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The method of tactile perception can accurately reflect the contact state by collecting force and torque information, but it is
not sensitive to the changes in position and posture between assembly objects. The method of visual perception is very
sensitive to changes in pose and posture between assembled objects, but they cannot accurately reflect the contact state,
especially since the objects are occluded from each other. The robot will perceive the environment more accurately if
visual and tactile perception can be combined. Therefore, this paper proposes the alignment method of combined
perception for the peg-in-hole assembly with self-supervised deep reinforcement learning. The agent first observes the
environment through visual sensors and then predicts the action of the alignment adjustment based on the visual feature
of the contact state. Subsequently, the agent judges the contact state based on the force and torque information collected
by the force/torque sensor. And the action of the alignment adjustment is selected according to the contact state and used
as a visual prediction label. Whereafter, the network of visual perception performs backpropagation to correct the network
weights according to the visual prediction label. Finally, the agent will have learned the alignment skill of combined
perception with the increase of iterative training. The robot system is built based on CoppeliaSim for simulation training
and testing. The simulation results show that the method of combined perception has higher assembly efficiency than
single perception.

1. Introduction

It is an important challenge for the intelligent robot to fully
observe environmental information in the complex unstruc-
tured environment. However, the perception capacity of the
robot will directly affect the robot’s performance in the task
[1–5]. It is difficult to meet current complex work demands
only relying on a single type of sensor to perceive the envi-
ronment. Besides, traditional programming methods in
assembly tasks require technicians with a high technical level
and rich work experience to complete a large amount of
code compilation and parameter deployment. This not only
takes time and effort but also limits the flexibility of the pro-
duction line. The traditional programming method in the
structured environment can no longer meet the production

requirements that require frequent upgrades. The program-
ming model of the robot has changed from hard coding to
teaching-playback for the rapid changes in the production
line [6–10]. The teaching-playback method greatly reduces
the workload of programming. Nevertheless, the teaching
method still requires a large number of parameter deploy-
ments like the traditional programming method. Therefore,
more research has focused on training robots to acquire
work skills independently with the learning-based method.
The trained robot can autonomously interact with the envi-
ronment to complete work. Robots mainly rely on visual and
tactile perception methods to perceive the environment in
the interacting process.

Tactile sensation is very important for humans to per-
ceive the environment, and it is also one of the important
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perception means for robots. The method based on force
control is mostly used to solve the task of precision assem-
bly. The force sensor, position sensor, and force/torque
(F/T) sensor are the most commonly used sensors based
on force control. They can accurately feedback the contact
force when the assembly parts are in contact with each other.
When three-point contact occurs in the peg-in-hole assem-
bly, the three degrees of freedom of the peg are restricted
by the hole, which makes it difficult to complete the inser-
tion for the peg with the traditional method. A novel align-
ment method based on geometric and force analysis is
developed to deal with this dilemma [11]. This method uses
the F/T sensor to measure the contact force information to
estimate the relative pose of the pile and hole.

The alignment between the peg and the hole is accom-
plished by compensating motion based on attitude estima-
tion. To address the assembly failure caused by the large
friction resistance and poor contact situations, a screw inser-
tion method was developed for peg-in-hole assembly [12].
The proposed method analyzes the point contact and surface
contact to reduce axial friction in the assembly process. And
it is still valid in the case of transition fit. For high-precision
assembly tasks, a large number of parameters often need to
be deployed, which technicians need to spend a lot of time
on programming deployment. Therefore, an easy to deploy
teach-less method is proposed to complete precise peg-in-
hole assembly [13]. Whereafter, an easy to deploy teach-
less method is proposed to complete precise peg-in-hole
assembly. The low accuracy of conventional programming
is compensated without artificial parameter tuning by
training based on deep reinforcement learning. Moreover,
a variable compliance control method based on deep rein-
forcement learning is proposed for the peg-in-hole of the
7-DOF with torque sensor robot to improve the efficiency
and robustness of the assembly task in the uncertain initial
state and complex environment [14]. The trained robot
can select passive compliance or active regulation to dispose
of the current environment, which makes the variable com-
pliance fewer adjustment steps than the fixed compliance. In
addition, the method of combined learning-based algorithm
and force control strategy is proposed [15]. It contains the
hybrid force/position controller and the variable impedance
controller. The hybrid force/position controller was designed
to ensure the safe and stabilization of the searching hole. The
variable impedance controller based on fuzzy Q-learning is
used to conduct compliance action. The proposed method
improves the stability and adaptability of the peg-in-hole
assembly. Many high-precision assembly tasks mostly choose
the method based on force control. However, the appearance
characteristics and related location information of the envi-
ronment cannot be well perceived for the force sensors.

Visual perception plays an important role in the robotic
perception of the environment. Visual perception can
quickly perceive the appearance characteristics and relative
position information of the object. It is difficult for visual
perception to process the occluded part when the target is
partially occluded. Human beings often rely on touch, hear-
ing, and smell to perceive the environment when their vision
is obscured. And the visual perception is interfered with by

environmental factors such as lighting, which leads to the
robot needing to work in a specific working environ-
ment [16].

In recent years, the field of visual perception has also
made numerous research progress with the vigorous devel-
opment of deep learning and deep reinforcement learning.
The robot of the combined system uses a two-level vision
measurement method in robot automatic assembly [17].
This technique has developed an accurate coordinate trans-
formation for the calibration of the dynamic coordinate sys-
tem. Whereafter, the hole was 3D reconstructed for the hole
edge point selection. This method makes the cost of the pose
determination become lower. And it also extends the visual
measurement range and improves the positioning accuracy.
In addition, the method of uncalibrated visual servoing is
used in peg-in-hole assembly, which is a three-phase assem-
bly strategy [18].

The designed system first uses an eye-to-hand mono
camera to perform attitude alignment, which makes the
assembly object and the predefined transition location paral-
lel to each other. Then, the system aligns the assembly object
and the predefined transition position collinearly. Finally,
the assembly object completed the longitudinal alignment.
Besides, a learning-based visual servoing method was used
to quicken the speed of the searching hole [19]. This method
uses the concept of domain randomization based on deep
learning to predict the position of the hole. The deep neural
network uses synthetic data for training to predict the hole’s
quadrant. Whereafter, the peg moves towards the hole
through visual servoing iteration. The diameter and the
length of the assembly are, respectively, 10mm and 70mm.
The assembly clearances between the peg and the hole are
0.4mm. It still can quickly complete the peg-in-hole assem-
bly when facing different surfaces with various colors and
textures in the real world. And the assembly time is less than
70 s. Whereafter, in order to peg-in-hole alignment, a visual
servoing based on learning was developed to faster align
with the hole [20]. The deep neural network for peg and hole
point estimates uses purely synthetic data to train. The
assembly system is equipped with two cameras and a special
lighting system, which can align the peg with the holes cov-
ered by different materials and then complete the insertion
of the peg through compliance control with force-feedback.
Moreover, the method of the dynamic position-based servo
can perform the microassembly with the micropeg of diam-
eter 80μmand the hole of 100μm [21].

The assembly system is equipped with encoders for posi-
tion servo, light source, and three CCD cameras to automat-
ically align, grasp, transport, and assemble. The process of
the microassembly has not the contact adhesion force. The
average time and the success rate of the assembly are 4mins
and 80%, respectively. In summary, the control method
based on the vision for the assembly has higher assembly
efficiency than force, but the assembly accuracy is not as
good as the method based on force. If the system based on
the vision method needs to improve the assembly accuracy,
the system needs to be equipped with a high-precision vision
sensor, a special lighting source, and spend more assembly
time. The control methods based on vision or force have
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their own advantages and disadvantages. If they can comple-
ment each other, the robot will have higher assembly effi-
ciency while ensuring assembly accuracy.

Humans often use the means of visual observation and
tactile perception to complete the peg-in-hole assembly. It
is possible to complete the peg-in-hole assembly of the
minuscule clearance under the condition of clear observa-
tion and sensitive tactile perception. On the one hand, we
can also use only visual observation to complete the assem-
bly. However, there needs to be sufficient clearance when
the state of the peg and the hole can be clearly observed.
Otherwise, it will cause the assembly to fail. On the other
hand, we can also use only the tactile perception to achieve
a successful assembly. However, it may take more time. So
the assembly speed of a robot using multiple perception
methods is often better than that of a single perception
method. Therefore, the current research of peg-in-hole
assembly mostly adopts the hybrid control method of visual
observation and tactile perception [22–26]. For instance, a
guidance algorithm based on geometrical information and
force control is proposed to improve the success rate of the
peg-in-hole assembling with complex shapes [7].

The proposed method makes a 6-DOF industrial robot
with the eye-in-hand camera chooses assembly direction
through spatial arrangement and geometric. And it deter-
mines the magnitude of force through kinesthetic teaching.
Besides, the dual-arm coordination robot adopts a hybrid
assembly strategy based on vision/force guidance for peg-
in-hole assembly [27]. This method can be used in round,
triangle, and square assembly parts with 0.5mm maximum
clearance. Baxter research robot has three vision sensors
placed on the left hand and right hand head, respectively.
The robot first uses visual guidance to achieve rough adjust-
ment. Afterward, the robot uses the force feedback mecha-
nism with the F/T sensor to perform precise adjustments.
The proposed method can ensure a high assembly success
rate for assembly parts of different shapes. Furthermore,
the modalities with different characteristics were designed
based on deep reinforcement learning for different geometry
peg-in-hole tasks with tight clearance [28]. The robot has
three sensors to collect the data of RGB images, F/T sensor,
and end-effector as input.

Our technique uses multiple inputs to establish a com-
pact multimodal representation to predict contact and align-
ment in the peg-in-hole assembly. And then, the robot
controller with haptic and visual feedback was realized
through the self-supervision training without the manual
annotation. Moreover, a novel method was proposed to find
the right inserting pose through trials with force feedback
and vision [23]. The adjustment times of the assembly were
minimized by the reinforcement learning training, which
uses force and visual feature design. In addition, the com-
bined method of learning-based algorithms and force con-
trol strategies were proposed to improve the efficiency and
safety of the assembly process [15]. This method takes
advantage of the MLP network to generate the action trajec-
tories during the hole-searching and uses the force/position
controller to ensure the safety and stability in the contact.
The variable impedance controller based on fuzzy Q-

learning was designed to insert the peg into the hole. The
proposed method improves the efficiency and effectiveness
of the assembly.

The current research of the peg-in-hole assembly uses
mostly multiple perception methods, but most of them use
a single perception method to adjust the alignment between
the peg and the hole. However, humans often use the
method of visual and tactile perception to complete this
work. The robot’s visual and force perception should be well
combined to better intelligent performance and higher
assembly efficiency.

In this paper, a hybrid control method of vision and tac-
tility is proposed based on deep reinforcement learning to
improve alignment efficiency for the peg-in-hole tasks. The
mapping relationship between visual features and tactile sig-
nals will be established by trial and error with the self-
supervised. Firstly, the RGB-D image is obtained by the
visual sensor. Secondly, the deep neural network extracts
visual features from the image and predicts the contact state.
Thirdly, the agent receives the force signal by the tactile sen-
sor to determine the current contact state as a visual predic-
tion label. Finally, the network of the visual prediction uses
this label to conduct the backpropagation calculation for
correcting the network weights. We introduce the working
principle of the peg-in-hole assembly in Section 2, and a
quick hole-searching strategy is designed. In Section 3, the
hybrid control method is proposed for the peg-in-hole
assembly to improve assembly efficiency. In Section 4, the
simulation results in CoppeliaSim and analysis results are
presented. Section 5 elaborates the conclusions and future
work.

2. Working Principles and Analysis of Peg-in-
Hole Assembly

2.1. Analysis of the Contact State between the Peg and the
Hole. The task of peg-in-hole assembly is mainly divided
into the grasping stage, the hole-searching stage, the align-
ment stage, and the insertion stage. The task of the grasping
stage is to grasp the peg and move it to the vicinity of the
hole. The task of the hole-searching stage is to visually detect
the edge and the center of the hole and then move the peg to
the center position of the hole. The task of the alignment
stage is to adjust the posture of the peg, so that the posture
alignment is completed between the peg and the hole. The
task of the insertion stage is to insert the peg into the hole
after alignment. In the assembly process, there are three vital
contact states as shown in Figure 1. The bottom of the peg
makes surface contact with the upper surface of the hole
after moving the peg. This contact is called surface contact,
as illustrated in Figure 1(a). The point contact will occur
between the inside of the hole and the surface of the peg if
the peg is close enough to the center of the hole. Two-
point contact and three-point contact are shown in
Figures 1(b) and 1(c), respectively. The plane contact only
occurs in the hole-searching stage. It means that the position
of the hole has been found when the point contact has
occurred. It means that the robot has completed the task of
the hole-searching stage and entered the alignment stage.

3Journal of Sensors



The key stages that affect the efficiency of peg-in-hole assem-
bly are the hole-searching stage and the alignment stage.
Their details are introduced in Section 2.2 and Section 2.3,
respectively.

2.2. Working Principles of Searching Hole

2.2.1. The Method of Force-Based Searching Hole. Firstly, the
peg will be moved to the surface of the hole, which produces
a plane contact state between the peg and the hole. At this
time, the peg situates the outside of the hole. Subsequently,
the peg searches for the position of the hole with an Archi-
medes spiral trajectory. During the search process, the center
of the peg gradually approaches the center of the hole. The
peg will be inserted into the hole or tilted in the inside of
the hole under the action of the assembly force when the
position of the shaft and the hole are close enough. The
peg went into the inside of the hole by this time, that is,
the work of the searching hole is completed and the adjust-
ment phase is entered. The method of force-based searching
hole often spends more time than the vision-based.

2.2.2. The Method of Vision-Based Searching Hole. The
image data expressing the current environment information
is obtained through the vision sensor. And then, it is applied
edge detection with the Canny operator. But the edge detec-
tion is susceptible to interference from image noise.
Therefore, image noise removal must be performed with
Gaussian filtering before the edge detection. The image noises
will be eliminated by the Gaussian smoothing filter, and the
Gaussian kernel used by the filter is described as follows:

K = 1
273

1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

2
666666664

3
777777775
: ð1Þ

And after that, the system calculates the intensity gradi-
ents and direction with the Sobel operator. The convolution
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Figure 1: Schematic diagram of contact state based on (a) plane contact, (b) two-point contact, and (c) three-point contact.
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arrays need to be applied to the x and y directions, respec-
tively, to calculate the gradient magnitude and direction.
The convolution arrays are shown as follows:

dx =
−1 0 1
−2 0 2
−1 0 1

2
664

3
775, ð2Þ

dy =
−1 −2 −1
0 0 0
1 2 1

2
664

3
775: ð3Þ

The intensity gradients S determine whether the point is
an edge point. The large gradient value indicates that the gray
value around the point changes quickly and is an edge point.
The small gradient value indicates that the point is not an
edge point. The gradient direction θ indicates the direction
of the edge. The calculation formula of the intensity gradients
S and direction θ is described as follows:

S =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx

2 + dy
2

q
, ð4Þ

θ = arctan
dy
dx

: ð5Þ

Subsequently, the system performs the nonmaximum
suppression operation for each pixel to filter out nonedge
pixels. First of all, the gradient direction θ is approximated
as one of 0, 45, 90, 135, 180, 225, 270, and 315. That is, the
gradient direction θ is defined as eight directions in a two-
dimensional space. And then, it compares the intensity gradi-
ents S of each pixel. Finally, the pixel would be retained if the
intensity gradients S of the pixel is the largest; otherwise, it is
suppressed to 0. The purpose of this process is to make the
blurred boundary become sharp. There are still many image
noises in the image after the process of nonmaximum sup-
pression. This method is more sensitive to noise, so it is nec-
essary to filter for image blurring and denoising. Thereafter,

the hysteresis threshold will be used to further process the
noise. The method sets the upper bound and the lower bound
of the threshold. It is considered to be an edge if the intensity
gradients of the pixel are greater than the upper bound of the
threshold, which is called a strong edge. It must not be an
edge if its intensity gradients are less than the lower bound
of the threshold, which will be removed. When the intensity
gradients of the pixel are in threshold interval, it is considered
as the weak edge. At this time, these pixels can only be consid-
ered as the candidate of the edge. They will be retained if it is
connected to the edge; otherwise, it will be removed. The
upper bound of the threshold is to distinguish the contour
of the object from the environment, which determines the
contrast between the object and the environment. The lower
bound of the threshold is used to smooth the contour of the
edge. The contour of the edge may be discontinuous or not
smooth enough when the upper bound of the threshold is
set too large. The detected edges of the contour may not be
closed at this time. The lower bound of the threshold can
make up for this; it can smooth the contour or connect the
discontinuous parts.

In this way, a complete outline can be obtained, as illus-
trated in Figure 2(a). When the edge detection has been
completed, the Hough gradient method is used to detect
the center of the hole. This method will draw straight lines
along the gradient direction of the pixels for all edge pixels.
The straight line is perpendicular to the tangent line of the
boundary pixel, which is the normal line.

The system will accumulate votes in the Hough two-
dimensional accumulator space after the normal line of all
contour pixels is drawn. The pixel with more votes is more
likely to be the center of the hole. The robot gradually moves
the peg to the inside from the outside of the hole after deter-
mining the center of the hole, as shown in Figure 2(b). How-
ever, during the peg approaches the center of the hole, it will
slide down to the center of the hole under the action of the
assembly force if the peg is close enough to the center of
the hole. Subsequently, the peg will convert from plane con-
tact to two-point contact or three-point contact. At this
time, the work tasks of the hole-searching stage have been
completed and the alignment stage has been entered.

(a) (b)

Figure 2: Schematic diagram of visual recognition with (a) edge detection of the hole and (b) position detection of the center for the hole.
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2.3. Working Principles of Alignment. The adjusting posture
for the peg usually uses the method of compliance-based
with force feedback to align the hole whether the assembly
control method is force-based or hybrid control based on
vision and force. When the point contact occurs, the peg will
overcome the contact friction force between the peg and the
hole under the action of the assembly force Fass and slide to
the center of the hole, as shown in Figure 3(a).

This phenomenon of sliding to the center of the hole is
called the “natural attraction” of compliance-based peg-in-
hole assembly. For instance, the assembly force exerted by
the robot on the peg causes a corresponding reaction force
at the contact point A and B between the peg and the hole.
The sum of the reaction forces FRFsum on the contact points
always points to the center of the hole, as illustrated in
Figure 3(b). The projections of the assembly force Fass on
the xy-plane and the z-axis are Fr and Fz , respectively, as
shown in Figure 3(c). Fz is always vertically downward,
but the direction of Fr is uncertain. They will counteract
each other when the directions of FRFsum and Fr are incon-
sistent. In this case, the peg cannot overcome the friction

at the contact point and will keep the peg stationary. When
the direction of FRFsum and Fr are consistent, the peg will
overcome the friction at the contact point to slide to the cen-
ter of the hole.

This adjustment method based on compliant control can
smoothly complete the peg-in-hole assembly. However, it
will also have some difficult situations, such as the peg slip-
ping out of the hole and larger position errors or posture
errors. Humans often rely on the cooperation of vision and
tactile to deal with this dilemma. Therefore, this research
improves the work efficiency of the peg-in-hole assembly
by training the vision and tactile cooperation of the robot.
The training details will be introduced in Section 3.

3. Alignment Method of Combined
Perception for Peg-in-Hole

The assembly system for peg-in-hole is mainly composed of
hole-searching module and alignment module. The perfor-
mance of the alignment module determines the alignment
efficiency. The current research usually uses alignment

x
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ψy

ψ

Fass

(a)

Hole

y

x

BPeg

A
FRFsum

FRFB

FRFA

(b)

Fr

Fz A, B

(c)

Figure 3: Schematic diagram of contact force analysis illustrating (a) contact force. (b) Top view of contact force analysis. (c) Side view of
contact force analysis.
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methods based on force control. This method performs well
when dealing with smaller position and posture errors, but it
performs poorly when dealing with larger position and pos-
ture errors. This is because the force-based control method
can only perceive the change of the contact state but cannot
intuitively perceive the change of the spatial position and
posture of the peg. Therefore, we propose a multiperception
alignment method with vision and tactility based on the
analysis in Section 2.3.

3.1. Working Principles of Combined Perception with Deep
Reinforcement Learning. Tactile perception with a force/tor-
que sensor can accurately perceive the information of the
contact state, but it is not sensitive to changes in spatial posi-
tion and posture. Visual perception can intuitively reflect the
change of spatial position and posture. However, when the
perceived object is in contact with other objects, visual per-
ception cannot accurately perceive the contact state. If visual
perception and tactile perception can be combined, the intel-
ligence of the robot will be further improved. In this work,
the robot perceives the relative position and posture of the
peg and the hole through the visual sensor to make adjust-
ment action decisions. Then, the robot perceives the infor-
mation of the contact state through the force/torque
sensor, and the information of contact force and torque is
shown in Figure 4.

Afterward, the robot gives the adjustment action based
on tactile information as a prediction label of the current
state [29]. Subsequently, if the predicted action is inconsis-
tent with the label, the backpropagation calculation is per-
formed on the neural network to modify the weight [30].
Finally, the robot can establish a mapping relationship
between visual perception and tactile perception after train-
ing, so that the robot is sensitive to changes in position, pos-

ture, and contact force. The training process is shown in
Figure 5.

The proposed method enables the robot to learn the
alignment skills for peg-in-hole assembly through training
based on self-supervised deep reinforcement learning. Thus,
the decision-making problem of the alignment adjustment
process is transformed into a probabilistic problem of the
Markov decision processes. At the time t, the robot chooses
action at according to the observed environment state st .
The environment state st transitions to st+1, which has
obtained the reward Rt+1 = r. The transition probability of
the state can be expressed as follows:

p st+1 ∣ st , atð Þ≐Pr st+1 ∣ st , atf g =〠
rϵR

p st+1, Rt+1 ∣ st , atð Þ: ð6Þ

The state-action-reward chain is saved as a sample Di:

Di = st , at , st+1, Rt+1ð Þ: ð7Þ

The agent uses the strategy πðsÞ to choose executable
actions at from action space AðsÞ. The process of training
robots to learn skills can also be seen as maximizing the
reward of the agent. The agent also obtains the optimal strat-
egy π∗ðsÞ when the total reward Gt is maximized.

Gt≐Rt+1 + γRt+2 + γ2Rt+3+⋯ =〠∞

k=0
γkRt+k+1, ð8Þ

where γ = 0:5 is the future discount factor.
The proposed method uses off-policy Q-learning, and its

action-value function is to evaluate the expected value Q for
the action in the current state:
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Figure 4: Interaction between peg and hole based on (a) contact forces and (b) contact torques.
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Qπ st , atð Þ≐Eπ Gt ∣ st , at½ � = Eπ 〠∞

k=0
γkRt+k+1 ∣ st , at

" #
: ð9Þ

This greedy strategy will select the optimal action a∗t
with the highest Q value; the agent obtains the optimal pol-
icy π∗ðstÞ = a∗t = argmax

a∈AðsÞ
Qπ∗ðst , atÞ and the optimal action-

value function Qπ∗ðst , atÞ after the completion of training:

Qπ∗ st , atð Þ = Eπ Rt+1 + γ max
at+1

Qπ∗ st+1, at+1ð Þ ∣ st , at
� �

=〠
rϵR

p st+1, Rt+1 ∣ st , atð Þ Rt+1 + γ max
at+1

Qπ∗ st+1, at+1ð Þ
� �

:

ð10Þ

3.2. Neural Network Architecture. The alignment module
builds the neural network based on deep Q-networks by
modeling Q-function. It has two convolutional neural net-
works with the same structure, namely, the target network
and the evaluation network. The agent observes the environ-
ment to obtain RGB-D images as the input of the neural net-
work. Initially, the RGB-D image is processed by the
convolutional layer with the 5 × 5 convolution kernel and
then performed batch normalization. Whereafter, it uses
the ReLU activation function for nonlinear activation. Sub-
sequently, max-pooling is used to reduce the deviation of
the estimated mean value caused by the parameter error of
the convolutional layer. The unit composed of convolutional
layer, batch norm, ReLU, and max-pooling layer is defined
as a convolution unit.

The network has six convolutional units, followed by
three linear layers interleaved with two ReLU activation
layers. Firstly, the target network outputs the adjustment
action at of the current state with softmax after inputting
the RGB-D image. Then, the evaluation network evaluates
the output of the target network. Afterward, the state st tran-
sitions to st+1 after performing at the action, and the reward
value Rðst , atÞ is obtained. The evaluation network conducts
the backpropagation calculation according to the reward R
ðst , atÞ = r to update the parameters θi of the evaluation net-
work:

θi+1 = θi + α r + γ max
at+1

Qπ st+1, at+1 ; θið Þ −Qπ st , at ; θið Þ
� �

� ∇Qπ st , at ; θið Þ,
ð11Þ

where the learning rate α is set as 10−4.
The parameters θi of the evaluation network are updated

in real-time; however, the parameters θi
− of the target net-

work are fixed during a batch of iterative training. The target
network does not conduct backpropagation calculations.
The parameters θi

− of the target network are updated by
copying parameters θi from the evaluation network after a
batch of iterative training, that is, θi

− ⟵ θi. The predicted
difference ΔQ = jQE

θi −QT
θi

− j gradually shrinks between
the predicted value QT of the target network and the pre-
dicted value QE of the evaluation network as the number
of iterative training increases. The Huber loss function L i
used for training is described as follows:

L i =

1
2 × QE

θi −QT
θi

−
� �2

, forΔQ = QE
θi −QT

θi
−

��� ��� < 1,

QE
θi −QT

θi
−

� �
−
1
2

����
����, otherwise:

8>><
>>:

ð12Þ

The collected continuous sample in training with self-
supervised deep reinforcement learning may always be cor-
related. However, the correlation of the continuous sample
will make the variance of the parameter update relatively
large. The prioritized experience replay is used to reduce

Start

Environmental perception 

Contact state prediction

Check
contact

state

Success
Reward

Posture alignment

Failure 

Check
alignment

Success

Stop

Figure 5: Flowchart of peg-in-hole procedure.
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sample correlation and nonstationary distribution. There-
fore, the training uses experience replay memory Di to store
each transition ðst , at , st+1, Rt+1Þ. Afterward, the training
samples a minibatch of transitions from the replay buffer
to minimize the loss function. The pseudocode is described
in Algorithm 1.

4. Simulation Results and Analyses

4.1. Alignment Strategy Training with Visual and Tactile
Perception. The alignment training of peg-in-hole assembly
with self-supervised deep reinforcement learning will be
conducted in CoppeliaSim, as illustrated in Figure 6. The
assembly system in simulation is equipped with a UR5
robotic arm and RG2 gripper. The working space fixedly
places two RGB-D vision sensors. The force/torque sensor
is installed between the RG2 gripper and the UR5 robotic
arm. The diameter and length of the assembly peg are ϕ30
mm and 100mm, respectively. The assembly clearance of
the peg and the hole is 0.8mm. The simulation workstation
has configured the CPU of 3.80GHz Intel(R) Xeon(R) Gold
522, the GPU of NVIDIA GeForce RTX 3090, and the RAM
of 128GB. The software version of CoppeliaSim on the
Ubuntu 16.04 operating system is v4.0 with Bullet Physics
2.83 for dynamic and inverse kinematics modules.

The alignment strategy uses trial and error training
based on self-supervised deep reinforcement learning.
Firstly, the agent observes the environment through visual
perception and obtains an RGB-D image. Then, the agent
predicts the contact state and selects adjustment actions.
Afterward, the robot recognizes the contact state based on
the information of tactile perception, and it gives adjustment
action as a prediction label for the visual prediction. Subse-
quently, visual prediction performs backpropagation calcu-
lations based on the prediction label.

Finally, the agent establishes the mapping relationship
between visual perception and tactile perception through

the iteration of training. The agent will autonomously train
14,000 times without human intervention. The exploration
strategy of the agent uses the ε-greedy strategy, in which
its initial value is set to 0.5, and then gradually annealed to
0.1. The agent is more likely to select exploration actions
in the early stages of training.

The purpose of exploration is that this can enable the
robot to collect more contact state information at the begin-
ning of training. Afterward, the agent selects the action with
the highest Q value according to the strategy πðstÞ. As shown
in Figure 7, the rewards obtained by the agent gradually
increase to the convergence value as the accuracy of predic-
tion increases.

4.2. Simulation Results for Peg-in-Hole Assembly. A series of
simulation tests were performed to compare the performance

1: Initialize replay buff D
2: Initialize evaluation network parameters θi
3: Initialize target network parameters θi

− = θi
4: for episode=1, Mdo
5: fort = 1, Tdo
6: Obtain image st from environment
7: With probability ε select a random adjustment action at
8: otherwise select adjustment action at = argmaxQðst , at ; θi−Þ
9: Execute adjustment action at in CoppeliaSim
10: Obtain image st+1 and reward Rt+1 = rt from environment
11: Store transition ðst , at , Rt+1, st+1Þ in D
12: Sample random minibatch of transitions ðst , at , Rt+1, st+1Þ from D

13: Set QE j =
rj , for terminal sj+1
rj + γmaxQ̂ðsj+1, aj+1 ; θj−Þ , for non − terminal sj+1

(

14: Perform a gradient descent step on ðQE
θi −QT

θi
−Þ2

15: end for
16: end for

Algorithm 1: System pipeline.

Visual sensor

UR5 robot

Force/torque sensor 

RG2 gripper

Hole

Peg

Figure 6: Schematic diagram of simulation scene.
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of tactile perception, multiple perceptions in stages, and
combined perceptions in peg-in-hole assembly. As analyzed
in Section 2, the method of tactile perception (TP) refers to
the peg-in-hole assembly using only the F/T sensor. The
hole-finding stage uses visual perception, and the alignment
stage uses tactile perception, and this method is called mul-
tiple perceptions in stages (MP). The proposed method in
this work is called combined perceptions (CP). The robot
will perform 1,000 peg-in-hole assembly tests after complet-
ing the training with self-supervised deep reinforcement
learning. In addition, the robot will, respectively, use
methods tactile perception and multiple perceptions in
stages to perform 1,000 peg-in-hole assembly tests. The sim-
ulation test results are shown in Table 1.

The total time for peg-in-hole assembly using the
method of tactile perception and multiple perceptions in
stages is 38.46 hours and 34.31 hours, respectively. However,
the total time of the combined perceptions is 32.15 hours. It
can be seen that the method of combined perceptions takes
6.31 hours less than the method of tactile perception from
the simulation results, and the assembly efficiency has
improved by 16.41% compared with the method of tactile
perception. Besides, the method of combined perceptions
reduces 2.16 hours less than the method of multiple percep-
tions in stages, and the assembly efficiency has improved by
6.3% compared with the method of multiple perceptions in
stages. This proves that the proposed method not only learns
alignment skills but also improves assembly efficiency. Sub-
sequently, 100 assembled samples are randomly selected
for analysis and comparison, as illustrated in Figure 8.

Although the minimum assembly time and the maxi-
mum assembly time are relatively close among the three per-
ception methods, the distribution area of the assembly time
using the method of combined perceptions concentrates on
a smaller time area. The total standard deviation of tactile
perception (TP), multiple perceptions in stages (MP), and
combined perceptions (CP) are 11.6926, 8.2279, and

5.1998, respectively. In addition, the standard error was also
analyzed for the three methods, as shown in Figure 9. It can
be seen that the method of the combined perceptions not
only has better efficiency but also has smaller efficiency
fluctuations.
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Figure 7: Iterative training reward for an agent.

Table 1: The total time of peg-in-hole assembly with three
perception methods.

Method Total assembly time (h)

Tactile perception (TP) 38.46

Multiple perceptions in stages (MP) 34.31

Combined perceptions (CP) 32.15

Number of assembly times (N) Number of assembly tim
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Figure 8: Scatter plot of assembly time.
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5. Conclusions and Future Work

In this paper, we proposed an alignment method of combined
perception for peg-in-hole assembly with self-supervised deep
reinforcement learning. The proposed method has combined
tactile perception and visual perception to better perceive the
environment information. The agent does not need human
interference during the training process, which greatly reduces
the difficulty and cost of data collection. In CoppeliaSim sim-
ulation, with the iterative training of the agent, visual percep-
tion and tactile perception have established a mapping
relationship so that the robot can better perceive the changes
of environmental information in the assembly.

From the simulation results, it can be seen that the
assembly efficiency is improved after the agent learns the
combined perception, and the stability of the assembly effi-
ciency is better than the single perception method. The com-
bined perception increases the perception ability of the
robot, which will enable the robot to complete more com-
plex tasks in an unstructured environment. In future
research work, we hope to be able to apply the combined
perception method to more tasks. In addition, we will still
have committed to the research work about improving the
efficiency of the peg-in-hole assembly.

Data Availability

The data is available at https://github.com/Bensonwyz/
Alignment-Method-of-Combined-Perception.
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