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*is study was to explore the value of the blood oxygenation level dependent-functional magnetic resonance imaging (BOLD-
fMRI) image classification based on the multilevel clustering-evolutionary random support vector machine cluster (MCRSVMC)
algorithm in the diagnosis and treatment of patients with cognitive impairment after cerebral ischemic stroke (CIS). *e
MCRSVMC algorithm was optimized using a clustering algorithm, and it was compared with other algorithms in terms of
accuracy (ACC), sensitivity (SEN), and specificity (SPE) of classifying the brain area images. 36 patients with cognitive im-
pairment after CIS and nondementia patients were divided into a control group (drug treatment) and an intervention group
(drug + acupuncture) according to different treatment methods, with 18 cases in each group.*e changes in regional homogeneity
(ReHo) of BOLD-fMRI images and the differences in scores of the Montreal Cognitive Assessment Scale (MoCA), scores of
Loewenstein Occupational *erapy Cognitive Assessment (LOTCA), and scores of Functional Independence Measure (FIM)
between the two groups of patients were compared before and after treatment. *e results revealed that the average classification
ACC, SEN, and SPE of the MCRSVMC algorithm were 84.25± 4.13%, 91.07± 3.51%, and 89± 3.96%, respectively, which were all
obviously better than those of other algorithms (P< 0.01). When the number of support vector machine (SVM) classifiers and the
number of important features were 410 and 260, respectively, the classification ACC of MCRSVMC algorithm was 0.9429 and
0.9092, respectively. After treatment, theMoCA score, LOTCA score, and FIM score of the patients in the intervention group were
higher than those of the control group (P< 0.05). *e ReHo values of the right inferior temporal gyrus and right inferior frontal
gyrus of patients in the intervention group were much higher than those of the control group (P< 0.05). It indicated that the
classification ACC, SEN, and SPE of themagnetic resonance imaging (MRI) based on theMCRSVMC algorithm in this study were
greatly improved, and the acupuncture method was more effective in the treatment of patients with cognitive dysfunction
after CIS.

1. Introduction

Cerebral ischemic stroke (CIS) is the most common type of
stroke. In China, nearly 2 million CIS patients are newly
added every year, and about 75% of patients after CIS suffer
from different degrees of cognitive dysfunction [1]. At
present, the mild cognitive dysfunction is mainly diagnosed
by scale examination and imaging examination. Clinical
imaging methods for CIS mainly include cranial CT, ECG
(electrocardiogram), and cranial MRI. Cranial CT scan is a

conventional and the most important diagnostic examina-
tion method for nervous system diseases, with the advan-
tages of high resolution, accurate diagnosis, and low cost. It
is mainly used to exclude cerebral hemorrhage, brain tumor,
and other diseases, but the display effect for soft tissue is not
very good. ECG is used to assess whether the patient is
complicated with heart disease, but the development of ACI
cannot be directly judged. Resting-state functional magnetic
resonance imaging (rs-fMRI) is widely used in the clinical
diagnosis of cognitive dysfunction after CIS due to its
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advantages of noninvasiveness, nonradiation, reproduc-
ibility, and quantification. rs-fMRI is very sensitive to the
spontaneous low-frequency oscillations of the brain, and it
can detect the strength of the signal of blood oxygenation
level dependent (BOLD), so as to reflect the unique active
brain areas of the subject at the resting state [2]. BOLD signal
is closely related to the synchronization of neural activity
and is considered to reflect the input and processing of
neural information in the local brain region. Its formation is
based on the change of the ratio of oxyhemoglobin to
deoxyhemoglobin in cerebral blood flow.

With the continuous development of data mining
technology, multilayer network methods based on machine
learning and deep learning have been applied to the pa-
rameter identification of proton exchange membrane fuel
cells [3], design on evacuation methods in public places [4],
and medical image recognition and segmentation [5].
However, machine learning shows poor performance in the
recognition of multivariate or nonlinear decision boundary
in data processing of the functional magnetic resonance
imaging (fMRI) and is prone to overfitting. Moreover, the
machine learning algorithm has a poor processing effect on
small samples and high-dimensional and high-noise data.
*e network structure of the deep learning model is rela-
tively complicated, and there are disadvantages such as high
difficulty in reverse analysis, insensitivity of high dimen-
sionality, and nonrobustness in the process of fMRI data
processing [6]. Support vector machine (SVM) clusters take
advantage of the SVM algorithm in fMRI data processing,
randomly extract some features to build multiple SVM base
classifiers, and finally make classification decisions on the
test samples by means of equal weight voting. Studies have
pointed out that the classification accuracy (ACC) of SVM
clusters for Alzheimer’s patients and normal people is as
high as 74.44% [7]. At present, SVM clusters still have the
disadvantages of ignoring the redundancy among SVM
individuals in fMRI data processing, and the effectiveness of
the SVM base classifier cannot be determined [8].

In summary, the processing of fMRI data byMCRSVMC
still needs to be further optimized. *erefore, the
MCRSVMC algorithm was optimized, and a brain region
classification model was established in this study. *e
nondementia patients with cognitive dysfunction after CIS
were selected as the research objects, and the brain classi-
fication model based on MCRSVMC algorithm was used to
evaluate the two different therapeutic effects of cognitive
dysfunction in CIS patients, aiming to provide a reference
basis for the clinical diagnosis and treatment of CIS patients.

2. Materials and Methods

2.1. Research Objects and Grouping. 36 nondementia inpa-
tients with cognitive dysfunction after CIS who were ad-
mitted to the hospital from February 2019 to December 2020
were selected as the research objects, including 20 males and
16 females who were 50–80 years old (with the average age of
63.59± 5.42 years). *e inclusion criteria were defined as
follows: patients with clear consciousness and with the
course of disease of ≤1 year; patients who were right-handed;

patients whose diagnosis was in line with the CIS diagnosis
and treatment standards set by the Chinese Medical Asso-
ciation and the Montreal Cognitive Assessment Scale
(MoCA) score <26 points; and patients with no contrain-
dications to fMRI examination. *e exclusion criteria were
defined as follows: patients with impaired consciousness,
severe vision, and hearing and speech impairments; patients
who were unable to complete the health assessments; pa-
tients withmultiple sclerosis or brain tumors and other brain
diseases; patients with cognitive dysfunction caused by other
reasons, such as Alzheimer’s disease and Lewy body de-
mentia; and patients with tumors, severe organs, endocrine
system, and other diseases. According to different treatment
methods, they were rolled into a control group (drug
treatment) and an intervention group (drug + acupuncture),
with 18 cases in each group. *e process had been approved
by the ethics committee of the hospital, and all subjects
included in the study had signed the informed consent
forms.

2.2. Establishment of the Brain Classification Model Based on
the MCRSVMC Algorithm. Clustering displays the inherent
properties and laws of the data by learning from unlabeled
samples. *e SVM cluster uses multiple SVM classifiers for
combined prediction, and its generalization performance is
much better than a single SVM [9]. In this study, an au-
tomatic anatomical labeling (AAL) prior template was used
to divide the brain region to obtain 90 regions of interest
(ROIs).*e degree value Yi of brain area i reflected the status
and role of a certain brain area in the entire brain area
network. *e degree value Yi can be expressed as follows:

Yi � 􏽘
n

j�1
xij. (1)

In the equation above, i≠ j, and n represents the number
of brain areas. If there was an edge from brain area i to brain
area j, then xij � 1; if there was no edge from brain area i to
brain area j, then xij � 0.

*e shortest distance for the information of brain area i
to reach brain area j was called the shortest path Dij, which
could be calculated with equation (2), in which yij repre-
sented any distance between brain area i and brain area j:

Dij � min yij􏼐 􏼑. (2)

Local efficiency Ei represents the ability of information
exchange between neighbor nodes of brain area i, and its
expression is given as follows:

Ei �
1

zi zi − 1( 􏼁
􏽘

i≠ j∈μi

1
Dij

. (3)

In the above equation, zi represents the number of
neighbors of brain area i, and μi represents the graph
composed of all brain areas directly connected to brain area
i.

*e clustering coefficient Gi represents the possibility
that the neighbors of brain area i were neighbors to each
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other. It could be expressed as equation (4), in which e refers
to the number of edges that actually exist between neighbors
of brain area i:

Gi �
e

G
z
zi

�
2e

zi zi − 1( 􏼁
. (4)

To improve the generalization performance of the
model, a clustering algorithm was introduced in the
MCRSVMC algorithm to eliminate weak learners with low
ACC and high similarity (SIM). In the process of clustering,
a variety of clustering methods are used to control the
convergence speed of clustering. For a given dataset
a1, a2, · · · , al􏼈 􏼉, its corresponding individual learner could be
defined as SVM1, SVM2, · · · , SVMn􏼈 􏼉; then, the classification
of an SVM learner can be expressed as follows:

fi(a) �
1, SVMicorrect classification,

0, SVMimisclassification.
􏼨 (5)

It was supposed that b was the number of samples that
can be correctly classified by SVMi and SVMj in the dataset; c
was the number of samples that were correctly classified by
SVMi but incorrectly classified by SVMj; d referred to the
number of samples that were classified incorrectly by SVMi
but correctly classified by SVMj; and e represented the
number of samples that were classified incorrectly by both
SVMi and SVMj. *en, b, c, d, and e can be expressed as the
following equations:

b � 􏽘
l

k�1
D f(k,i) � f(k,j) � 1􏽨 􏽩, (6)

c � 􏽘
l

k�1
D f(k,i) � 1􏼐 􏼑∧ f(k,j) � 0􏼐 􏼑􏽨 􏽩, (7)

d � 􏽘

l

k�1
D f(k,i) � 0􏼐 􏼑∧ f(k,j) � 1􏼐 􏼑􏽨 􏽩, (8)

e � 􏽘
l

k�1
D f(k,i) � f(k,j) � 0􏼐 􏼑􏽨 􏽩. (9)

In equations (6)–(9), D[ ] represents the indicator
function.*e dual optimizationQij between SVMi and SVMj
can be expressed as equation (10), where the value range of
Qij could be calculated:

Qij �
be-cd
be + cd

. (10)

*e correlation coefficient Rij between SVMi and SVMj
was a measure of the degree of correlation between two
learners, and its calculation method can be expressed as
shown in equation (11), where the value range of Rij was
[−1,1], both Rij and Qij were the same as positive and
negative, and Rij≤Qij.

Rij �
be-cd

�����������������������
(b + c)(b + d)(e + c)(e + d)

􏽰 . (11)

*e kappa statistic was a coefficient reflecting the degree
of consistency between two learners, and the kappa statistic
(Kij) between SVMi and SVMj can be expressed as the
following equation:

Kij �
2(b d − ce)

(b + c)(b + d)(e + c)(e + d)
. (12)

*e distance measure (Disij) between SVMi and SVMj
represents the proportion of the samples with inconsistent
classification results of the two learners in the total samples,
and it could be calculated with the following equation:

Disij �
c + d

b + c + d + e
. (13)

In this study, the brain region classification based on the
MCRSVMC algorithm mainly involved the multilevel
clustering evolution process. For the brain dataset D, it was
classified into a collection and a test set, and the collection
mainly includes two parts: a training set and a verification
set. *e training set in the dataset D was to train the SVM-
based learner, obtain the classification result of the SVM
according to the verification set, and perform clustering
according to the SIM measurement index of the classifica-
tion result. It could be divided into g clusters, and the in-
dividual learner with the highest classification ACC was
selected from each cluster to be the representative member.
After multiple clustering processes, the number of clusters
would gradually decrease. When the number of clusters in
the model reached the set threshold h, the model calculation
would stop. *e SVM classifier composed of the highest
ACC SVM was selected from h clusters to form a new
cluster. *e flowchart of brain area classification based on
MCRSVMC algorithm is shown in Figure 1.

2.3. Application of the Brain Area Classification Model Based
on the MCRSVMC Algorithm in CIS Diagnosis. For the rs-
fMRI technology to obtain fMRI images, it was preprocessed
through time correction, head movement correction, image
standardization, spatial smoothing, linear drift removal,
filter processing, and removal of covariates. *e pre-
processed fMRI image was compared with the AAL atlas to
establish the corresponding functional connection matrix,
and the fMRI image was classified by the brain region
classification model of the MCRSVMC algorithm to obtain
the optimal feature subset, acquiring the abnormal brain
area corresponding to the optimal feature subset. Figure 2
shows the application process of the brain region classifi-
cation model based on the MCRSVMC algorithm in the
diagnosis of nondementia patients with cognitive dysfunc-
tion after CIS.

ACC, SEN, and SPE were adopted to evaluate the brain
classification performance of the MCRSVMC algorithm in
this study. ACC referred to the proportion of samples that
were correctly classified among all samples, SEN represented
the proportion of all positive samples that were correctly
classified, and SPE referred to the proportion of all negative
samples that were correctly classified.
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ACC �
TP + TN

TP + FP + FN + TN
, (14)

SE �
TP

TP + FN
, (15)

SP �
TN

TN + FP
. (16)

In equations (14)–(16), TP represents the number of true
positive samples; FP represents the number of false positive
samples; FN represents the number of false negative sam-
ples; and TN represents the number of true negative
samples.

2.4. BOLD-fMRI Scan and Treatment of CIS Patients. In this
study, the patient was scanned using a Siemens MAGNE-
TOM Skyra 3.0 magnetic resonance imaging system. All CIS

patients underwent BOLD-fMRI scans before and after
treatment in a resting state. *e T1-weighted image
(T1WI) was performed as follows. *e spin echo sequence
was adopted with 33 layers of the axial plane, and the
scanning parameters were given as follows: the repetition
time (TR) was 2,000ms, echo time (TE) was 30ms, field of
view (FOV) was 24 cm × 24 cm, matrix was 64 × 64, re-
versal time was 750 ms, layer thickness was 3.0 mm, and
layer interval was 0.6 mm. *e fMRI scan was performed
with the following operations. *e planar echo imaging
sequence was adopted to scan the resting-state functional
image on the same plane as the T1 image. *e scanning
parameters were set as follows: TR was 2,000ms, TE was
30ms, reversal angle was 90 degrees, FOV was
24 cm × 24 cm, matrix was 64 × 64, layer number was 30,
and layer thickness was 5 mm. *e changes in regional
homogeneity (ReHo) before and after treatment were
compared between the two groups.

Data set D

Training subset 1 Training subset 2

SVM1

SVM1

SVMk1 SVMk

SVM1g

Cluster1

Cluster1

Clusterg

Clusterh

SVM2 SVMn

Second clustering based on similarity

First clustering based on similarity

K-th clustering based on similarity

MCRSVMC based on multi-level
clustering evolution 

Figure 1: *e flowchart of brain area classification based on the MCRSVMC algorithm.
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2.5.�erapeutic Regimen. Patients in the control group were
treated with conventional medical drugs. All patients were
treated with 5mg folic acid tablets + 500 ug mecobalamin
tablets + 610mg vitamin B, three times a day; in addition,
drugs to improve the cognitive function (5mg donepezil/
time/day) were given. Patients in the intervention group
were given with electrical acupuncture stimulation on the
basis of the aforementioned drug treatments. *ey were
placed in a supine position, routinely disinfected the
treatment area, and quickly inserted acupuncture needles
with 0.3mm× 40mm. Each point was punctured at a level of
0.5–0.8 inch. *e needle was twisted for 200 times/min and
left for 6 hours. *e patients were treated for 6 days a week,
with 1 day of rest for a concussive treatment for one month.

2.6. Statistical Methods. *e test data were processed using
SPSS 19.0 statistical software. *e measurement data were
expressed as mean± standard deviation (x + s), and the t-
test was adopted for comparison; the count data were
expressed in the form of percentage, and the χ2 test was used.
P< 0.05 indicated that the difference was statistically
significant.

3. Results

3.1. Comparison on Classification Performances. *e
MCRSVMC classification algorithm in this study was
compared with the random forest (RF), probabilistic neural
network (PNN), naive Bayes classifier (NBC), and K-nearest
neighbor (KNN) in terms of classification ACC, SEN, and
SPE, and the results are given in Figure 3. RF, SVM, PNN,
NBC, and KNN were all machine learning algorithms.

*e average classification ACC, SEN, and SPE of the
MCRSVMC algorithm were 84.25± 4.13%, 91.07± 3.51%,

and 89± 3.96%, respectively, which were all much better
than those of other algorithms (P< 0.01).

Figure 4 shows the image processing effects of different
algorithms. It can be clearly concluded that MCRSVMC
algorithm had the best enhancement effect on cranial fMRI
images, which was better than other algorithms.

3.2. Selectionof theOptimalNumberofClassifiersandOptimal
Feature Subset. *e number of SVM classifiers corre-
sponding to the highest ACC of the MCRSVMC algorithm
was the optimal number of base classifiers. With the con-
tinuous increase in the number of SVM classifiers, the
MCRSVMC algorithm classification ACC showed a trend of
increasing first and then decreasing (Figure 5). When the
number of SVM classifiers was 410, the classification ACC of
the MCRSVMC algorithm reached the maximum value
(0.9429).

Further analysis of the optimal feature subset (Figure 6)
revealed that, as the number of important features continued
to increase, the MCRSVMC algorithm classification ACC
showed a trend of increase first and then decrease. When the
number of important features was 260, the classification
ACC of the MCRSVMC algorithm reached the maximum
value (0.9092).

3.3. Abnormal Brain Areas in CIS Patients. Based on the
classification method of the MCRSVMC algorithm,
the abnormal brain areas of CIS patients were analyzed
(Figure 7). *e analysis results revealed that the abnormal
brain areas of CIS patients were mainly distributed in the
temporal pole: the middle temporal gyrus (TPOmid.L), the
superior temporal gyrus (STG.L), posterior cingulate gyrus
(PCG.L), parahippocampal gyrus (PHG.R), middle frontal

Resting fMRI Image AAL Atlas

BOLD signal

Functional connection
matrix

MCRSVMC
classification

Optimal
feature subset

Figure 2: Flowchart of applying the brain area classification based on the MCRSVMC algorithm in CIS diagnosis.
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gyrus (MFG.L), Rolandic operculum (ROL.R), inferior
temporal gyrus (ITG.R), and fusiform gyrus (FFG.L).

3.4. Comparison on the Basic Data of Patients in Two Groups.
*e age, gender ratio, body mass index (BMI), course of the
disease, heterogeneity index score (HIS), andMoCA score of
the two groups of patients were compared, and the results
are given in Table 1.*e age, gender ratio, BMI, course of the
disease, HIS, and MoCA score of the two groups before
treatment were not statistically different (P> 0.05).

3.5. Comparison ofNeuropsychological Scales between theTwo
Groups of Patients after Treatment. *e MoCA scores,
LOTCA scores, and FIM scores of the two groups of patients
before and after treatment are compared in Figure 8, which

suggested that there was no obvious difference before
treatment (P> 0.05). After treatment, the MoCA scores of
the two groups of patients were increased, showing statis-
tically great difference (P< 0.05); the LOTCA scores and
FIM scores of the two groups of patients were extremely
increased in contrast to those before the treatment, showing
statistically great differences (P< 0.01). In addition, the
MoCA score, LOTCA score, and FIM score of the inter-
vention group (23.99± 0.28; 90.12± 5.44; 102.64± 2.49) were
higher than those of the control group (25.91± 1.17;
98.17± 4.92; 114.27± 2.59) after the treatment (P< 0.05).

3.6.Comparisonon theReHoValueofPatients before andafter
the Treatment. *e comparison on the ReHo value of the
intervention group and the control group before treatment
showed that the increased brain areas included the left dor-
solateral superior frontal gyrus and the left middle frontal
gyrus, and the decreased brain areas were the right posterior
cingulate gyrus and the left parahippocampal gyrus. However,
there was no statistical difference in the ReHo value between
the two groups (P> 0.05) (Table 2 and Figure 9).

In the control group, the brain areas with increased
ReHo values after treatment included the left para-
hippocampal gyrus, right temporal polar area, and right
middle frontal gyrus, while the brain areas with decreased
ReHo values included the bilateral inferior frontal gyrus and
left lateral central posterior back (Table 3 and Figure 10).*e
ReHo values of different brain regions were statistically
different compared with those before treatment (P< 0.05).

In the intervention group, the brain regions with in-
creased ReHo values after treatment compared with before
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Figure 3: Comparison on classification performances of different algorithms. (a–c) Comparison results of ACC, SEN, and SPE of different
algorithms, respectively. ∗ and ∗∗ indicated that the difference was statistically obvious (P< 0.05) and extremely statistically obvious
(P< 0.01) in contrast to the MCRSVMC algorithm, respectively.

Original
image

RF SVM PNN

NBC KNN MCRSVMC 

Figure 4: Display of image processing effects by different
algorithms.
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treatment included the left parahippocampal gyrus, left
middle temporal gyrus, right temporal polar region, and
right central anterior gyrus, while the brain regions with
decreased ReHo values included the right-side inferior
temporal gyrus, left inferior frontal gyrus, and right inferior
frontal gyrus (Table 4 and Figure 11). *e ReHo values of
different brain regions were statistically different compared
with those before treatment (P< 0.05). After treatment, the
intervention group only had brain areas with increased
ReHo values in the right inferior temporal gyrus and the
right inferior frontal gyrus in contrast to the control group,
showing statistical differences between the two (P< 0.05).

4. Discussion

After adopting the MCRSVMC algorithm, the diagnosis and
treatment effect evaluation of patients with cognitive dys-
function after CIS showed that the average classification
ACC, SEN, and SPE of the MCRSVMC algorithm were
84.25± 4.13%, 91.07± 3.51%, and 89.± 3.96%, respectively,
which were all much better than those of other algorithms
(P< 0.01). Wu et al. [10] used the SVM of 9 connected
feature subsets to classify the patients with different degrees
of cognitive dysfunction and found that the classification
ACC was 63.4%. Long et al. [11] used the multicore SVM
algorithm to classify the patients with different degrees of
cognitive dysfunction, reaching the ACC of 78.8%. *ere-
fore, the classification ACC of the MCRSVMC algorithm in
this study was obviously better than that of the current
algorithms.

In this study, drug therapy and acupuncture were used
to treat patients with cognitive dysfunction after CIS. *e
results showed that, after treatment, the MoCA score,

LOTCA score, and FIM score of the intervention group
(23.99 ± 0.28; 90.12 ± 5.44; 102.64 ± 2.49) were higher than
those of the control group (25.91 ± 1.17; 98.17 ± 4.92;
114.27 ± 2.59) (P< 0.05). *e ReHo values of the right
inferior temporal gyrus and right inferior frontal gyrus of
patients in the intervention group were much higher in
contrast to those of the control group (P< 0.05). *ese
results indicated that acupuncture could greatly improve
the cognitive dysfunction of patients. Acupuncture can
not only promote the regeneration and repair of synapses
and improve the function of the central nervous system
[12] but also stimulate the cerebral cortex through the
skull, improve the brain function under pathological
conditions [13], and promote the cortex around the ce-
rebral ischemic area. *e high expression of synapto-
physin accelerates the reconstruction of nerve function
[14]. Current research results show that human cognitive
function is highly correlated with the cortex such as the
frontal lobe, temporal lobe, and parietal lobe [15]. Li et al.
[16] pointed out that acupuncture treatment could effec-
tively improve the cerebral hemodynamics of patients and
found that ReHo of the right posterior cingulate gyrus and left
parahippocampal gyrus of the two groups of patients before
treatment decreased, suggesting that the nerves’ meta-excit-
ability was decreased, and the local brain function activities
were reduced, which indicated that ischemic damage to the
cingulate gyrus and parahippocampal gyrus can lead to
cognitive dysfunction [17]. *e increase of ReHo in the left
dorsolateral superior frontal gyrus brain area indicates that
these brain areas are a functional compensation for the
damaged brain area [18]. After treatment, ReHo values in the
left parahippocampal gyrus, right middle frontal gyrus, and
right temporal pole brain area increased in the two groups of
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Figure 6: Selection of the optimal feature subset.
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Figure 5: Selection of the optimal number of classifiers.
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(a) (b) (c)

(d) (e) (f )

(g) (h)

Figure 7: Distribution of abnormal brain areas of CIS patients. (a–h) *e distributions of TPOmid.L, STG.L, PCG.L, PHG.R, MFG.L,
ROL.R, ITG.R, and FFG.L, respectively.

Table 1: Comparison on the basic data of patients in two groups.

Item Control group (n� 18) Intervention group (n� 18) t value or χ2 value P value
Age (years) 63.06± 3.85 63.91± 3.27 0.363 0.745
Males (cases, (%)) 11 (30.56) 9 (25) 1.002 0.877
BMI (kg/m2) 25.19± 2.08 24.95± 3.19 1.307 0.161
Course of the disease (months) 5.76± 1.28 4.92± 2.03 0.684 0.532
HIS score 8.94± 0.99 9.23± 1.02 0.772 0. 447
MoCA score 22.32± 2.09 22.40± 1.13 1.348 0.191
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patients, and ReHo values in the right inferior temporal gyrus
and right inferior frontal gyrus increased more in the inter-
vention group. Such results indicated that the two treatment

methods could improve the brain function of the damaged
brain area, and acupuncture can improve the cognitive dys-
function more obviously.
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Figure 8: Comparison of neuropsychological scales between the two groups of patients after treatment. (a–c) Comparison results of the
MoCA score, LOTCA score, and FIM score, respectively. ∗ and # suggested that the difference was statistically observable in contrast to the
score before the treatment and the control group, respectively (P< 0.05); ∗∗ indicated that the difference was extremely great statistically in
contrast to the score before the treatment (P< 0.01).

Table 2: Brain areas with changed ReHo before the treatment of patients in two groups.

Brain area (AAL format) Coordinate
Number of voxels t value

X Y Z

Increased
Left dorsolateral upper frontal gyrus −27 −3 75 15 7.1422

Left middle frontal gyrus −39 21 36 17 2.7238
Right posterior cingulate gyrus 9 −48 12 10 −7.2517

Decreased Left hippocampal gyrus −15 −36 −9 12 −6.5426
Left lower frontal gyrus −15 15 −18 20 −2.9182
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Figure 9: Brain areas with changed ReHo before the treatment.

Table 3: Brain areas with changed ReHo after the treatment of patients in the control group.

Brain area (AAL format) Coordinate
Number of voxels t value

X Y Z

Increased
Left hippocampal gyrus −27 −30 −25 55 3.0221

Right middle frontal gyrus 48 39 10 54 2.8894
Right temporal pole 30 9 −40 51 2.2910

Decreased
Left central posterior back −47 −25 8 52 −4.9602
Left lower forehead left −21 24 −20 70 −5.6895
Right lower forehead left 18 30 −23 71 −5.7874
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Figure 10: Brain areas with changed ReHo of patients in the control group after the treatment.
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5. Conclusion

Based on the MCRSVMC algorithm, a fMRI image brain
region classification model was constructed and applied to
the diagnosis and efficacy evaluation of patients with cog-
nitive dysfunction after CIS. *e results showed that the
fMRI image brain region classification model based on the
MCRSVMC algorithm significantly improved the brain
region classification ACC, SPE, and SEN. However, there
were some shortcomings. It only evaluated the ReHo values
of BOLD-fMRI and failed to analyze the low-frequency
oscillation amplitude and functional connectivity. In the
future work, it would continue to analyze the impacts of
different treatments based on the MCRSVMC algorithm on
the BOLD-fMRI-related parameters. In summary, the ACC,
SPE, and SEN of the MRI image classification model based
on the MCRSVMC algorithm in this study were greatly
improved, and acupuncture showed a better therapeutic
effect on patients with cognitive dysfunction after CIS. *e
results could provide a basis for reference for the clinical
diagnosis and treatment of ischemic stroke.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.
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