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Considering various cyberattacks aiming at the Internet of Vehicles (IoV), secure pose estimation has become an essential
problem for ground vehicles. )is paper proposes a pose estimation approach for ground vehicles under randomly occurring
deception attacks. By modeling attacks as signals added to measurements with a certain probability, the attack model has been
presented and incorporated into the existing process and measurement equations of ground vehicle pose estimation based on
multisensor fusion. An unscented Kalman filter-based secure pose estimator is then proposed to generate a stable estimate of the
vehicle pose states; i.e., an upper bound for the estimation error covariance is guaranteed. Finally, the simulation and experiments
are conducted on a simple but effective single-input-single-output dynamic system and the ground vehicle model to show the
effectiveness of UKF-based secure pose estimation. Particularly, the proposed scheme outperforms the conventional Kalman filter,
not only by resulting in more accurate estimation but also by providing a theoretically proved upper bound of error covariance
matrices that could be used as an indication of the estimator’s status.

1. Introduction

With the continuous development of Artificial Intelligence
(AI), Internet of )ings (IoT), and high-performance
computing devices in intelligent transportation systems [1],
autonomous vehicles (AVs) have become one of the focus
research topics in the last decade. Implemented with AV
technologies, transportation safety and efficiency have been
greatly improved by reducing drivers’ workload, opti-
mizing resource allocation, alleviating traffic congestion,
and minimizing vehicle energy consumption. For AVs, it is
essential to accurately measure their pose (namely,
translation and rotation) and speed in real time for accurate
monitoring, path planning, behavioral decision-making,
and control [2, 3]. However, the inherent and tight con-
nection between AVs and networks makes AVs vulnerable
targets of cyberattacks. )erefore, secure pose estimation
under attacks has become a crucial problem worth
studying.

Vehicle pose estimation is a complex and challenging
task, which has attracted much attention in recent years.
Particularly, for a small Unmanned Aerial Vehicle (UAV), a
3D local pose estimation system has been presented in [4]
where the system is realized by fusing 3D position esti-
mations using a loosely coupled extended Kalman filter
(EKF) architecture. )e data come from an ultra-wideband
transceiver network, an inertial measurement unit sensor,
and a barometric pressure sensor. Pose estimation with state
or measurement constraints has been frequent in AV
navigation. In view of the inherent constraints, a formula-
tion based on the dynamic potential field has been proposed
in [5] to express states, measurements, and constraints on
connected Riemannian manifolds, and then, an information
fusion scheme of dynamic potential field system based on
multisensor measurement and constraints is designed. It is
worth noting that in recent years, due to the fusion of
multiple sensors, estimation results are more vulnerable to
frequent attacks. Liu et al. [6] discussed the AV secure pose
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estimation problem under cyberattacks to deal with the
possible sensor attacks, and an EKF reconfiguration scheme
has been designed to mitigate the influence of sensor attacks.

In the existing research, sensor attacks mainly include
Denial of Service (DoS) attacks [7] and deception attacks [8].
DoS attacks are one of the common attack methods used by
hackers, who try to make the target machine stop providing
services. Deception attacks mean that the attacker can
rearrange the data in the system to make the sensor or
controller receive false data, thus causing the system to fail to
function normally. By using a set of random variables of
Bernoulli distribution to describe randomly deception at-
tacks, a coupled unscented Kalman filter (UKF) has been
proposed [9] to propagate the sigma points of the UKF by
introducing the coupled terms, and the recursive filtering
problem of a class of complex discrete time networks with
random deception attacks has been studied. In [10], the
position sensor deception attack detection and estimation
problem is investigated for a local vehicle in a vehicle pla-
toon. A linearized model has been presented to describe the
longitudinal dynamics of a local vehicle. In [7], it is proposed
that the attacker behavior is limited only by the frequency
and duration of DoS attacks. If the communication links
used by the sensor to receive neighbor information lose
packet due to DoS attacks, the sensor will give up location
estimation. In our paper, we further assume that the sensor is
subject to random deception attacks with a given probability.
)is paper focuses on modeling the AV pose estimation
problem with attacks and secure estimation of vehicles’
poses in a 2D plane. Distinguished from the conventional
Kalman filter, an unscented Kalman filter-inspired secure
recursive estimator is designed to provide estimation,
allowing for possible attacks on sensors. By solving several
matrix difference equations, the upper bound of estimation
error covariance is guaranteed and correctly updated during
the recursive process. )e contributions are summarized as
follows:

(1) )e modeling of the system takes the occurrence of
random deception attacks into account, such that the
secure dynamic pose estimation problem has been
formulated for autonomous vehicles

(2) )e proposed unscented Kalman-type secure re-
cursive estimator provides a theoretically proved
upper bound for error covariance matrices with
stable and efficient state estimation

(3) )e feasibility and effectiveness of the proposed
approach are verified in both a simulated model and
the practical AV system, where single and multiple
attacks have been considered in experimental design

Notation 1. )e following notations are used throughout
this paper. We useRn to denote the n dimensional Euclidean
space, and Rm×n represents the set of all m × n matrices. E
denotes the mathematical expectation operator of an un-
derlying probability space, which will be clear from the
context. A>B implies that both A and B are symmetric and
A − B is positive definite. We let I be the identity matrix with

proper dimensions. Let ‖X‖ and ‖A‖ be the Euclidean norm
of a vector x and a matrix A, respectively. )e superscripts Τ
and − 1 denote matrix transposition and matrix inverse,
respectively. )e remainder of this paper is organized as
follows: Section 2 summarizes related work in secure state
estimation in cyberphysical systems. Section 3 presents the
system model and attack model for ground autonomous
vehicle pose estimation problem. )e estimator design and
mathematical proof are presented in Section 4, followed by
Section 5 that shows simulation results for an illustrative
Single-Input and Single-Output (SISO) system. Experi-
mental validation and results are shown in Section 6. Finally,
Section 7 concludes the paper.

2. Related Work

Cyberphysical System (CPS) is a complex system with in-
tegrated computing, networking, and physical environment.
As the interaction between physical and network systems
increases, CPS becomes more vulnerable to network attacks.
Some achievements have been made in secure dynamic state
estimation under sensor attacks [11, 12]. In [12], the state
estimation problem of a linear dynamic system is considered
when the measurement data of some sensors are damaged by
attackers. In [13], when the unknown subset of the sensor is
destroyed by the enemy arbitrarily, a secure state estimation
algorithm is proposed, and the upper bound of the reachable
state estimation error of the is given.

CPS plays an important role in many fields. In intelligent
transportation, regarding AV pose estimation, the relative
pose of AV when driving in a highly dynamic and possibly
chaotic environment was studied in [14], where a relative
pose estimation algorithm based on multiple nonoverlap-
ping cameras is proposed, and the algorithm is robust even
when the number of outliers is overwhelming. In [15], an
enabling multisensor fusion-based longitudinal vehicle
speed estimator was proposed for four-wheel-independently
actuated electric vehicles using a Global Positioning System
and BeiDou Navigation Positioning (GPS-BD)module and a
low-cost inertial measurement unit (IMU). Liu et al. [16]
presented a comprehensive evaluation of state-of-the-art
sideslip angle estimation methods, with the primary goal of
quantitatively revealing their strengths and limitations.
Wang et al. [17] focused on providing an LTR evaluation
system that adopts an IMU as the signal input. Unfortu-
nately, there is less attention on the AV secure pose esti-
mation problem. In our previous work [18], a secure
dynamic pose estimationmethod based on the filter has been
proposed to make the vehicle pose resilient to possible
sensor attacks. When all sensors on autonomous vehicles are
benign, the proposed estimator is consistent with the con-
ventional Kalman filtering. On this basis, a vehicle pose
estimation based on an unscented Kalman filter under
sensor attacks is proposed in this paper. Compared with
other estimators, the proposed estimator in this paper still
follows the framework of KF, but the next state prediction
becomes the expansion and nonlinear mapping of the sigma
point set. )is method has two advantages: (1) the possible
complex operation during Jacobian matrix computation for
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the nonlinear process equation could be avoided; (2) the
approach has better generality in advanced nonlinear sys-
tems, including those without explicit Jacobian formulation.

In our paper, we consider the impact of randomly oc-
curring deception attacks (possible sensor attacks) in the
design of a secure dynamic pose estimator for AV. By
utilizing the unscented Kalman filter algorithm combined
with matrix inequality techniques, we propose a secure
recursive estimation algorithm and derive an upper bound
of estimation error covariance by selected optimal estimator
parameters. Moreover, the proposed approach can be
implemented efficiently in real time and is suitable for re-
cursive computation in applications with limited compu-
tational capability.

3. Pose Estimation Problem for Ground
Vehicles under Attacks

In this section, we present the process model, measurement
model, and attack model such that the ground vehicle pose
estimation problem can be formulated. Although the
problem has been modeled in our previous work [18], we
still formulate it here for completeness and readers’
convenience.

3.1. System Model. Consider the following discrete state
space model for generality:

xk+1 � f xk( 􏼁 + h uk( 􏼁 + wk, (1)

zk � g xk( 􏼁 + vk, (2)

where k denotes time index; f(·) and g(·) are nonlinear
process and measurement functions, respectively; and h(uk)

is a stochastic function satisfying E h(uk)|xk􏼈 􏼉 � 0 for all xk.
wk ∼ N(0,Q) and v ∼ N(0,R) denote independent and
identically distributed (i.i.d.) Gaussian process and mea-
surement noises with zero mean and covariance matrices
Q> 0 and R> 0, respectively.

Two 3D reference frames are used in system modeling:
the global frame and the local frame. )e global frame
(sometimes called the “world frame”) plays the role of a map,
on which the vehicle needs to be localized; the local frame (or
“body frame”) moves along the vehicle, which is usually the
reference of local sensors such as wheel encoder and inertial
measurement unit (IMU). )e pose estimation problem
aims to estimate the translation and rotation of the local
frame with respect to the global frame. As we focus on
ground vehicles, projections from 3D to 2D could be applied
to reduce the complexity of the model, by following certain
assumptions [19]. Particularly, the states are defined as

x � [x y ] ψ _β]
T
, (3)

where x, y, and ψ are coordinates of vehicle position and the
heading on global x − y plane; v denotes the projection of
vehicle translational velocity onto the local y axis; and _β
represents the rotational velocity with respect to the local z

axis. In other words, v and _β indicate the forward and

rotating velocities that correspond to the vehicle’s two
manipulating modes: throttle and steering. We further de-
fine the control input u � [uv, u _β]⊤ that feeds throttle and
steering into the system motion model.

By incorporating the above state definition into the
vehicle’s motion model (1), we have
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k

+ wk. (4)

As for the specific formulation of the measurement
equation (2), we consider a common configuration of
sensors [19] that measure (translational and rotational)
pose x, y, ψ, forward velocity v, and steering angle α as
follows:
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k

+ vk, (5)

where L denotes the wheelbase between the front and rear
wheels of the vehicle. )e measurement can be obtained
from the combination of global pose estimation sensors such
as satellite navigation systems, visual odometry, or Attitude
and Heading Reference Systems (AHRS), and local sensors
including wheel encoders and steering angle sensors.

In the circumstance where the linear approximation of
measurement equation is required, the Jacobian matrix
Gk � zg(x)/zx|x�xk

, which needs to be computed at each
iteration, can be used for linearization:

g xk( 􏼁 ≈ g x0( 􏼁 + Gk xk − x0( 􏼁. (6)

Note that only the measurement of α is nonlinear, and α
is mostly zero with small fluctuations. By selecting x0 � 0 as
the point of interest where g(x0) � 0, we have the ap-
proximated linear time-varying form of measurement
equation as

zk � Gkxk + vk. (7)

3.2. AttackModel. In this paper, we assume that the sensors
are subject to randomly occurring deception attacks with a
given probability. )e attack model is described as follows:

􏽥zk � zk + ckak � Gkxk + vk + ckak, (8)
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where 􏽥zk denotes the measurement with possible attacks, ak

denotes the information sent by attacks, and ck is a sto-
chastic variable.

Before giving the deception attack model, we make some
further assumptions on the system knowledge that are
possessed by the adversary for implementing a successful
attack. In this paper, it is assumed that the adversary has
sufficient resources and adequate knowledge to arrange a
successful attack ak.

)e information ak caused by deception attacks can be
regarded as ak � − zk + ξk where the nonzero ξk satisfying
‖ξk‖≤ δ is an arbitrary energy-bounded signal. )e sto-
chastic variable ck is a Bernoulli distributed white sequence
taking values on 0, 1{ } with probabilities

Pr ck � 0􏼈 􏼉 � c, Pr ck � 1􏼈 􏼉 � 1 − c, (9)

where c ∈ (0, 1] is a known constant. More detailed ex-
planations can be found in [20].

Remark 1. )e attack model has the ability to describe the
randomly occurring deception attacks; that is, the stochastic
variable ckis utilized to govern the random nature of sensor
attacks on autonomous vehicles. )e false data sent by
deception attackers could be identified by using some al-
gorithms and some hardware and software tools. According
to the definition of frequentist probability, we may deduce
the value of c in applications. Hence, the given Bernoulli
distribution can properly reveal the random nature of de-
ception attacks.

To derive the main result of this paper, we will employ
the following lemma.

Lemma 1 (see [21]). For any dimension-compatible matrices
D, E, and a scalar ε> 0, the following inequality holds:

DE + E
⊤

D
⊤ ≤ ε DD

⊤
+ ε− 1

EE
⊤

. (10)

4. Estimator Design

4.1. Design of the Unscented Kalman Filter. )e UKF uses
unscented transformation (UT) to represent a random
variable by using a number of deterministically selected
sample points (called sigma points).)ese points capture the
mean and covariance of the random variable and, when
propagated through the true nonlinear system, capture the
posterior mean and covariance accurately.

Denote the one-step prediction error and the estimation
error as ek+1|k � xk+1 − 􏽢xk+1|k and ek � xk − 􏽢xk, respectively.
)e one-step prediction error covariance matrix Pk+1|k and
the estimation error covariance matrix Pk+1 can be obtained
as follows:

Pk+1∣k � E xk+1 − 􏽢xk+1∣k􏽨 􏽩 xk+1 − 􏽢xk+1∣k􏽨 􏽩
Τ

􏼚 􏼛, (11a)

Pk+1 � E xk+1 − 􏽢xk+1􏼂 􏼃 xk+1 − 􏽢xk+1􏼂 􏼃
⊤

􏽮 􏽯. (11b)

We are now ready to conduct the one-step prediction
error matrix in terms of the solvability of recursive Riccati

difference equations and obtain the parameter gain matrix of
the unscented Kalman filter, which is developed in the
following theorem.

Theorem 1. Consider the discrete kinematic equation (1)
suffering from attacks as (8). For any given positive constants
εk, k � 0, 1, 2, . . ., and the initial condition x0, 􏽢x0 � E x0􏼈 􏼉,
Π0 � P0, Σ0 � E x0x⊤0􏼈 􏼉, we can derive that the parameter
gain matrix of unscented Kalman filter is given as follows:

Kk+1 � α4Pk+1|kG
⊤
k α1GkPk+1|kG

⊤
k + α2GkΣk+1G

⊤
k + α3I + R􏽨 􏽩

− 1
,

(12)

where α1 � [1 + (1 − c)εk]c2, α2 � c(1 − c)(1 + εk), α3 �

(1 − c2)ε− 1
k δ2 + (1 − c)δ2, and α4 � c + (c − c2)εk. @e up-

per bound for the estimation error covariance is Πk+1, which
can be recursively calculated by equation (23).

Proof.

Step 1: initialization.
To calculate the statistics of a random variable
that undergoes a nonlinear transformation, a
matrix χ is generated using 2n + 1 weighted
sigma points. )e computation algorithm be-
gins with the initial conditions:

􏽢x0 � E x0􏼈 􏼉,

P0 � E x0 − 􏽢x0( 􏼁 x0 − 􏽢x0( 􏼁
⊤

􏽮 􏽯.
(13)

Step 2: generation of sigma points.
We calculate UT sampling as follows:

χi,k|k � 􏽢xk|k, i � 0,

χi,k|k � 􏽢xk|k +
���������
(n + λ)Pk|k

􏽱
􏼒 􏼓

i
, i � 1, 2, . . . , n,

χi,k|k � 􏽢xk|k −
���������
9n + λPk|k

􏽱
􏼒 􏼓

i
, i � n + 1, . . . , 2n,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ω(m)
i �

λ
n + λ

, i � 0,

ω(c)
i �

λ
n + λ

+ 1 − α2 + β􏼐 􏼑, i � 0,

ω(m)
i � ω(c)

i �
1

2(n + λ)
, i � 1, 2, . . . , 2n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where λ � α2(n + κ) − n, α is the proportion
factor, and the distribution distance of particles
can be adjusted by changing the value of α to
reduce the error. Parameters κ and β can be
tuned and are generally set to 0 and 2, re-
spectively. (

���������
(n + λ)Pk|k

􏽱
)i is the i-th column of

the square root of the matrix, ω(m)
i is the
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weighted mean, and ω(c)
i is the weighted

covariance.
Step 3: one-step prediction is made for sigma
sampling points to get the state prediction value
and prediction covariance of each particle. First,
we calculated the state prediction value as
follows:

χi,k+1|k � f χi,k|k􏼐 􏼑, (15a)

􏽢xk+1|k � 􏽘

2n

i�0
ω(m)

i χi,k+1|k. (15b)

And from (11a), we know that

Pk+1|k � 􏽘
2n

i�0
ω(c)

i χi,k+1|k − 􏽢xk+1|k􏽨 􏽩 χi,k+1|k − 􏽢xk+1|k􏽨 􏽩
⊤

+ Q.

(16)

)en, we have

􏽢xk+1 � 􏽢xk+1|k + Kk+1 􏽥zk+1 − cGk􏽢xk+1|k􏼐 􏼑􏽢xk+1|k + Kk+1 Gkxk+1 + vk+1 + ck+1ak+1 − cGk􏽢xk+1|k􏼐 􏼑. (17)

Step 4: posterior error. Since ek � xk − 􏽢xk, and if we plug in
ak+1 � − Gkxk+1 − vk+1 + ξk+1, it can be obtained
that

ek+1 � xk+1 − 􏽢xk+1

� xk+1 − 􏽢xk+1|k − Kk+1 Gkxk+1 + vk+1 + ck+1ak+1 − cGk􏽢xk+1|k􏼐 􏼑

� I − cKk+1Gk( 􏼁ek+1|k − Kk+1 ck+1ak+1 + vk+1 +(1 − c)Gkxk+1( 􏼁

� I − cKk+1Gk( 􏼁ek+1|k − Kk+1 − ck+1 × Gkxk+1 − ck+1vk+1 + ck+1ξk+1 + vk+1 +(1 − c)Gkxk+1( 􏼁.

(18)

Step 5 : posterior covariance. From (11b), we know that

Pk+1 � E ek+1e
⊤
k+1􏼈 􏼉

� E I − cKk+1Gk( 􏼁ek+1|k − Kk+1 − ck+1Gkxk+1 − ck+1vk+1 + ck+1ξk+1 + vk+1 +(1 − c) × Gkxk+1( 􏼁􏽨 􏽩􏽮

· I − cKk+1Gk( 􏼁ek+1|k − Kk+1 × − ck+1Gkxk+1 − ck+1vk+1 + ck+1ξk+1 + vk+1 +(1 − c)Gkxk+1( 􏼁􏽨 􏽩
⊤

􏽯.

(19)

)en, we can obtain that

Pk+1 � I − cKk+1Gk( 􏼁Pk+1∣k I − cKk+1Gk( 􏼁
⊤

− (1 − c) I − cKk+1Gk( 􏼁E ek+1∣kξ
⊤
k+1􏽮 􏽯K

⊤
k+1

− (1 − c)Kk+1E ξk+1e
⊤
k+1 ∣ k􏽮 􏽯 I − cKk+1Gk( 􏼁

⊤

− c(1 − c)Kk+1GkE xk+1ξ
⊤
k+1􏼈 􏼉K

⊤
k+1

− c(1 − c)Kk+1E ξk+1x
⊤
k+1􏼈 􏼉G

T
k K
⊤
k+1

+ c(1 − c)Kk+1GkE xk+1x
⊤
k+1􏼈 􏼉G
⊤
k K
⊤
k+1 +(1 − c)Kk+1ξk+1ξ

⊤
k+1K
⊤
k+1

+ cKk+1RK
⊤
k+1.

(20)

By Lemma 1 and applying the property of matrix trace,
we have that
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Pk+1 ≤ I − cKk+1Gk( 􏼁Pk+1∣k I − cKk+1Gk( 􏼁
⊤

− (1 − c) εk I − cKk+1Gk( 􏼁E ek+1e
T
k+1􏼐 􏼑􏽨

× I − cKk+1Gk( 􏼁
T
+ε− 1

k δ2Kk+1K
⊤
k+1􏽩

− c(1 − c)Kk+1 εkGkΣk+1G
T
k + ε− 1

k δ2􏽨 􏽩

− c(1 − c)Kk+1 εkGkΣk+1G
T
k + ε− 1

k δ2􏽨 􏽩

× K
⊤
k+1 + c(1 − c)Kk+1GkΣk+1G

T
k K
⊤
k+1

+(1 − c)Kk+1δ
2
K
⊤
k+1 + cKk+1RK

⊤
k+1,

� 1 +(1 − c)εk􏼂 􏼃 I − cKk+1Gk( 􏼁Pk+1∣k I − cKk+1Gk( 􏼁
⊤

+ c(1 − c) 1 + εk( 􏼁􏼂 􏼃Kk+1GkΣk+1G
⊤
k K
⊤
k+1

+ 1 − c
2

􏼐 􏼑ε− 1
k δ2 +(1 − c)δ2􏽨 􏽩Kk+1K

⊤
k+1

+ cKk+1RK
⊤
k+1,

(21)

where

Σk+1 � E xk+1x
⊤
k+1􏼈 􏼉

� E f xk( 􏼁 + h uk( 􏼁 + wk( 􏼁 f xk( 􏼁 + h uk( 􏼁 + wk( 􏼁
⊤

􏽮 􏽯

� 􏽘
2n

i�0
ω(c)

i χi,k+1|k · χ⊤i,k+1|k􏼐 􏼑 + h uk( 􏼁h uk( 􏼁
⊤

+ Q.

(22)

Define

Πk+1 � 1 +(1 − c)εk􏼂 􏼃 I − cKk+1Gk( 􏼁Pk+1∣k I − cKk+1Gk( 􏼁
⊤

+ c(1 − c) 1 + εk( 􏼁􏼂 􏼃Kk+1GkΣk+1G
⊤
k K
⊤
k+1

+ 1 − c
2

􏼐 􏼑ε− 1
k δ2 +(1 − c)δ2􏽨 􏽩Kk+1K

⊤
k+1

+ cKk+1RK
⊤
k+1.

(23)

Taking the partial derivation of the trace of the matrix
Πk+1 with respect to Kk+1 and letting the derivative be zero,
we can obtain that

− 2 c + c − c
2

􏼐 􏼑εk􏽨 􏽩 I − cKk+1Gk( 􏼁Pk+1∣kG
⊤
k

+ 2c(1 − c) 1 + εk( 􏼁Kk+1GkΣk+1G
⊤
k

+ 2 1 − c
2

􏼐 􏼑ε− 1
k δ2 +(1 − c)δ2􏽨 􏽩Kk+1

+ 2cKk+1R � 0.

(24)

It follows that

Kk+1 α1GkPk+1|kG
⊤
k + α2GkΣk+1G

⊤
k + α3I + R􏽨 􏽩 � α4Pk+1|kG

⊤
k .

(25)

Since α1GkPk+1|kG⊤k + α2GkΣk+1G
⊤
k + α3I + R is a posi-

tive definite matrix, we know (10) holds and the proof is
complete. □

As we can see in equations (10) and (16), one needs
O(n3) operations to compute the Kalman gain and the
covariance matrix Pk+1|k, where n � 5 in this paper. It in-
dicates that the secure recursive estimator can be treated in a
short time without a high-performance computer.

Remark 2. From (23), it can be seen that the larger δ leads to
a bigger upper bound of the estimation error covariance,
which means that the estimation performance deteriorates
with increased δ.

Remark 3. According to the matrix inequality technique of
Lemma 1, one can arbitrarily choose the positive constant εk

in )eorem 1 from the theoretical point of view. However, a
too large or too small value of εk may influence the esti-
mation performance. In practice or experimental validation,
we select the appropriate positive constant εk based on
experience to achieve better estimation performance.

As a matter of fact, for autonomous vehicles in the
presence of deception attacks (sensor attacks), how to obtain

Step 1. Initialization:
(1) Set the values of initial pose state x0, initial estimate state 􏽢x0, initial estimation error covariance matrix P0, and initial state

covariance matrix Σ0
(2) Set the value of c and determine the value of δ (the norm bound of arbitrary signal ξk)
(3) Set the control input signal uk, i.e., translational and rotational acceleration for the autonomous vehicle
(4) Let Π0 � P0 and choose the proper εk for all k to calculate α1, α2, α3, and α4
(5) Set discrete time index k � 0

Step 2. State covariance matrix Σk+1 is updated as follows:
Σk+1 � 􏽐

2n
i�0 ω

(c)
i (χi,k+1|k · χ⊤i,k+1|k) + h(uk)h(uk)⊤ + Q.

Step 3. )e secure recursive estimator gain Kk+1 and Πk+1 are calculated as follows:
Kk+1 � α4Pk+1|kG

⊤
k [α1GkPk+1|kG

⊤
k + α2GkΣk+1G

⊤
k +α3I + R]

− 1
,

􏽢xk+1 � 􏽢xk+1|k + Kk+1(􏽥zk+1 − cGk􏽢xk+1|k) � 􏽢xk+1|k + Kk+1(Gkxk+1 + vk+1 + ck+1ak+1 − cGk􏽢xk+1|k)

Kk+1 � α4Pk+1|kG
⊤
k [α1GkPk+1|kG

⊤
k + α2GkΣk+1G

⊤
k +α3I + R]

− 1
,

􏽢xk+1 � 􏽢xk+1|k + Kk+1(􏽥zk+1 − cGk􏽢xk+1|k)

� 􏽢xk+1|k + Kk+1(Gkxk+1 + vk+1 + ck+1ak+1 − cGk􏽢xk+1|k)

Step 4. Set k​ � ​ k​ + ​ 1 and go to Step 2.

ALGORITHM 1: UKF-based secure recursive estimator.
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Figure 1: Simulation performance of the proposed filter (legend “UKF”), the filter in [18] (legend “EKF”), and the Kalman Filter (legend
“KF”). )e first column illustrates the ground truth state and measurement values. )e second column shows estimation errors. )e third
column represents the norms of the estimator covariance matrices Π, which are real positive numbers in this case. )e first to fourth rows
show results where c � 0.1, 0.9, 0.99, and 0.999, respectively.
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a secure pose estimation of discrete kinematic equation (1)
remains an open problem till now.)e goal of this paper is to
propose an algorithm that enables to estimate the pose states
of the autonomous vehicle in such a way that

(1) If no sensors are comprised, i.e., c � 1 and ck � 0
with probability 1 for all k, the estimate coincides
with the standard Kalman filter

(2) If less than half of the pose states are compromised
by randomly occurring deception attacks, it still gives
a stable estimate of the pose states; i.e., an upper
bound for the estimation error covariance is
guaranteed

According to )eorem 1, the calculation framework can
be summarized as in Algorithm 1.

5. Numeric Simulation

We first run the proposed approach based on a simple but
effective Single-Input and Single-Output (SISO) system.
Consider

xk+1 �
10000

xk

+ uk + wk,

zk � xk + vk,

(26)

where the control uk � 1 and the attack ak � 30. )e attack-
related parameters are set as δ � 30 and ϵk � 0.001. )e
process and measurement noise levels are Q � 1 and
R � 0.01, respectively. UKF parameters are α � 1e− 3, κ � 0,
and β � 2. )e system is initialized as x0 � 50.

We select this nonlinear process model and the
identical measurement model because the proposed ap-
proach does not apply to nonlinear measurements di-
rectly. In other words, a linear approximation of
measurement equation is always required, similar to [18].
)e identical measurement equation allows direct com-
parison between the proposed approach and [18] and
avoids unnecessary bias from measurement equation
linearization. Although a simple model is used in

simulation, experiments in the next section present al-
gorithm performance based on a nonlinear measurement
model.

Figure 1 shows the simulation performance under dif-
ferent attack intensities. Legends “UKF,” “EKF,” and “KF”
denote the performance of the proposed approach, the
method in [18], and the conventional Kalman filter. We
select EKF and KF for comparison because these two
methods are classical filters that have been widely used in
practice.)e comparison to classical methods gives readers a
more intuitive illustration of the gain from the proposed
approach. )e first column illustrates the ground truth state
and the measurement with attacks. As c increases, the
probability of attacks decreases, and the measurements are
less interfered. )e second column shows estimation error,
where EKF and UKF result in similar and stable estimation
errors that are less influenced by attack intensity c. )e KF
leads to large estimation error when c is small but the es-
timation becomes much more accurate when there is a small
chance of being attacked. However, as the KF does not
consider the attack issue, estimation accuracy may deteri-
orate suddenly, at a discrete time around 620 with c � 0.999.
)e third column presents the norm of the estimator co-
variance matrix, which is a number in the SISO system. It is
found that the KF gives a completely wrong estimation error
covariance matrix by comparing the second and the third
columns in Figure 1: KF outputs nearly zero estimation error
covariance matrix, but the estimation errors are quite large
under attacks. On the contrary, the proposed approach and
[18] both provide reliable error upper bound covariance
matrices.

To test the stability and robustness under random noises
and attacks, we repeat the simulation 500 times and compute
the error as e � 1/N􏽐N (x − 􏽢x)2􏽮 􏽯 where N denotes the total
number of discrete time indexes. )e mean and standard
deviation of error e with respect to nonattack probabilities
are illustrated in Figure 2. From the results, it is noted that
UKF performs slightly better than EKF for the simulated
dynamic system. Moreover, both UKF and EKF estimation
errors stay almost unchanged with c from 0.1 to 0.9, but the
errors drop dramatically with c from 0.99 to 1.
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Figure 2: )e estimation squared error bar graph with respect to c. )e left figure represents the mean and standard deviation of squared
errors under different nonattack probabilities in 500 simulations. )e right figures show local details of the error graph. “UKF” and “EKF”
denote the proposed filter and the approach in [18], respectively.
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Figure 3: Pose estimation of selected states y (first column), v (second column), and ψ (third column) of the proposed filter (legend “UKF”)
and the Kalman filter (legend “KF”). )e first to fourth rows show results where c � 0.3, 0.7, 0.9, and 0.999, respectively.
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6. Experiments

We apply the proposed approach to the ground vehicle pose
estimation problem that has been formulated in Section 3.
)e following attack signal is added to the measurement:

ak � 10 10 0 0 0􏼂 􏼃
⊤

. (27)

)e control signal reflects common driving behaviors
and details can be found in our previous work [18]. )e
attack-related parameters are set as δ � 14 and ϵk � 0.001.
)e process and measurement noise levels are

Q � diag(0.0012, 0.0012, 0.0012, 0.00052, 0.00012) and
R � diag(1.02, 1.02, deg2 rad2(1), 0.52, deg2 rad2(2)), re-
spectively, where deg2 rad denotes the conversion from
degree to radian. UKF parameters are α � 1e3, κ � 0, and
β � 2. )e system is initialized as x0 � [0, 0, 0.001,

deg2 rad(70), 0]⊤.
In practice, the process and measurement noises of the

filtering algorithms are unknown and need to be estimated
using modeling or statistical approaches. In this paper, the
process and measurement noises are identical to the ground
truth, which is an optimal selection. All other shared pa-
rameters are kept the same for all the methods for a fair
comparison.

6.1. General Performance. )e pose estimation errors for
selected states under different nonattack probabilities can be
found in Figure 3. Note that we do not show EKF perfor-
mance [18] in this section since EKF and UKF do not share
the same parameters; thus, it is hard to compare these two
methods fairly with different configurations. From the re-
sults, it is noted that the proposed estimation may perform
worse when there is less attack, as shown in the last row of
the figure, where c � 0.999 indicates that the chance of an
attack is extremely low. In such case, the conventional
Kalman filter performs well. If there are frequent attacks, the
proposed estimator generally has more stable results than
the Kalman filter with less sudden fluctuations. However,
unlike the Kalman filter, the proposed approach does not
guarantee the best linear estimation performance in the
minimum mean-square-error sense, since we have only
derived an upper bound of the estimation error covariance
matrix. In this case, it is not a surprise to have poor esti-
mation accuracy on some states, for example, y and ψ. )e
diagonal elements in the estimation error covariance ma-
trices with respect to various nonattack probabilities
(c � 0.3, 0.7, and 0.999) have been illustrated in Figure 4,
where we could monitor the estimation quality on different
states in real time.)e results show that lower upper bounds
are derived with larger c. Note that a larger c does not ensure
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Figure 4: )e diagonal elements in the estimation covariance matrices Π. )e first to fourth rows show results where c � 0.3, 0.7, 0.9, and
0.999, respectively.
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a higher estimation accuracy but only gives a narrower range
of estimation errors.

6.2. Influence of Parameters. It is observed during the ex-
periments that the parameters of the estimator have a great
influence on the performance. )ere are three configurable
parameters in the proposed approach, namely δ, ϵ, and c.
)eoretically, δ should be set according to the attacks.
However, attack signal is unknown in practice and δ is set
based on our experience and prediction of attacks. A con-
servative and large δ may lead to a large Π, while a small δ
may get the violation of inequality (20) and invalidate the
error covariance matrix Π. A large ϵ usually leads to di-
vergence of the estimation; thus, it is set to a small value in all
experiments. Finally, c is set as the nonattack probability of
attack signal. Practically c is unknown and could be con-
figured according to the threat level of attacks. Besides, UKF
parameters influence the algorithm’s performance. An ap-
propriate selection of α, κ, and β is required to adjust the
distribution of sigma points for the dynamic system. Still,
tuning is necessary during experiments, since there is no
direct guidance on UKF parameter selection.

7. Conclusion

In this work, a recursive pose estimator inspired by the
unscented Kalman filter has been designed to tackle the
secure vehicle pose estimation problem under random de-
ception attacks.)e estimator minimizes the upper bound of
the estimation error covariance, which can be solved very
efficiently in real time and is suitable for recursive com-
putation in online applications. Simulations and experi-
ments have been designed to validate the effectiveness of the
proposed estimation approach. In the future, a particle filter-
based estimator could be proposed for generalized dynamic
systems.

Data Availability

)e data used to support the findings of this study were
supplied by the Xi’an University of Technology under license
and so cannot bemade freely available. Requests for access to
these data should be made to Xinghua Liu.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is work was partly supported by the National Natural
Science Foundation of China under Grant 61903296 and
U2003110, Innovative Talents Promotion Program Young
Science and Technology Nova Project (2020KJXX-094), Key
Laboratory Project of Shaanxi Educational Committee un-
der Grant 20JS110, and High Level Plan of Shaanxi Province
for Young Professionals.

References

[1] B. V. Philip, T. Alpcan, J. Jin, and M. Palaniswami, “Dis-
tributed real-time iot for autonomous vehicles,” IEEE
Transactions on Industrial Informatics, vol. 15, no. 2,
pp. 1131–1140, 2018.

[2] C. Urmson and W. Whittaker, “Self-driving cars and the
urban challenge,” IEEE Intelligent Systems, vol. 23, no. 2,
pp. 66–68, 2008.

[3] J. Guo, R. Jiang, B. He, T. Yan, and S. S. Ge, “General learning
modeling for auv position tracking,” IEEE Intelligent Systems,
vol. 35, 2020.

[4] M. Strohmeier, T. Walter, J. Rothe, and S. Montenegro,
“Ultra-wideband based pose estimation for small unmanned
aerial vehicles,” IEEE Access, vol. 6, pp. 57526–57535, 2018.

[5] R. Jiang, H. Zhou, H. Wang, and S. S. Ge, “Road-constrained
geometric pose estimation for ground vehicles,” IEEE
Transactions on Automation Science and Engineering, vol. 17,
no. 2, pp. 748–760, 2020.

[6] Q. Liu, Y. Mo, X. Mo, C. Lv, E. Mihankhah, and D. Wang,
“Secure pose estimation for autonomous vehicles under cyber
attacks,” in Proceedings of the 2019 IEEE Intelligent Vehicles
Symposium (IV), pp. 1583–1588, IEEE, Paris, France, June
2019.

[7] L. Shi, Q. Liu, J. Shao, and Y. Cheng, “Distributed localization
in wireless sensor networks under denial-of-service attacks,”
IEEE Control Systems Letters, vol. 5, no. 2, pp. 493–498, 2021.

[8] D. Ding, Z. Wang, Q.-L. Han, and G. Wei, “Security control
for discrete-time stochastic nonlinear systems subject to
deception attacks,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 48, no. 5, pp. 779–789, 2018.

[9] C. Meng andW. Li, “Recursive filtering for complex networks
against random deception attacks,” in Proceedings of the 2018
IEEE International Conference on Big Data and Smart
Computing (BigComp), pp. 565–568, IEEE, Shanghai, China,
January 2018.

[10] Z. Ju, H. Zhang, and Y. Tan, “Deception attack detection and
estimation for a local vehicle in vehicle platooning based on a
modified ufir estimator,” IEEE Internet of @ings Journal,
vol. 7, no. 5, pp. 3693–3705, 2020.

[11] Y. Shoukry, P. Nuzzo, A. Puggelli, A. L. Sangiovanni-Vin-
centelli, S. A. Seshia, and P. Tabuada, “Secure state estimation
for cyber-physical systems under sensor attacks: a satisfiability
modulo theory approach,” IEEE Transactions on Automatic
Control, vol. 62, no. 10, pp. 4917–4932, 2017.

[12] H. Fawzi, P. Tabuada, and S. Diggavi, “Secure state-estimation
for dynamical systems under active adversaries,” in Pro-
ceedings of the 2011 49th Annual Allerton Conference on
Communication, Control, and Computing (Allerton),
pp. 337–344, IEEE, Monticello, IL, USA, September 2011.

[13] S. Mishra, Y. Shoukry, N. Karamchandani, S. N. Diggavi, and
P. Tabuada, “Secure state estimation against sensor attacks in
the presence of noise,” IEEE Transactions on Control of
Network Systems, vol. 4, no. 1, pp. 49–59, 2017.

[14] L. Liu, H. Li, Y. Dai, and Q. Pan, “Robust and efficient relative
pose with a multi-camera system for autonomous driving in
highly dynamic environments,” IEEE Transactions on Intel-
ligent Transportation Systems, vol. 19, no. 8, pp. 2432–2444,
2018.

[15] X. Ding, Z. Wang, L. Zhang, and C. Wang, “Longitudinal
vehicle speed estimation for four-wheel-independently-ac-
tuated electric vehicles based on multi-sensor fusion,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 11,
pp. 12797–12806, 2020.

Security and Communication Networks 11



[16] J. Liu, Z. Wang, L. Zhang, and P. Walker, “Sideslip angle
estimation of ground vehicles: a comparative study,” IET
Control @eory & Applications, vol. 14, no. 20, pp. 3490–3505,
2020.

[17] C. Wang, Z. Wang, L. Zhang, D. Cao, and D. G. Dorrell, “A
vehicle rollover evaluation system based on enabling state and
parameter estimation,” IEEE Transactions on Industrial In-
formatics, vol. 17, no. 6, pp. 4003–4013, 2021.

[18] X. Liu, R. Jiang, H. Wang, and S. S. Ge, “Filter-based secure
dynamic pose estimation for autonomous vehicles,” IEEE
Sensors Journal, vol. 19, no. 15, pp. 6298–6308, 2019.

[19] A. Kelly,Mobile Robotics: Mathematics, Models, and Methods,
Cambridge University Press, Cambridge, UK, 2013.

[20] B. Shen, Z. Wang, D. Wang, and Q. Li, “State-saturated re-
cursive filter design for stochastic time-varying nonlinear
complex networks under deception attacks,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 31, no. 10,
pp. 3788–3800, 2020.

[21] W.-H. Chen and W. X. Zheng, “Delay-dependent robust
stabilization for uncertain neutral systems with distributed
delays,” Automatica, vol. 43, no. 1, pp. 95–104, 2007.

12 Security and Communication Networks


