classification accuracy after the pre-
processing step. )e research of Sacramento [11] is based on
the assumption that most network traffic is benign, and only
a small part of it is malicious traffic. During their pre-
processing step, the largest cluster was considered to be a
benign cluster, while the smaller clusters needed to be
further analyzed. )rough experiments, a variety of network
attack behaviors were detected. However, their impact on
the detection effect was not evaluated after carrying out the
preprocessing step. Liya [8] used a hierarchical clustering
model to preprocess a set of samples. First, they divided the
set of samples into multiple clusters, after which they se-
lected several representative samples from each cluster.
)en, they used the Bayesian algorithm to classify these
flows. )e classification results of the selected flows repre-
sented the classification results of the entire cluster. )us,
network traffic could be quickly processed. Although the
clustering model can be used to preprocess network traffic in
batches, most of the current research is based on the single
flow-based feature, which cannot guarantee the purity of the
clusters. )e sample purity in some clusters can only reach
35% [12]. )erefore, the current preprocessing method
based on the clustering model can be further improved.

2.3. Single Flow-Based and Multiple Flow-Based Feature.
Presently, in the field of network traffic classification, most
studies focus on single flow-based features. A single flow is
composed of packets with the same five-tuple information.
Gezer [16] mainly extracted the single flow-based features
from multiple dimensions (including the duration of the
flow, the maximum, minimum, and average packet length),
the interarrival time of the flow, and the number of inbound
and outbound packets. Korczyński and Duda [17] used the
sequence of packet length to build a Markov model. Yang
[14] proposed the packet length and interpackets arrival
time’s distribution features in a flow. )ese features can be
regarded as single flow-based features and are commonly
used in most network traffic classification experiments.

Multiple flow-based features usually represent those that
are extracted from multiple flows produced in a sliding time
window. In a study on the identification of proxy application
traffic based on the characteristic of flow bursts in a short
time window [18], these features were designed to include
the number of flow bursts, the maximum flow burst lengths,

and the sum of all flow burst lengths. To detect network
intrusion behaviors, Patil [19] not only applied single flow-
based features but also added some multiple flow-based
features, such as the number of flows with the same source IP
address, and the number of flows with the same destination
IP address. )e application of these multiple flow-based
features in different traffic classification scenarios allows for
the improved performance of traffic classification.

Numerous studies [9, 20, 21] have utilized the concept of
a bag of flow (BoF). A BoF is a set of flows with the same
destination IP address, destination port, and transport
protocol, which represents the network traffic generated by
the same server application on the same port over time. As
long as the type of a certain flow can be determined, the BoF
type can also be determined. )ese studies regard a BoF as
the total of flows generated on an application’s communi-
cation channel. As mentioned earlier, most of the current
traffic classification studies are based on single flow-based
features. To the best of our knowledge, no feature design is
based purely on applications’ communication channels. )is
study sought to find the difference between the benign
application and the malware on the TLS communication
channel and propose a preprocessing method to exclude the
benign TLS traffic. Applying this method to the NIDS can
significantly reduce the processing pressure on the detection
system.

3. Benign Traffic Characteristics

Before introducing feature design, it is necessary to analyze
the behavioral differences between benign applications and
malware on the TLS communication channel. We consid-
ered flows with the same destination IP address or server IP
address and destination port, namely, port 443, as flows on
the same communication channel. )ere are many differ-
ences between the communication behaviors of benign
applications and those of malware. Firstly, in the trans-
mission direction, benign applications usually initiate a
request to the server and obtain resources, such as text,
picture, audio, and video data from the server. )e trans-
mission payload is concentrated from the server to the client,
which is the inbound direction. For example, by analyzing its
historical traffic records, github.com has a total of 19 TLS
communication channels (19 independent destination IP
addresses), which carry a total of 4,080 network flows.
Further analysis shows that there are a total of 3,933 flows
and that the inbound payload is greater than the outbound
payload, which accounts for 96.40% of the total flows.
However, malware that focuses on stealing information from
the users’ host usually produces more outbound traffic. By
collecting large amounts of traffic samples as described in
Section 4, we compared the inbound and outbound traffic
differences between benign and malicious application
samples on their communication channels. Figure 1 shows
the distribution of the outbound and inbound payload sizes
using the same number of samples.

As shown in Figure 1, the abscissa represents the in-
bound payload sizes, and the ordinate represents the out-
bound payload sizes. Red dots represent malicious samples
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and blue dots represent benign samples. It can be seen that
malicious samples are more distributed near the vertical axis,
whereas benign samples are mostly distributed near the
horizontal axis. )e proportion of the malicious flows is
insignificant when the inbound payload size is higher than
1,000 kB.

Additionally, as a result of the users’ online habits, some
benign applications are frequently used to obtain resources
from the server. )is means that the communication fre-
quency to benign application servers is higher than that of
malware C&C servers. Because concealment is put first by
malware, the frequent connection to the C&C server should
be avoided. Figure 2 shows the top 100 servers in terms of
communication frequency for both benign and malicious
samples.

In addition to some niche applications, other applica-
tions have a specific user base, which results in more hosts
accessing certain servers. On the contrary, malware generally
chooses high-value targets for infection, so that there are
relatively fewer devices that connect to the C&C servers in
the local area network. Figure 3 shows the top 100 servers in
terms of connected devices.

Based on the above analysis of the differences between
benign and malicious traffic and their characteristics, we can
categorize the network traffic into two types of clusters. )e
first type is characterized by a larger inbound payload, a
higher communication frequency, and more connected
devices. )is type of cluster can be regarded as the network
traffic generated by benign applications. However, theo-
retically, the other type of cluster contains not only malicious
traffic but also traffic generated by some benign niche
software.

4. Feature Representation

Based on the analysis of the characteristics of benign traffic
mentioned in the previous section, this section mainly in-
troduces the statistical features from five aspects, namely,

inbound payload size, outbound payload size, inbound and
outbound payload ratio, communication frequency, and
connected devices. However, in terms of statistical features,
the statistical feature values among benign applications vary
significantly. For example, the inbound payload size of some
benign applications, such as youtube.com, can reach the
gigabyte (GB) scale, while the inbound payload size of other
benign applications, such as baidu.com are only at the ki-
lobyte (kB) scale. At the same time, other statistical features
show the same problem. )erefore, quantization is needed
before extracting features.

)e quantitative scheme adopted in this study is divided
into three steps. )e first step is to set granularity. Based on
the historical network traffic records, different statistical
intervals can be divided according to different granularities,
and these statistical intervals can represent the candidate
features.
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)e second step is to calculate and normalize the feature
values on each interval. For a server, there may be many
instances of communication behavior, and the statistical
value, such as payload size, is different each time. )erefore,
we need to map these values into different statistical intervals
and use the number of mapping times to calculate the feature
value. Figure 4 shows a mapping process for calculating the
feature value.

)e third step is to compare the differences between
benign and malicious samples in each interval and select the
training features. To select more appropriate features, we
used 5 kB, 10 kB, 50 kB, and 500 kB as the granularities for
dividing intervals and compared the proportion of the in-
bound payload size between the benign and malicious
samples in each interval using the same sample size.

As shown in Figure 5, benign and malicious samples
show great differences in these intervals. It can be seen that
the inbound payload size of malware is mainly concentrated
in the 0–5 kB interval, accounting for more than 80% of the
total traffic. When the interval is greater than 5 kB, the
proportion of the malware is always smaller than that of
benign applications. When the interval is greater than
500 kB, the proportion of malicious flow accounts for only
1.30%, which is almost negligible. Other features like out-
bound payload size, inbound/outbound payload ratio (in-
and out-payload ratio), communication frequency, and
connected devices show the same trend as shown in Figure 6.

)erefore, for these statistical features, it is feasible to
divide the statistics according to different granularities. We
designed our feature set, as shown in Table 1, which contains
a total of 500 features.

)e feature set in Table 1 mainly describes the network
behavior in a TLS communication channel.)is feature set is
completely different from the traditional single flow-based
feature set described in other studies [14, 16, 17]. )e feature
design used in this study can express the accessing behavior
of a certain server from a higher level and bring together TLS
communication channels with similar network behaviors.

4.1. Spectral Feature SelectionAlgorithm. )is study adopted
the spectral feature selection algorithm (SPEC) [22] to select
relevant features for an unlabeled sample set. SPEC is a
feature selection algorithm based on spectral graph theory
[23].)e theory of SPEC is not complex and its performance
is superior to other algorithms such as Laplacian Score. It
can be used for both supervised and unsupervised feature
selection. SPEC calculates the relevance of a feature by
evaluating the feature consistency of the spectral matrix
derived from the similarity matrix S. )e similarity between
the two samples xi and xj is evaluated using a radial basis
function (RBF):

Sij � e
− xi − xj

����
����
2
/2σ2􏼐 􏼑

. (1)

By calculating Sij, the similarity matrix S can be con-
structed to represent the relationships among samples.
Given S, the undirected graph G and adjacency matrix W
can be constructed, where W(i, j) � wij and the weight wij is

determined by S. )e defining vector
d � d1, d2, d3, . . . , dn􏼈 􏼉, where di � 􏽐

n
k�1 wik. )e degree

matrix D is defined as follows: D (i, j)� di, if i� j, and zero
otherwise. Given the adjacency with W and the degree
matrix D, the Laplacian matrix L and the normalized
Laplacian matrix L are defined as follows:

L � D − W,

L � D
− (1/2)

LD
− (1/2)

.
(2)

)e weight of each feature vector fi can be obtained
using three ranking functions, namely, φ1,φ2,φ3. Consid-
ering that the φ2 function performs better on the test set used
in Zheng and Huan’s research study [22], this study selects
the φ2 function as the ranking function:

φ2 Fi( 􏼁 �
f′Ti Lfi
′

1 − f′Ti ξ0
, (3)

in equation (3), where fi
′ � (D1/2fi), Fi represents the i-th

feature. Given the normalized Laplacian matrix L, its
spectral decomposition (λi, ξi) can be calculated, where λi is
the eigenvalue and ξi is the eigenvector. According to
spectral graph theory [23], we have the following:
λ0 � 0 and ξ0 � D1/2e. Accordingly, using the ranking
function φ2, the weight of a feature can be readily calculated.
)e entire calculation process is shown in Algorithm 1
which can be used to obtain the top k relevant features.
)ere are three steps in the feature selection process: (1)
building similarity set S and constructing its graph repre-
sentation according to equations (1) and (3) (lines 1–3); (2)
calculating φ2(Fi) according to equation (3) (lines 4–6); (3)
ranking features in ascending order for φ2(Fi) (lines 7-8). In
fact, a smaller φ2(Fi) represents the improved separability
among samples. Hence, the smaller the value of φ2(Fi), the
more important the feature fi is.

To evaluate the selected feature set, we prepared 6,978
samples and used Algorithm 1 to rank the importance of the
features. Table 2 shows an example of the top 20 features. It
can be seen that the features of the downstream payload size
have the highest proportion, meaning that these types of
features are the most important.

We selected the top 200-feature subsets as our candidate
feature subsets by using Algorithm 1 to quickly exclude
ineffective features due to the sparsity of the designed feature
set. To further select the relevant features, we used the
wrapper method to evaluate whether the feature subset
could meet the requirements of clustering. )is part can be
seen in the next section.

Payload size (kB) : 11.817.52.9 7.8 16.4

Statistical interval :

0 5 10 15 20 25

Statistical value: 1 1 1 2 0

Normalized value: 0.2 0.2 0.2 0.4 0

(kB)

Figure 4: Mapping payload sizes to statistical intervals.
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5. Model Training

)e goal of preprocessing is to mine the TLS communication
channels used by benign applications as much as possible.
However, the feature subset selected by the SPEC algorithm
did not necessarily meet the requirements of the clustering
model; i.e., the cluster of benign TLS channels should
contain as few malicious TLS channels as possible. Figure 7
shows an example of the description of different clustering
effects that originated from different feature subsets. Labeled
samples are represented by + and − where + indicates benign
TLS samples and − indicates malicious TLS samples. Unla-
beled samples are represented by △. Fi and Fi

′ are used to
denote different feature subsets. In the clustering process, we
labeled the attribute of a cluster by calculating its proportion
of positive and negative samples. If the proportion of
positive samples in the cluster is higher, the cluster is
considered to be benign; otherwise, it is marked asmalicious.

We did not require distinguishing the two types of
samples. We only needed to ensure that the benign cluster
contained as few malicious samples as possible. In Figure 7,
although the clustering results based on Fi

′ were better, we
preferred the clustering result based on Fi to ensure the
purity of the benign cluster. Hence, we needed to redesign
the evaluation algorithm used in the process of training the

model. In this process, two goals can be achieved simulta-
neously: (1) selecting the best performance feature subset; (2)
selecting a more appropriate clustering algorithm.

Semisupervised clustering was adopted to evaluate the
clustering effect, and the wrapper method was used to select
a subset of the best performing features based on the ranked
top 200-feature sets obtained in the previous section. Two
rules were used to evaluate the performance of each subset of
features: (1) whether the subset of features reduced the
proportion of malicious channels in the benign cluster; (2)
whether the subset of features could improve the recognition
rate of benign channels when the proportion of malicious
channels in the benign cluster did not change. We evaluated
the performance of the feature subsets by calculating two
indicators of the labeled samples: the false positive rate
(FPR) and the true positive rate (TPR). )e evaluation al-
gorithm is outlined in Algorithm 2.

Algorithm 2 is divided into three main steps: (1) selecting
a clustering algorithm and calculating the confusion matrix
of the Xlabeled (labeled samples) to obtain the initial FPR and
TPR (lines 1-2); (2) constructing feature subsets using
backward selection and judging whether a feature should be
excluded by comparing FPR and TPR with the last result
(lines 3–13); (3) obtaining the final feature subset and
clustering result of the labeled and unlabeled samples (lines
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Figure 5: Proportions in different intervals.
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14-15). Additionally, by comparing the clustering effects of
different clustering algorithms, the best performing clus-
tering algorithm can also be obtained.

6. Experiment and Evaluation

)e experiment was composed of three steps: (1) data
collection and pretreatment; (2) algorithm selection,
whereby the best performing algorithm could be selected
from the four clustering algorithms; (3) method comparison.
)emethod proposed in this study was compared with other
existing methods and their effectiveness evaluated.

6.1. Data Collection. )e test data of TLS traffic used in this
method were collected from the gateway of our laboratory;
we mirrored all network traffic including TLS flows to our
experimental platform. In this study, we only used TLS
traffic to mine TLS benign communication channels.

)e network flow was collected using a tool developed by
us [24]. )e basic information of the flow included the
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Figure 6: Comparison of other feature expressions.

Table 1: Designed feature set.

Feature name Description Number
Inbound payload size Interval granularities with 2, 3, 5, 10, 20, 50, 100, 200, 500, 5000 kB 100
Outbound payload size Interval granularities with 2, 3, 5, 10, 20, 50,100, 200, 500, 5000 kB 100
In-and-out payload ratio Interval granularities with 2, 3, 5, 10, 20, 50, 100, 200, 500, 5000 100
Communication frequency Interval granularities with 2, 3, 5, 10, 20, 50, 100, 200, 500, 5000 100
Connected devices Interval granularities with 2, 3, 5, 10, ,20, 50, 100, 200, 500, 5000 100

Input: X, c(·), k, Fi

Output: SFSPEC–the ranked feature list
(1) construct S, the similarity set from X (and Y);
(2) construct graph G from S;
(3) build W, D and L from G；
(4) for each feature vector fi do
(5) fi

′←(D1/2fi/‖D1/2fi‖); SFSPEC(i)←φ2(Fi)

(6) end
(7) ranking SFSPEC in ascending order for φ2(Fi)

(8) return SFSPEC.

ALGORITHM 1: SPEC.
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Figure 7: Comparison of clustering results using different feature subsets.

Table 2: Top 20 features.

Feature description φ2(Fi)

Proportion of payload ratio in [200, 400) to the total 0.5381
Proportion of payload ratio in [8, 10) to the total 0.5421
Proportion of in-payload size in [0, 2) kB to the total 0.5433
Proportion of payload ratio in [30, 40) to the total 0.5436
Proportion of out-payload size in [20, 40) kB to the total 0.5451
Proportion of in-payload size in [40000, 45000) kB to the total 0.5473
Proportion of in-payload size in [25000, 30000) kB to the total 0.5531
Proportion of payload ratio in [150, 200) to the total 0.5553
Proportion of in-payload size in [450, 500) kB to the total 0.5558
Proportion of in-payload size in [1500, 2000) kB to the total 0.5572
Proportion of payload ratio in [500, 1000) to the total 0.5575
If the communication frequency in [20, 40) 0.5642
Proportion of payload ratio in [6, 8) to the total 0.5656
Proportion of in-payload size in [45000, 50000) kB to the total 0.5663
Proportion of out-payload size in [16, 18) kB to the total 0.5664
If the communication frequency in [200, 400) 0.5670
Proportion of out-payload size in [90, 100) kB to the total 0.5704
If the communication frequency in [70, 80) 0.5726
Proportion of payload ratio in [18, 20) to the total 0.5735
Proportion of in-payload size in [50, 60) kB to the total 0.5738

Input: Ftop− 200, Xlabeled, Xunlabeled
Output: Best feature subset (BFS), Clustering result (CR)

(1) select a cluster algorithm
(2) calculate initial confusion matrix for Xlabeled

obtain FPRini, TPRini
(3) for backward selection Ftop− 200 and exclude fi do
(4) calculate confusion matrix for Xlabeled
(5) if FPR< FPRlast:
(6) exclude (fi)

(7) FPRlast � FPR, TPRlast �TPR
(8) if FPR� FPRlast and TPR≥TPRlast:
(9) exclude (fi)

(10) FPRlast � FPR, TPRlast �TPR
(11) if FPR> FPRlast:
(12) retain (fi)

(13) end
(14) obtain feature subset as BFS, CR for Xunlabeled and Xlabeled
(15) return BFS, CR.

ALGORITHM 2: SMFS.
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source IP address, destination IP address, inbound and
outbound payload size, number of inbound and outbound
packets, and the inbound/outbound payload ratio. )is
information on network flow can also be acquired using
tools such as NetFlow [25], which was developed by Cisco or
Moloch [26].

To verify this method, we collected all the network traffic
based on the TLS protocol generated from July 1, 2019, to
July 15, 2019. We collected a total of 1,655,498 TLS flows
containing 18,357 TLS communication channels (18,357
unique destination IP addresses). In the experiment, we
mined the benign TLS channels from the abovementioned
18,357 communication channels. In addition, this study also
used the malicious traffic samples provided by Stratosphere
Lab [27]. We downloaded a total of over 300GB in traffic
samples and extracted 14,544 TLS flows generated by
malware, which makes up a total of 970 TLS communication
channels. )ese malware samples were mainly used to verify
the reliability of benign TLS channels mined using this
method.

Before the experiments, it was necessary to carry out
some pretreatment work on the samples to improve the
efficiency of our method and reduce noise samples. Some
channels with low accessing behaviors and low payload sizes
were excluded in advance. )e pretreatment rules were as
follows: (1) )e total number of access behaviors must not
exceed 20 times; (2) )e inbound payload size must not
exceed 40 kB. Samples that satisfied these two rules were
filtered out in advance. After pretreatment, we had 6,700 test
samples and 278 labeled malicious samples remaining.

6.2. Algorithm Selection. )e preprocessing method pro-
posed in this study adopted a semisupervised clustering
method to mine the benign TLS channels. )e requirements
for clustering were clear. We only needed to train two
clusters. )e first cluster was the cluster that conformed to
the benign communication characteristics described in
Section 2. )is cluster was mainly composed of benign TLS
channels. )e other cluster was composed of malicious TLS
channels and also contained some benign TLS channels
generated by niche applications. Additionally, it should be
noted that the method used in this study focused on clus-
tering part of the benign TLS channels and not all the benign
TLS channels. )e reason is that some benign applications
also have similar communication behaviors as malware.

To evaluate the effectiveness of the clustering algorithm,
we selected 297 representative benign samples and 278
malicious samples and mixed these labeled samples with
unlabeled samples for training the model. We used labeled
samples to determine the cluster in which the benign
samples were located and to verify whether the method
could effectively mine benign TLS channels.

Because different sample sets were adapted to different
types of clustering algorithms, we needed to determine the
clustering algorithm that was more suitable for training the
samples. Four clustering algorithms were selected for
comparative experiments, namely, K-means [28], based on
the central point of samples; DBSCAN [29], based on the

density of samples; Gaussian Mixture Models (GMM) [30],
based on the distribution of samples; and Unweighted Pair
Group Method with Arithmetic Mean (UPGMA) [31],
which is a hierarchical clustering algorithm. We used Al-
gorithm 2 to test these four clustering algorithms and
compared the clustering results among them. Table 3 shows
the clustering results of the four clustering algorithms.

It can be seen that the UPGMA and GMM clustering
algorithms cannot effectively distinguish the labeled sam-
ples, indicating that the characteristics of the sample set are
not suitable for these two clustering algorithms. )e
K-means clustering algorithm can recognize all the labeled
malicious samples. However, a majority of the labeled be-
nign samples are also identified as malicious. Only 95 of the
297 benign samples are correctly distinguished. )e
DBSCAN algorithm has the best clustering effect, whereby
204 benign samples are correctly recognized, and the rec-
ognition rate of labeled malicious samples reaches 100%.
)is means that all the labeled malicious samples are in the
same cluster, which guarantees the purity of the benign
samples contained in other clusters. Additionally, the testing
set contained 6,700 TLS channels, with 4,889 in the mali-
cious cluster, and 1,811 in the benign cluster. In other words,
we mined 1,811 benign TLS channels that can be excluded
through preprocessing. In the DBSCAN clustering algo-
rithm, the selected best feature subset is shown in Table 4,
with a total of 25 features.

6.3. Method Comparison and Evaluation. To further verify
the effectiveness of our method, we compared it with a
classification method proposed by Anderson et al. [13] and a
clustering method proposed by Su [8], respectively. )ese
methods are used to recognize benign traffic and mine
benign TLS channels.

In the process of reproducing the method proposed by
Anderson [13], we first selected 11,500 malicious samples
and 11,500 benign samples. We then completed the feature
extraction according to the feature set given in the method.
)e logistic regression algorithm (the random forest algo-
rithm works best in actual tests) was used to train the sample
set and evaluate the model using 10-fold cross-validation.
)e average accuracy of the classification model was 94.44%,
and the recall rate was 89%. )e test results achieved the
effect described in the literature [13].

In the method proposed by Su [8], they built a hierar-
chical clustering process. In their method, the 7-dimensional
structural features were first used for coarse-grained traffic
clustering, after which the 7-dimensional temporal features
were used for fine-grained traffic clustering. Finally, using
Näıve Bayes classifiers, a small number of samples were
selected from each cluster, and the classification results of
these samples represented the classification results of the
entire cluster. )erefore, their methods can also be used to
identify benign network traffic.

In the first comparative experiment, we also used 297
labeled benign samples and 278 malicious samples as our
experimental dataset. Our method used a feature set derived
from TLS communication channels, whereas Anderson et al.
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and Su et al. used feature sets based on a single flow in their
proposed methods. )erefore, in the methods of Anderson
[13] and Su [8], we stipulate that in a communication
channel, as long as any of the flows is determined to be
malicious, the entire communication channel is untrust-
worthy. By reproducing these two methods, we obtained the
results of the comparative experiments as shown below.

As shown in Figure 8, the A-Method represents the
method proposed by Anderson et al. [13], and the S-Method
represents the method proposed by Su et al. [8]. It can be
seen that the A-Method has the highest recognition rate for
benign samples, reaching 97.97%. However, it cannot
identify all malicious samples, which means that the
A-Method is not reliable. Both the S-Method and our
method can identify all malicious samples, but the S-Method
has a lower recognition rate for benign samples. Our method
can not only cluster all the malicious samples but also have
the highest recognition rate for benign samples.

In the next experiment, we compared the ability of these
three methods tomine the benign TLS channels based on the
test set. At the same time, we used open-source threat in-
telligence and manual inspection methods to evaluate the

candidate benign TLS channels by checking whether the
server IP address contained in the TLS channels was used by
malware.

We selected the AlienVault [2] threat intelligence
community, which owns a significantly comprehensive
threat intelligence library that can be used to determine
whether a server IP address is malicious. In AlienVault,
some of the benign IP addresses, such as 8.8.8.8 (Google
Public DNS), are also considered to be malicious ()is is
related to AlienVault’s strategy for collecting the indicator of
compromise (IoC). Further discussion is not required here).
Hence, manual inspection is also needed to evaluate whether
the malicious results provided by AlienVault are correct. It is
worth mentioning that we cannot directly mine the benign
TLS channels using AlienVault because it is unable to collect
all malicious IP addresses worldwide. Another reason is that
some benign IP addresses are also marked as malicious.
However, AlienVault can reflect the reliability of the mined
benign TLS channels to some extent. )e test results are
shown in Table 5.

It can be seen that the number of candidate benign
channels mined using the A-Method is the largest, reaching

Table 3: Comparison of the clustering results of the four clustering algorithms.

Clustering algorithm
Testing samples Labeled benign samples Labeled malicious

samples Features in BFS
Benign Malicious Benign Malicious Benign Malicious

K-means 733 5967 95 202 0 278 82
DBSCAN 1811 4889 204 93 0 278 25
GMM 4115 2385 229 68 129 149 93
UPGMA 2 6698 0 297 0 278 39

Table 4: Subset of features in DBSCAN.

Feature description Category
Proportion of in-payload size in [10, 15) kB to the total Numerical
Proportion of in-payload size in [15, 20) kB to the total Numerical
Proportion of in-payload size in [20, 30) kB to the total Numerical
Proportion of in-payload size in [0, 500) kB to the total Numerical
Proportion of in-payload size in [500, 1500) kB to the total Numerical
Proportion of in-payload size in [1500, 2000) kB to the total Numerical
Proportion of out-payload size in [5, 10) kB to the total Numerical
Proportion of out-payload size in [20, 30) kB to the total Numerical
Proportion of out-payload size in [50, 100) kB to the total Numerical
Proportion of out-payload size in [300, 400) kB to the total Numerical
Proportion of payload ratio in [5, 10) to the total Numerical
Proportion of payload ratio in [10, 20)to the total Numerical
Proportion of payload ratio in [30, 40) to the total Numerical
Proportion of payload ratio in [150, 200) to the total Numerical
Proportion of payload ratio in [200, 400) to the total Numerical
Proportion of payload ratio in [500, 1000) to the total Numerical
If the communication frequency in [20, 40) Boolean
If the communication frequency in [40, 60) Boolean
If the communication frequency in [70, 80) Boolean
If the communication frequency in [100, 150) Boolean
If the communication frequency in [200, 300) Boolean
If the communication frequency in [400, 500) Boolean
If the connected hosts in [3, 6) Boolean
If the connected hosts in [9, 12) Boolean
If the connected hosts in [15, 20) Boolean
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11,286, and that of benign channels mined using the
S-Method is the least. Our method’s results are slightly
higher than those of the S-Method. However, through the
step of checking using AlienVault, the candidate benign
channels mined using the A-Method fall the fastest from

11,286 to 11,166. Manual inspection demonstrates that these
IP addresses are mostly benign. However, there are still 25
malicious IP addresses in the candidate benign channels
mined using the A-Method. We also found six malicious IP
addresses mined using the S-Method. )e candidate benign

Methods/category
A-method S-method Our method

Benign MaliciousBenignMaliciousMalicious Benign

97.97%

86.68%

25.93%
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Figure 8: Comparison of different methods used on the labeled dataset.

Table 5: Evaluation of benign channels mined using different methods.

Benign channels A-method S-method Our method
Candidate benign channels 11,286 1,722 1,811
Checking by AlienVault 11,166 1,699 1,779
Manual inspection 11,261 1,716 1,811

90.13%

9.87%

�e percent of mined TLS channels

Benign channels

Other channels

(a)

Benign flows

Other flows

65.37%

34.63%

�e percent of network flows

(b)

Figure 9: Statistics related to the benign TLS channels.
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channels mined using our method did not contain any
malicious IP addresses. )erefore, the results show that our
method is more reliable than the other two methods.

Using our method, we mined 1,811 benign channels
from 18,357 channels. )ese channels account for 9.87% of
the total mined IP addresses, as shown in Figure 9. )e
number of network flows carried by these 1,811 channels
accounts for 65.37% of the total number of network flows. In
other words, applying our preprocessing method in the
NIDS can reduce the processing pressure by at least 65.37%.
Other TLS channels are not all malicious because the
characteristics of some niche benign applications are in-
consistent with our assumptions. )erefore, our method is
only suitable for mining benign TLS channels and cannot be
used to identify malicious TLS channels.

Finally, it is worth mentioning that the benign channels
can be used to form IP whitelist rules. )e preprocessing
method we proposed can also be used for mining whitelist IP
addresses.

7. Conclusions

Because of the increasing TLS traffic, importing them into
the NIDS indiscriminately will undoubtedly result in sub-
stantial processing pressure. Hence, it is a consensus to
preprocess network traffic before completing detection.
However, current studies seldom evaluate the impact of the
results brought about by the preprocessing methods.
Moreover, the classification and clustering models based on
the single flow-based features are not significantly reliable in
the preprocessing of TLS traffic. )is study proposed a
semiunsupervised model for quickly mining benign TLS
channels to cope with such problems. We analyzed the
differences between benign applications and malware on the
communication behaviors of TLS channels in detail and
proposed a set of new features. By adopting a spectral
clustering algorithm and a wrapper method, a set of relevant
features were selected, and a preprocessing model was
established by applying a semiunsupervised algorithm.
)rough a set of experiments, the DBSCAN algorithm was
selected from three other clustering algorithms to build a
preprocessing model. Additionally, by comparing our
method with two other methods, our experiments dem-
onstrate that it not only performs better in terms of pro-
cessing efficiency but is also significantly reliable for mined
benign TLS channels.

)e preprocessing model based on TLS channel features
proved that it can mine the benign TLS channels used in this
study. Indeed, TLS channel features have the potential to be
further mined, and subsequently used to recognizemalicious
channels based on supervised models. For high camouflaged
TLS flows produced by malware, it is difficult to detect them
only based on a single flow, but we can observe and evaluate
their behaviors, such as data-stealing behavior, from the
perspective of their communication channels.

)erefore, in future studies, two main points need to be
further explored for recognizing malicious TLS channels.
One is to explore new TLS channel features that are solely
effective in detecting malware traffic; the other is to ascertain

whether the performance of classifiers can be improved by
combining TLS channel-based features with traditional
single flow-based features.
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