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Timely and accurate network traffic prediction is a necessary means to realize network intelligent management and control.
However, this work is still challenging considering the complex temporal and spatial dependence between network traffic. In
terms of spatial dimension, links connect different nodes, and the network traffic flowing through different nodes has a specific
correlation. In terms of spatial dimension, not only the network traffic at adjacent time points is correlated, but also the im-
portance of distant time points is not necessarily less than the nearest time point. In this paper, we propose a novel intelligent
network traffic prediction method based on joint attention and GCN-GRU (AGG). )e AGG model uses GCN to capture the
spatial features of traffic, GRU to capture the temporal features of traffic, and attention mechanism to capture the importance of
different temporal features, so as to realize the comprehensive consideration of the spatial-temporal correlation of network traffic.
)e experimental results on an actual dataset show that, compared with other baseline models, the AGG model has the best
performance in experimental indicators, such as root mean square error (RMSE), mean absolute error (MAE), accuracy (ACC),
determination coefficient (R2), and explained variance score (EVS), and has the ability of long-term prediction.

1. Introduction

Cisco annual Internet report (2018–2023) notes that device
functionality will be combined with higher bandwidth and
more intelligent networks by 2023, and the number of
devices linked to IP networks will be more than three times
the global population [1]. With the increasing number of
terminals, the enrichment of multimedia applications, and
the continuous expansion of network capabilities, network
traffic management has become a critical and challenging
task. Real-time and accurate network traffic prediction can
greatly improve the control gain of the network.

)e existing network traffic prediction methods are
divided into model-driven traffic prediction methods and
data-driven traffic prediction methods. Model-driven traffic
prediction methods are also called parameterization
methods, including autoregressive moving average model
(ARMA) and autoregressive integrated moving average
mode (ARIMA). Laner et al. introduced the ARMA model,

which can predict network traffic [2]. Guo et al. introduced
the ARIMA model and tested the algorithm with the data
collected by a backbone switching node. )e experimental
results show that compared with other network traffic
prediction methods, the model has a better effect in dealing
with nonstationary series and higher prediction accuracy
[3], so the ARIMA model and its variants are widely used
and can well explore the time correlation of network traffic
[4–6]. Model-driven traffic prediction methods mostly use a
polynomial fitting function to approximate the actual net-
work traffic and then make the fitting effect better through a
large number of parameter tuning. However, it is difficult to
capture the nonlinear characteristics of network traffic, such
as fast fluctuation and time dependence.

)e data-driven traffic prediction method can auto-
matically learn statistical rules from a large quantity of
historical data to intelligently capture the nonlinear char-
acteristics of network traffic. Specifically, data-driven traffic
prediction methods can be divided into machine learning
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prediction methods and deep learning prediction methods.
Among them, machine learning prediction methods include
support vector regression (SVR) and k-nearest neighbor
algorithm (k-NN). Bermolen et al. applied support vector
regression (SVR) to link load prediction [7]. Kremer et al.
chose two different machine learning algorithms, SVR and
KNN, to explore the balance between complexity and es-
timation accuracy [8]. However, machine learning methods
are not sufficient for processing high-dimensional data and
rely on feature engineering. )erefore, the universality of
this method is weak.

Compared with machine learning prediction methods,
deep learning prediction methods can not only retain the
learning characteristics but also ensure the relevance be-
tween tasks and effectively address time series problems. Wu
et al. proposed a network traffic prediction method based on
a deep neural network (DNN), which proves the superiority
of the deep learning prediction method in traffic prediction
[9]. Lazaris et al. used actual network traffic tracking from
ISPs to train long-term short-term memory (LSTM) neural
network and generate predictions in a short time. Experi-
ments show that LSTM can predict network traffic with low
error [10]. Azzouni et al. proposed an LSTM RNN frame-
work for predicting a large-scale network traffic matrix and
proved the fast convergence ability of the LSTM model
through actual data from GEANT [11]. Although this kind
of deep learning prediction model has achieved good results,
the above models all predict the time series of network traffic
in a single area but ignore the spatial structure of the net-
work, that is, the spatial correlation of network traffic. To
extract the spatial characteristics of network traffic, re-
searchers introduced convolutional neural networks
(CNNs) into the task of network traffic prediction. Zhang
et al. used a convolutional neural network to capture the
temporal and spatial dependence of traffic by processing
traffic data to images. )e experimental results show that the
prediction performance of this method in terms of root
mean square error (RMSE) is significantly improved [12]. Li
et al. proposed a CNN fusion LSTM model for prediction,
used a one-dimensional CNN to obtain the spatial char-
acteristics of network traffic, and used LSTM to obtain the
temporal correlation of network traffic. However, the spatial
structure of the CNNmodel is in Euclidean space; that is, the
CNN can only deal with Euclidean data, but it cannot ef-
fectively deal with non-Euclidean data such as communi-
cation network topology.

)erefore, researchers hope to effectively extract spatial
features from non-Euclidean data structures such as topo-
logical maps [13], so GCNs have become a new research
focus. He et al. proposed a spatial-temporal network based
on graph attention, which is called GSATN. )is model
integrates spatial-temporal characteristics, characterizes
spatial correlation through geographical relationship graphs,
characterizes temporal correlation through recurrent neural
networks, and predicts network traffic by combining spa-
tiotemporal characteristics [14]. Yang et al. proposed a
network traffic prediction model combining a graph con-
volution neural network (GCN) and a gate control recursive
unit (GRU).)e model uses GCN to learn network topology

and extract spatial characteristics of traffic and uses GRU to
learn the temporal characteristics of network traffic. )us,
the intelligent prediction of network traffic is realized [15].
Although these models have achieved excellent prediction
accuracy, most models tend to extract static spatial de-
pendencies in traffic, and such spatial dependencies may
evolve over time [16, 17]. )erefore, by introducing an at-
tention mechanism into the GCN-GRU model, this paper
proposes a novel intelligent network traffic prediction
method based on joint attention and GCN-GRU.)is model
can not only capture spatial-temporal correlation infor-
mation but also collect temporal global change information.
)e main contributions of this paper are as follows:

(1) A network traffic prediction method combining
GCN, GRU, and attention mechanism is proposed.
)e method uses GCN to capture the spatial features
of traffic, GRU to capture the temporal features of
traffic, and attention mechanism to capture the
importance of different temporal features, so as to
realize the comprehensive consideration of the
spatial-temporal correlation of network traffic.

(2) )e attention mechanism is introduced into the
GRU, and the weight matrix calculation method in
the GRU unit is redesigned. In this mechanism, the
state vector is generated by combining the hidden
states at different times, a scoring function is
designed to calculate the weight of each hidden state,
and an attention function is designed to calculate the
context vector that can describe the global traffic
change information, so as to adjust the importance of
different time points and collect the global time
information to improve the prediction accuracy.

(3) Considering that the length of the sliding window
and the number of hidden units have a significant
impact on the timeliness and accuracy of network
traffic prediction, an action to determine the ex-
perimental parameters is performed, so as to obtain
the optimal length of sliding window and optimal
number of hidden units, which effectively supports
the comparative analysis of the network traffic
prediction model AGG proposed in this paper with
other baseline models.

(4) )e AGG model is trained on the Milan traffic
network dataset for many times. )e results show
that compared with several existing baseline models,
the AGG model has the best performance in ex-
perimental indicators, such as root mean square
error (RMSE), mean absolute error (MAE), accuracy
(ACC), determination coefficient (R2), explained
variance score (EVS), and has the ability of long-
term prediction.

)e rest of this paper is organized as follows. In Section
2, we present the problem formulation of network traffic
prediction and design a framework to solve the network
traffic prediction problem. Based on the design of the spatial
feature extraction model, temporal feature extraction model,
and attention mechanism model, a complete intelligent

2 Security and Communication Networks



network traffic prediction model is given in Section 3. In
Section 4, we introduce the experimental environment and
analyze the performance of the proposed traffic prediction
model. We conclude this paper in Section 5.

2. The Proposed Prediction Framework

2.1. Problem Formulation. )e goal of network traffic pre-
diction is to predict the network traffic information in the
future according to the measured historical network traffic
information. We can define this process as

xt−M+1, . . . , xt−1, xt⟶
f

(·) 􏽢xt+1, . . . , 􏽢xt+H−1, 􏽢xt+H, (1)

where xt ∈ Rn is the observation vector of n observation
points at the sampling time t. )e purpose of the traffic
prediction model is to learn a mapping function f(·) based
on the traffic data of the previous M sampling time to predict
the network traffic of the H sampling time in the future.

Definition 1 (network topology). )e network is composed
of nodes and links, which are generally represented by di-
graphs G � (V, E). V represents the nodes in the network,
and V � V1, V2, . . . , VN􏼈 􏼉, where N is the number of nodes,
and E represents the links between nodes. )e adjacency
matrix A is used to represent the connection relationship of
nodes, A ∈ RN×N. )e adjacency matrix only contains the
elements 0 and 1. When the element is 0, there is no
connection between nodes, and when the element is 1, there
is a connection between nodes.

Definition 2 (network traffic prediction). In G, each link is
ei(1≤ i≤ n), and the time series xt−n, . . . , xt−1, xt represents
the network traffic of ei in the time interval N. )e principle
of the prediction model proposed in this paper is to learn a
mapping function f based on the topological graph struc-
ture and network traffic time series to obtain the network
traffic data spatial-temporal characteristics and then predict
the network traffic information xt+1, . . . , xt+T in the future
from the characteristic matrix. )e network traffic predic-
tion formula is as follows:

xt+1, . . . , xt+T􏼂 􏼃 � f G, xt−n+1, . . . , xt−1, xt( 􏼁( 􏼁. (2)

2.2. Traffic Prediction Framework. For the problem de-
scribed in Section 2.1, the prediction architecture proposed
in this paper is shown in Figure 1. First, the time series data
in each region in the dataset at n time sampling points and
the adjacency matrix representing the relationship between
regions are taken as the input. )en, the GCN model is used
to extract the input data spatial features, and the time series
with spatial features are used as the input of the GRU model
to extract the temporal correlation features between time
series. Furthermore, the attention mechanism is introduced
into GRU, and the weight matrix calculation method in the
original GRU unit is replaced by the attention weight
mechanism, which reweights the influence of historical
network traffic data to capture the global variation trend of

network traffic. Finally, the prediction results of data with
spatial-temporal correlation are obtained through the fully
connected layer.

3. Prediction Models

3.1. Spatial Feature Extraction Model. Spatial feature ex-
traction is one of the critical problems in network traffic
prediction. A regional topological network is a graph
structure, and its network traffic data belong to non-Eu-
clidean data. Although traditional convolutional neural
networks (CNNs) can obtain spatial features, they can only
be used in Euclidean data and cannot effectively extract
spatial features from graph data. In this paper, the graph
convolution network (GCN) model is used to process the
non-Euclidean data represented by graph data, and the
spatial features of each region are learned from the network
structure.

)e principle of GCN is to construct a filter in the
Fourier domain and then process the graph nodes and the
first-order domain of the nodes with the constructed filter to
obtain the spatial features between the nodes in the graph.
Finally, the GCN model is established by superposition of
multiple convolution layers. In this paper, we designed two
convolutional layer processing graph structures, and the
formula is as follows:

f(X, A) � σ A􏽢ReLU AXW0( 􏼁W1( 􏼁, (3)

where X represents the network traffic characteristic matrix,
A represents the adjacency matrix, σ(·) and ReLU represent
the activation function. 􏽢A � 􏽥D

− 1/2 􏽥A 􏽥D
− 1/2 represents the

preprocessing step, 􏽥D is the degree matrix, 􏽥D � 􏽐i
􏽦Aij. 􏽥A �

A + IN represents the matrix with a self-connection struc-
ture, and W0 and W1 represent the weight matrix in the first
and second convolution layers, respectively.

3.2. Temporal Feature Extraction Model. Temporal feature
extraction is another critical problem in network traffic
prediction. At present, the recurrent neural network (RNN)
is the most widely used neural network model for processing
sequence data. However, due to the defects of gradient
disappearance and gradient explosion, the traditional
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Figure 1: AGG prediction architecture.
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recurrent neural network has limitations in terms of long-
term prediction. )e LSTM model and GRU model are
variants of recurrent neural networks, which can better solve
the above defects. As variants of RNN, LSTM, and GRU have
the same basic principle, they both use a gate control
mechanism to memorize as much long-term information as
possible. In this paper, we use the GRU network unit.
Compared with the LSTM unit, the GRU unit has fewer
parameters. Under the premise of ensuring the prediction
accuracy, it can reduce the time of model optimization.

)e structure diagram of theGRUunit is shown in Figure 2,
in which xt represents the input data at time t, ht, ht−1, and ht+1
indicate the hidden state at different times, rt is a reset gate,
which controls the degree of information reservation or
abandonment at the previous time, ut is an update gate, which is
used to control the extent towhich state information of the prior
moment enters the current state, ct is the information stored at
time t, and the principle of GRU is to use the hidden state of the
prior moment and the input of the current moment together to
obtain the network state information of the next moment. )e
model not only captures the current network information but
also retains the change trend of historical network information
and has the ability to capture temporal dependence.

3.3. AttentionMechanismModel. When capturing temporal
features, we introduce an attention mechanism into GRU in
this section and redesigns the weight matrix calculation
method in the original GRU unit with the attention weight
mechanism.

After replacing the original matrix calculation method in
GRU with an attention mechanism, Xt and ht−1 are used to
obtain the information of the reset gate rt and update gate ut

at time t. )e formulas are as follows:

rt � σ W
k

Xt, ht−1 + br􏼂 􏼃􏼐 􏼑,

ut � σ W
k

Xt, ht−1 + bu􏼂 􏼃􏼐 􏼑,
(4)

where Wk is the weight matrix information in the attention
mechanism, Xt represents the input traffic at the current
time, ht−1 represents the hidden state passed down from the
previous time, andbr and bu are deviation parameters.

After obtaining the information of the reset gate rt and
update gate ut, the reset data ht−1′ � rt ⊙ ht−1 can be obtained
first, and then the value range of the data of ht−1′ and Xt can
be controlled within [−1, 1] through the tanh activation
function. )at is, the state of memorizing the current mo-
ment h′ can be obtained. )e formula is as follows:

h′ � tanh W
k

Xt, rt ⊙ ht−1( 􏼁􏼂 􏼃 + bn􏼐 􏼑, (5)

where bu is a deviation parameter.
After obtaining the current time state of memory, the last

step is to update the memory stage, in which the update gate
ut is used. )e formula is as follows:

ht � ut ⊙ ht−1 + 1 − ut( 􏼁⊙ h′. (6)

)rough the multilayer GRU with attention mechanism,
the temporal features of network traffic can be better

captured. )e internal structure of the redesigned GRU is
shown in Figure 3.

3.4. Traffic Prediction Model. )e network traffic prediction
model, named AGG model, introduces the attention
mechanism based on the GCN-GRU model and reweights
the influence of historical network traffic data to capture the
global variation trend in network traffic.)emodel structure
is shown in Figure 4.

)e AGG model calculation is shown in the following
formulas:

ut � σ Wu GC A, Xt( 􏼁, ht−1􏼂 􏼃 + bu( 􏼁,

rt � σ Wr GC A, Xt( 􏼁, ht−1􏼂 􏼃 + br( 􏼁,

ct � tanh Wc GC A, Xt( 􏼁, rt ∗ ht−1( 􏼁􏼂 􏼃 + bc( 􏼁,

ht � ut ∗ ht−1 + 1 − ut( 􏼁∗ ct,

(7)

where ut is the update gate which is used to control the
extent to which the state information of the last time enters
the state of current time, σ is the activation function of the
nonlinear model, Wu, Wu, and Wu are the weight param-
eters, GC is the graph convolution process, A is the adja-
cency matrix, Xt is the input of the model at the current
time, ht−1 and ht are the hidden state at t − 1 and t, re-
spectively, bu, bu, and bu are deviation parameters, rt is the
reset gate which controls the level of information retention
or abandonment at the previous time, and ct is the infor-
mation stored at time t.

)e AGG model is constructed by the GCN model
combined with the GRU model. )e principle is to input n
historical time series network traffic data into the AGG
model to obtain n hidden states and obtain the vector
containing spatial-temporal features: ht−n+1, . . . , ht−1, ht􏼈 􏼉.

)en, the hidden state is inputted into the attention
model, and the multilayer perceptron (MLP) is used to
calculate the weight of each hidden state
h: at−n+1, . . . , at−1, at􏼈 􏼉. )e information vector covering the
global traffic change is calculated by the sum of the weights.
)e formulas are as follows:

ai �
exp ei( 􏼁

􏽐
n
k�1 exp ek( 􏼁

,

ei � W(2) W(1)H + b(1)􏼐 􏼑 + b(2).

(8)

)en, an attention function is used to describe the vector
Ct of global traffic change information, and the formula is as
follows:

Ct � 􏽘
n

i�1
ai ∗ hi. (9)

Finally, the final predicted value is obtained through the
fully connected layer.

4. Simulation Results and Analysis

In this part, we first introduce the actual traffic dataset of
the telephone service provider in the European city of
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Milan and then analyze comparative experiments based
on this dataset to verify the advantages of our proposed
model.

4.1. Dataset Description. In this paper, we select an open
network traffic dataset which is in https://dataverse.harvard.
edu/dataset.xhtml?persistentId� doi:10.7910/DVN/
EGZHFV, and the traffic collection time is from 00 : 00 on
November 1, 2013, to 00 : 00 on January 1, 2014. Table 1
shows the relevant dataset information. In this experiment,
the data of 11/04-11/10 for seven days are selected as the
dataset. )e time interval of the original data is 10 minutes,
and there are 144 data points in each region. In this paper,
nine regions are selected, and the data of a week are col-
lected. )e grid and map of the area where the dataset is
located are shown in Figure 5. Figure 6 shows the network
traffic trend of the nine regions within a week.

4.2. Experimental Indicators. In order to thoroughly verify
the performance of the model, we set five experimental
indicators to judge the flow prediction model proposed in
this paper, as follows:

(1) Root mean square error (RMSE) reflects the pre-
diction error of the model. )e value range of RMSE
is [0, +∞). )e closer the RMSE is to zero, the better
the performance of the model is.

RMSE �

����

1
T

􏽘

T

t�1

􏽶
􏽴

Y
t

−
􏽢
Y

t
􏼒 􏼓 . (10)

(2) Mean absolute error (MAE) is used to measure the
mean absolute error between the predicted value and
the true value. )e value range of MAE is [0, +∞).
)e closer the MAE is to zero, the better the per-
formance of the model is.

MAE �
1
T

􏽘

T

t�1
Y

t
−

􏽢
Y

t
􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌. (11)

(3) Accuracy (ACC) reflects the prediction accuracy of
the model. )e value range of ACC is [0, 1]. )e
closer the ACC is to 1, the better the performance of
the model is.

Accuracy � 1 −
􏽐

T
t�1 Y

t
−

􏽢
Y

t
􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

􏽐
T
t�1 Y

t
. (12)

(4) Determination coefficient (R2) represents the quality
of model fitting. )e value range is [0, 1]. )e closer
the R2 is to 1, the better the model fits the data.

R
2
(Y, 􏽢Y) � 1 −

􏽐
T
t�1 Y

t
− 􏽢Yt􏼐 􏼑

2

􏽐
T
t�1 Yt − 􏽢Yt􏼐 􏼑

2. (13)

(5) Explained variance score (EVS) is the variance score
of the model. )e value range is [0, 1]. )e closer the
EVS is to 1, the better the independent variable can
explain the variance change of the dependent
variable.
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Figure 2: Schematic diagram of the GRU structure.
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EVS � 1 −
􏽐

T
t�1 Var Y

t
−

􏽢
Y

t
􏼚 􏼛

􏽐
T
t�1 Var Y

t
􏽮 􏽯

, (14)

where Yt denotes the actual value of traffic data at the
time t and 􏽢Yt denotes the predicted value of traffic
data at the time t. Yt denotes the mean value of traffic
data, and T is the number of samples.

4.3. Experimental Parameters. In this experiment, we use a
deep learning server to configure the experimental envi-
ronment, in which the production type of CPU is AMD
Ryzen 52600, the production type of GPU is Nvidia
GT745M, the size of Memory is 16GB. In addition, Ten-
sorFlow is used to build the network framework and Python
is used as the programming environment. Table 2 lists the
detailed environment configuration parameters.

Further, we need to determine the model training pa-
rameters. In this experiment, Adam is chosen as the opti-
mizer, the learning rate is set to 0.001, and the epoch for
model training is 3000. As for the selection of the sliding
window length and the number of hidden units, theoreti-
cally, on the one hand, the larger the sliding window length
is, the larger the perception range will be, and the more
features will be predicted, which may cause some interfer-
ence to the accuracy of prediction. On the other hand, when
the number of hidden units increases to a certain extent, the
complexity and difficulty of model calculation will also
increase, and the accuracy of prediction will also decrease.

Considering that the sliding window length L and the
number of hidden units H have a significant impact on the
timeliness and accuracy of the traffic prediction, we com-
pared ACC and R2 under different L and H and obtained the
optimal sliding window length and the number of hidden
units under the current configuration.

Specifically, the optional range of sliding window length
L is set to [4,8,12,16], and by comparing the prediction
performance under different L conditions in Figure 7, we
obtain the optimal sliding window length, which is 8.)at is,
we use 8 historical network traffic data
(Xt−7, Xt−6, Xt−5, Xt−4, Xt−3, Xt−2, Xt−1, Xt) to predict future
traffic. Similarly, the optional range of the number of hidden
units H is set to [32,64,100,128], and by comparing the
prediction performance under different H conditions in
Figure 8, we obtain the optimal number of hidden units,
which is 100.

In conclusion, when the sliding window length is set to 8
and the number of hidden units is set to 100, the prediction
result is optimal. )erefore, the model training parameters
containing the above results are listed in detail in Table 3.

4.4. Result Analysis

4.4.1. Comparison Results between AGG Model with Other
Baseline Models. To verify the performance of AGG model,
80% of traffic data are selected as the training dataset, and
20% of traffic data are selected as the verification dataset.)e
comparison indicators are described in Section 4.2. In ad-
dition, five baseline models are selected including model-
driven methods and data-driven methods to compare with
the model proposed in this paper. )e comparison results
are listed in Table 4; because the sampling interval of the
traffic data is 10minutes, we use 10 minutes (one point) and
20minutes (two points) to carry out single-step prediction
and multistep prediction, respectively.

(1) Historical average model (HA), which models net-
work traffic as a periodic process to predict the time
series

(2) An autoregresive moving composite average model
(ARIMA), which is used to fit the time series into a
parameter model for completing the network traffic
prediction

(3) Support vector machine model (SVR), which adopts
the machine learning algorithm and uses historical
data to fit the relationship between input and output
and then predicts future network traffic data

(4) Gated recurrent unit (GRU), which is an efficient
solution to the gradients vanishing issue after a long
sequence of inputs

(5) GCN-GRU, which is a combination model com-
bining a graph convolution neural network (GCN)
and a gate control recursive unit (GRU)

Table 4 shows that the experimental indicators of the
AGG model proposed in this paper are significantly better
than those of other baseline models. To be specific, we have
the following:

(1) At the 10min prediction span, the AGG model
proposed in this paper has optimal values in RMSE,
MAE, ACC, R2, and EVS. For example, the RMSE of
the AGG model is 3.7% lower than that of the GCN-
GRUmodel, 4.2% lower than that of the GRUmodel,
5.5% lower than that of the SVR model, 6.3% lower
than that of the ARIMA model, and 14.7% lower
than that of the HA model. )e ACC of the AGG
model is 1.5% higher than that of the GCN-GRU
model, 2% higher than that of the GRU model, 2.3%
higher than that of the SVR model, 15.9% higher
than that of the ARIMAmodel, and 6.9% higher than
that of the HA model. )e AGG model proposed in
this paper has optimal values in RMSE, MAE, ACC,
R2, and EVS. It can be further seen that both AGG
and GRU are superior to model-driven traffic pre-
diction methods.

(2) At the 20min prediction span, the AGG model
proposed in this paper still has optimal values in
RMSE, MAE, ACC, R2, and EVS. For example, the
RMSE of the AGG model is 1.6% lower than that of

Table 1: Dataset.

Dataset Milan telephone service provider
City Milan
Time span 2013/11/01–2014/01/01
Time interval 10minutes
Grid size (100,100)
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the GCN-GRU model, 1.7% lower than that of the
GRUmodel, 1.9% lower than that of the SVR model,
2.5% lower than that of the ARIMAmodel, and 7.4%
lower than that of the HA model. )e prediction
accuracy of the AGG model is 0.7% higher than that
of the GCN-GRUmodel, 1.8% higher than that of the
GRUmodel, 2.5% higher than that of the SVRmodel,
12.2% higher than that of the ARIMA model, and
3.5% higher than that of the HA model.

(3) It can be further concluded from the prediction
results that, in horizontal comparison, the data-
driven prediction methods, whether SVR or GRU,
are better than other model-driven methods. )is
result is due to the poor fitting ability of HA and
ARIMA for this long series of unstable data, while

the neural network models fit the nonlinear data
much better. In longitudinal comparison, the per-
formance indicators of the AGG model proposed in
this paper decrease with the increase of prediction
time, but the decline trend is relatively stable, and it
still has long-term prediction ability.

4.4.2. Influence of Spatial-Temporal Correlation and Atten-
tion Mechanism on Prediction Performance. In order to
further explore the influence of spatial-temporal correlation
and attention mechanism on prediction performance, two
experimental indicators, RMSE and ACC, are used to
compare AGG model with other baseline models at the
10min prediction scale, and the comparison results are
shown in Figures 7 and 8, respectively.

Figure 9 shows the comparison results of RMSE between
AGG model and other baseline models. )ese baseline models
include model-driven traffic prediction methods HA and
ARIMA, and data-driven traffic predictionmethods SVR,GRU,
and GCN-GRU. Specifically, RMSE of model-driven traffic
prediction method are 6.1774 (HA) and 5.6241 (ARIMA) re-
spectively, and RMSE of data-driven traffic prediction method
are 5.5817 (SVR), 5.4932 (GRU), 5.4761 (GCN-GRU), and
5.2721 (AGG), respectively. )erefore, RMSE on the whole
presents a downward trend, and the AGG model proposed in
this paper has the smallest RMSE, which means that the model
of spatial-temporal correlation and the introduction of an at-
tention mechanism are fundamental to reduce the RMSE of
network traffic prediction results.

Figure 10 shows the comparison results of ACC between
AGG model and other baseline models. )ese baseline models
are consistent with Figure 9. Specifically, ACC of model-driven
traffic prediction method are 0.6785 (HA) and 0.6264
(ARIMA), respectively, and ACC of data-driven traffic pre-
diction method are 0.7095 (SVR), 0.7114 (GRU), 0.7150 (GCN-
GRU), and 0.7256 (AGG), respectively. )erefore, ACC on the
whole presents an upward trend, and the AGGmodel proposed
in this paper has the largest RMSE, whichmeans that themodel
of spatial-temporal correlation and the introduction of an at-
tention mechanism are significant to improve the ACC of
network traffic prediction results.
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Figure 5: Grid and map of the area.
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Figure 6: Network traffic trend of the nine regions within a week.

Table 2: Environment configuration parameters.

Environment component Parameter
CPU production type AMD Ryzen 52600
GPU production type Nvidia GT745M
Memory size 16GB
TensorFlow version 1.4
Python version 3.7
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4.4.3. Analysis of Visual Results of Traffic Prediction. In
order to more intuitively see the prediction results of the
proposed AGGmodel, Figures 11 and 12, respectively, show
the traffic trend comparison diagram between the prediction
value and the true value of AGGmodel in 10min and 20min
prediction spans of area 2270. In the experiment, the sliding
window length is set to 8 and the number of hidden units is
set to 100, which has been proved in Section 4.3 that these
parameters are optimal.

It can be seen from Figures 11 and 12 that the AGG
model proposed in this paper has good prediction perfor-
mance, but it has the following two flaws. On the one hand,
the prediction result of network traffic at the peak is poor.
)e main reason is that the GCNmodel defines a smoothing

filter in the Fourier domain and captures the spatial char-
acteristics by continuously moving the filter and signal for
winding operation. )is process leads to smoother predic-
tion of the mutation region. On the other hand, there is a
certain error between the true network traffic data and the
prediction results. )e possible reason is that when there is
no communication at a certain time in the region, the value
of network traffic may be zero, or the value of network traffic
may be very small, and a small difference may cause a large
relative error. Further, by comparing Figures 11 and 12, we
can also get that, with the increase in the prediction time
scale, the fitting level between the prediction value and the
actual value also decreases, indicating that the small pre-
diction scale always has a better prediction effect.
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Figure 7: Performance comparison under different sliding window lengths.
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Figure 8: Performance comparison under different number of hidden units.

Table 3: Model training parameters.

Model component Parameter
Batch size 32
Learning rate 0.001
Training epoch 3000
Sliding window length 8
Hidden units 100
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Table 4: Comparison results between AGG model with other baseline models.

T (min) Metric HA ARIMA SVR GRU GCN-GRU AGG

10

RMSE 6.1774 5.6241 5.5817 5.4932 5.4761 5.2721
MAE 3.2447 3.9729 2.8332 2.7525 2.7009 2.5788
ACC 0.6785 0.6264 0.7095 0.7114 0.7150 0.7256

R2 0.7613 0.0356 0.8051 0.8078 0.8124 0.8261
EVS 0.7613 0.0008 0.8065 0.8086 0.8125 0.8265

20

RMSE 6.1774 5.8655 5.8321 5.8211 5.8189 5.7209
MAE 3.2447 3.9767 2.9926 2.9836 2.9732 2.8362
ACC 0.6785 0.6262 0.6856 0.6898 0.6973 0.7024
R2 0.7613 0.0356 0.7749 0.7853 0.7888 0.7959
EVS 0.7613 0.0009 0.7896 0.7914 0.7931 0.7969
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Figure 9: Comparison results of RMSE between AGG model and other baseline models.
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Figure 11: Visual results of traffic prediction by AGG model in 10min span.
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5. Conclusion

In this paper, we propose a network traffic prediction
method combining GCN, GRU, and attention mechanism.
In this method, GCN is used to capture the network to-
pology to obtain the spatial features of network traffic. GRU
model is used to capture the dynamic changes of traffic on
nodes, so as to obtain the time features of network traffic.
Furthermore, the attention mechanism is used to weight the
historical traffic data to dynamically adjust the importance of
network traffic information at each sampling time. By using
the actual network traffic dataset to carry out the experiment
and comparing it with the baseline models such as HA,
ARIMA, SVR, GRU, and GCN-GRU, it can be concluded
that the AGGmodel proposed in this paper achieves the best
prediction effect under different performance indicators.

Data Availability

)is paper selects an open network traffic dataset, the
download address is https://dataverse.harvard.edu/dataset.
xhtml?persistentId�doi:10.7910/DVN/EGZHFV, and the
traffic collection time is from 00 : 00 on November 1, 2013, to
00 : 00 on January 1, 2014.

Conflicts of Interest

)e authors declare no conflicts of interest.

Acknowledgments

)is work was supported by the National Natural Science
Foundation of China under Grants 61801073, 61722105, and
61931004.

References

[1] Cisco: Cisco annual internet report (2018–2023) whitepaper
[R/OL]. Cisco (2020-03-09) [2020-05-15]. https://www.cisco.
com/c/en/us/solutions/collateral/executive-perspectives/
annual-internetreport/white-paper-c11-741490.html.

[2] M. Laner, P. Svoboda, and M. Rupp, “Parsimonious fitting of
long-range dependent network traffic using ARMA models,”

IEEE Communications Letters, vol. 17, no. 12, pp. 2368–2371,
2013.

[3] J. Guo, Y. Peng, X. Peng, and Q. Chen, “Traffic forecasting for
mobile networks with multiplicative seasonal ARIMA
models,” in Proceedings of the Electronic Measurement &
Instruments, 2009. ICEMI ’09. 9th International Conference
on, August 2009.

[4] H.-W. Kim, J.-H. Lee, Y.-H. Choi, Y.-U. Chung, and H. Lee,
“Dynamic bandwidth provisioning using ARIMA-based
traffic forecasting for Mobile WiMAX,” Computer Commu-
nications, vol. 34, no. 1, pp. 99–106, 2011.

[5] A. Alheraish, S. Alshebeili, and T. Alamri, “Regression video
traffic models in broadband networks,” Journal of King Saud
University - Engineering Sciences, vol. 18, no. 1, pp. 19–55,
2005.

[6] Y. Shu, M. Yu, j. Liu, and O. W. W. Yang, “Wireless traffic
modeling and prediction using seasonal arima models,” IEICE
- Transactions on Communications, vol. E88B, no. 10,
pp. 1675–1679, 2003.

[7] P. Bermolen and D. Rossi, “Support vector regression for link
load prediction,” Computer Networks, vol. 53, no. 2,
pp. 191–201, 2009.

[8] G. Kremer, P. Owezarski, and P. Berthou, Predictive Esti-
mation of Wireless Link Performance from Medium Physical
Parameters Using Support Vector Regression and K-Nearest
Neighbors, Springer, Berlin, Heidelberg, 2014.

[9] Y. Wu, H. Tan, L. Qin, B. Ran, and Z. Jiang, “A hybrid deep
learning based traffic flow prediction method and its un-
derstanding,” Transportation Research Part C: Emerging
Technologies, vol. 90, no. 9, pp. 166–180, 2018.

[10] A. Lazaris and V. K. Prasanna, “An LSTM framework for
modeling network traffic,” in Proceedings of the 2019 IFIP/
IEEE Symposium on Integrated Network and Service Man-
agement (IM), IEEE, Washington DC, USA, April 2019.

[11] A. Azzouni and G. Pujolle, “A long short-term memory re-
current neural network framework for network traffic matrix
prediction,” arXiv preprint arXiv:1705, 2017.

[12] C. Zhang, H. Zhang, D. Yuan, and M. Zhang, “Citywide
cellular traffic prediction based on densely connected con-
volutional neural networks,” IEEE Communications Letters,
vol. 22, no. 8, pp. 1656–1659, 2018.

[13] L. Zhao, Y. Song, C. Zhang, and Y. Liu, “T-GCN: a temporal
graph convolutional network for traffic prediction,” IEEE
Transactions on Intelligent Transportation Systems, vol. 99,
pp. 1–11, 2019.

2
4
6
8

10
12
14
16
18

Tr
af

fic
 (G

B)
350200 3002500 10050 150

Time (min)

true
prediction

Figure 12: Visual results of traffic prediction by AGG model in 20min span.

10 Security and Communication Networks

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/EGZHFV
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/EGZHFV
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internetreport/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internetreport/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internetreport/white-paper-c11-741490.html


[14] K. He, Y. Huang, X. Chen, and Z. Zhou, “Graph attention
spatial-temporal network for deep learning based mobile
traffic prediction,” in Proceedings of the GLOBECOM 2019 -
2019 IEEE Global Communications Conference, December
2019.

[15] L. Yang, X. Gu, and H. Shi, “A noval satellite network traffic
predictionmethod based on GCN-GRU,” in Proceedings of the
2020 International Conference on Wireless Communications
and Signal Processing (WCSP), Xi’an, China, October 2020.

[16] J. Zhu, Y. Song, L. Zhao, and H. Li, “A3T-GCN: attention
temporal graph convolutional network for traffic forecasting,”
arXiv:2006.11583, 2020.

[17] H. Zhang, L. Chen, J. Cao, and X. Zhang, “A combined traffic
flow forecasting model based on graph convolutional network
and attention mechanism,” International Journal of Modern
Physics C, 2021.

Security and Communication Networks 11


