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Magnetic field and the fractional Maxwell fluids’ impacts on peristaltic flows within a circular cylinder tube with heat and mass
transfer were evaluated while assuming that they are preset with a low Reynolds number and a long wavelength. )e analytical
solution was deduced for temperature, concentration, axial velocity, tangential stress, and coefficient of heat transfer. Many
emerging parameters and their effects on the aspects of the flow were illustrated, and the outcomes were expressed via graphs.
Finally, some graphical presentations were made to assess the impacts of various parameters in a peristaltic motion of the
fractional fluid in a tube of different nature. )e present investigation is essential in many medical applications, such as the
description of the gastric juice movement of the small intestine in inserting an endoscope.

1. Introduction

Numerous implementations have drawn interest of physi-
cists, mathematicians, and engineers on magneto-hydro-
dynamic flow issues. In some applications and geothermal
studies, metal alloy substantiation processes are optimized
Sources, management of waste fuel, regulation of under-
ground propagation and pollution of chemicals, waste, the
construction of energy turbines for MHD, magnetic
equipment for wound therapy and cancer tumour treatment,
reduction of bleeding during surgery and transport of tar-
geted magnetic particles as medicines. Several extensive
works of literature on that fertile field are now available in
[1, 2]. Saqib et al. [3] clarified the nonlinear motion of the
non-Newtonian fractional model fluid problem. Rashed and
Ahmed [4] produced a numerical solution for dusty
nanofluids peristaltic motion in a channel using a shooting
method. )e slip effect’s problem on a peristaltic flow of the
fractional fluid of second-grade over a cylindrical tube was
examined by Rathod and Tuljappa [5]. Vajravelu et al. [6]
obtained the velocity, temperature, and concentration with a
magnetic field of a Carreau fluid in a channel with the heat
and mass transfer. Ali et al. [7] discussed magnetic field

effects on a blood flow that the blood was characterized as
the Casson fluid. Zhao et al. [8] explored the motion natural
convection temperature of a fraction with a magnetic field of
viscoelastic fluid through a porous medium. Abd-Alla et al.
[9] were researching the magnetic field’s impact on a
peristaltic motion of the fluid through the cylindrical cavity.
Afzal et al. [10] analyzed the effect of the diffusivity con-
vection and magnetic field in nanofluids on the peristaltic
motion through the nonuniform channel. Heat and mass
transfer’s effects and magnetic field of the peristaltic motion
in a planar channel were examined by Hayat and Hina [11].
)e impact of the temperature and the magnetic field of
peristaltic motion through a porous medium was debated by
Srinivas and Kothandapani [12]. Ramzan et al. [13] discussed
the heat flux and magnetic field’s influences in Maxwell fluid
flow through a two-way strained surface. Rachid [14] cal-
culated the movement of viscoelastic fluid peristaltic
transport under theMaxwell fractional model.)e impact of
a viscosity and a magnetic field of the peristaltic motion of
synovial nanofluid in an asymmetric channel was recon-
noitered by Ibrahim et al. [15]. Aly and Ebaid [16] inspected
the slip conditions’ effects of a peristaltic motion of nano-
fluids. Carrera et al. [17] checked the extension of a fractional
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Maxwell fluid and viscosity to the peristaltic motion. Zhao
[18] exhibited the convection flow, the magnetic field, and
velocity slip of a peristaltic motion of a fractional fluid. Abd-
Alla et al. [19] obtained the solution to the peristaltic motion
problem in an endoscope tube. )e analytical solution of the
transport of viscoelastic fluid through a channel in the
fractional peristalsis movement model was presented by
Tripathi et al. [20]. )e magnetic field effect on peristaltic
movement in a vertical annulus was exposed by Nadeem and
Akbar [21]. Srinivas et al. [22] were determining the effects
on Newtonian fluid’s peristaltic movement into porous
channels of wall slip conditions, magnetic field, and heat
transfer. Recent research expansions on the subject begin-
ning from [23–33].

)is paper aims to inspect the impacts of magnetic fields,
heat and mass transfer, and fractional Maxwell fluids on the
peristaltic flow of Jeffrey fluids. Both two-dimensional
equations of motion and heat and mass transfer are gen-
eralized under the presence of low Reynolds numbers and a
long wavelength. )e temperature, concentration, axial
velocity, tangential stress, and coefficient of heat transfer are
empirical solutions, and the wave shape is found. In the
problem, the relevant parameters are specified pictorially.
)e findings obtained are displayed and discussed graphi-
cally. For physicists, engineers, and individuals interested in
developing fluid mechanics, the outcomes described in this
paper are essential. )e different potential fluid mechanical
flow parameters for the Jeffrey peristaltic fluid are also
supposed to serve as equally good theoretical estimates.
Indeed, the current investigation is firmly believed to receive
considerable attention from the researchers towards further
peristaltic development with a variety of applications in
physiological, modern technology, and engineering.

2. Formulation of the Problem

Take the MHD peristaltic flow through uniform coaxial
tubes of a viscoelastic fluid through the fractional Maxwell
fluid model. If the flow is transversely subject to a consistent
magnetic field, electrical conductivity exists (Figure 1).
Furthermore, it is supposed the inner and outer tube
temperatures are T0 and T1, and concentrations are C0 and
C1, respectively. We picked a cylindrical coordinate R and Z.

)e equations for the tube walls are given by

R1 − a1 � 0,

R2 − a2 � +b sin
2π
λ

(Z − ct) .

(1)

)e equation of the fractional Maxwell fluid is given by
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t
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, (2)

where 0≤ α1 ≤ 1.
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)e equation of motion can be written in the fixed frame
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ρ
z

zt
+ U

z

zR
+ W

z

zZ
 U +

zp

zR
�
1
R

z

zR
RSRR(  +

z

zZ
S

RZ  −
Sθθ

R
,

ρ
z

zt
+ U

z

zR
+ W

z

zZ
 W +

zp

zZ
�
1
R

z

zR
RS

RZ  +
z

zZ
S

ZZ  + ρgαt T − To( 

ρgαc C − Co(  − σB
2
oW,

ρCp

z

zt
+ U

z

zR
+ W

z

zZ
 T � K

z
2

zR
2 +

1
R

z

zR
+

z
2

zZ
2 T + Qo,

z

zt
+ U

z

zR
+ W

z

zZ
 C � Dm

z
2

zR
2 +

1
R

z

zR
+

z
2

zZ
2 C +

DmKT

Tm

z
2

zR
2 +

1
R

z

zR
+

z
2

zZ
2 T,

zU

zR
+

U

R
+

zW

zZ
� 0.

(6)

2 Complexity



)e transformation between these two frames can be
written as follows:

r − R � 0,

z − Z � − ct,

u − U � 0,

w − W � − c.

(7)

)e relevant governed boundary conditions for the
considered flow analysis can be listed as

w + c � 0, u � 0 at r � r1,

w + c � 0 at r � r2 + b sin
2πz

λ
 ,

T − T1 � 0, C − C1 � 0, at r � r1,

T − T0 � 0, C − C0 � 0 at r � r2.

(8)

)e leading motion equations of the flow for fluid in the
wave frame are given by
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(9)

where S depends only on r and t. After using the initial
condition S(t � 0), we find Srr � Sθθ � Szz � S

rθ � 0, and
1 + λ1

α1 z
α1

zt
α1 Srz � μ

zw

zr
. (10)
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Figure 1: )e geometry of the problem.
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We present the following dimensionless parameters for
further analysis:
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wherever (φ � (b/a2)< 1) is the wave amplitude.

3. Solution of the Problem

For the abovementioned modifications and nondimensional
variables listed earlier, the preceding equations are reduced to
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With boundary conditions

w + 1 � 0, u � 0 at r � r1 � ε,

w + 1 � 0 at r � r2 � 1 + φ sin(2πz),

θ − 1 � 0,Θ − 1 � 0 at r � r1,

θ � 0,Θ � 0 at r � r2.

(17)

4. The Analytical Solution

Furthermore, the hypothesis of the long wavelength ap-
proach is also supposed. Now, δ is very small so that it can be
tended to zero. )us, the δ≪ 1 dimensionless governing
equations (12)–(15) by using this hypothesis may be written
as
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equation (18) specifies that p is only a function of z.
Temperature, concentration, and axial velocity solutions

can be described as follows:
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)e heat transfer coefficient is indicated as follows:
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So, the solution of heat transfer is given by

Zr � −
rβ
2

+
1

r log r1/r2( 
+

r
2
1/r  − r

2
2/r  β

4 log r1/r2( 
⎡⎣ ⎤⎦ ×[2φπ cos(2πz)]. (23)

Complexity 5



Using the definition of the fractional differential operator (5)
we find the expression of f as follows:

f � f(t) � 1 + λα11
t
− α1

Γ 1 − α1( 
. (24)

5. Results and Discussion

In this section, the effect of different parameters is shown
graphically in Figures 2–7 such as fractional parameter α1,
heat source/sink parameter β, wave amplitude φ, radius
ratio ε, Hatman number M, Grashof number Gr, relaxation
time λ1, the Soret number Sr, and the Schmidt number Sc
on the temperature θ, the concentrationΘ, axial velocity w,

tangential stress srz, and heat transfer coefficient Zr.
MATLAB software is used to identify the quantitative
influences of various physical parameters implicated in the
our study. Approximate analytical results are numerically
evaluated for temperature, concentration, axial velocity,
tangential stress, and the heat transfer coefficient for
various values of parameters. For this object, Figures 2–7
are displayed.

Figure 2 has been plotted to clarify the variations of β and
φ on the temperature distribution θ. Figure 2 shows that θ
decreases when β increases in the range 0≤ r≤ 0.32, while θ
increases when β increases in the range 0.32≤ r≤ 1.2.

Moreover, θ decreases when φ increases in the range
0≤ r≤ 0.32, while θ increases when φ increases in the range
0.32≤ r≤ 1.4. In addition, the temperature decreases with
the radial increase and the boundary conditions are fulfilled.

Figure 3 displays the discrepancy of the concentration
with the radial for various values of ε,φ, Sc and Sr. It is
indicated that the concentration increases with increasing ε
and φ. However, Θ decreases with increasing Sr and Sc. In
addition, the concentration decreases with the radial in-
crease and the boundary conditions are fulfilled.

)e impacts of Gr, λ1,φ, α1, M, and Sc on the axial ve-
locity w are illustrated in Figure 4. It is indicated that the
axial velocity profiles decreases with increasing Gr, λ1, and φ
in the range 0≤ r≤ 0.32, while it increases in the range
0.32≤ r≤ 0.45, In addition to this, the axial velocity profile
decreases with increasing α1 in the whole range 0≤ z≤ 1,

while it increases with increasing M in the whole range
0≤ z≤ 1, the axial velocity profiles decreases with increasing
Sc in the range 0≤ z≤ 53 as well, and it increases in the range
0.53≤ r≤ 0.88 and then decreases again in the range
0.88≤ z≤ 1. Also, it is observed that the velocity has oscil-
latory behavior due to peristaltic motion concerned.

)e effect of α1, M, β and Sc can be observed from
Figure 5, in which the tangential stress is illustrated for the
various values of α1, M, β, and Sc. With the increase of α1
and Sc, the tangential stress decreases. Moreover, tangential
stress increases with increasing M and β. It is noticed that
one can observe the tangential stress is in oscillatory be-
havior, which may be due to peristalsis.

Figure 6 explains the influence of ε and φ on the heat
transfer coefficient Zh. Obviously, the increase in ε and φ
increases the amplitude of the heat transfer coefficient in the
whole range z. From Figure 6, one can observe that heat
transfer coefficient is an oscillatory behavior in the whole
range, which may be due to peristalsis.

Figure 7 is plotted in 3 D schematics concern the axial
velocity w, the concentration Θ, the temperature θ, and the
heat transfer coefficient Zh concerning r and z axes in the
presence α1, Sr, ε, and φ. It is indicated that the axial velocity
decreases by increasing α1, Also, the concentration decreases
by increasing Sr, the temperature increases with increasing
of ε as well, otherwise the heat transfer coefficient increases
by increasing φ. For all physical quantities, we obtain the
peristaltic flow in 3D overlapping and damping when the
state of particle equilibrium is reached and increased. )e
vertical distance of the curves is greater, with most physical
fields moving in peristaltic flow.
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Figure 6: Discrepancies of the heat transfer coefficient Zr against the z− axis for various values of ε and φ.
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Figure 5: Discrepancies of the axial tangential stress srz against the z− axis for various values of α1, M, β, and Sc.
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Figure 7: Continued.
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6. Conclusions

)e concluding remarks are listed as follows:

(1) )e axial velocity decreases and increases with the
increase of α1,φ,Gr, λ1, and Sc due to the increase in
the Lorentz force.

(1) )e temperature increases with the increase of the
wave amplitude and radius ratio.

(2) )e concentration decreases with the increase of both
Sr, Sc and it increases with the increase of both ε and φ.

(3) )e tangential stress decreases and increases with the
increase of both α1, Sc, and it increases with the
increase both M and β.

(4) )e study of the phenomenon under effect of α1, β, φ,
ε, M, Gr, λ1, Sr, and Sc was performed.

(5) )is study has indeed been widely applied in many
fields of science, such as medicine and the medical
industry. )us, in the field of fluid mechanics, it is
considered as extremely essential. When inserting an
endoscope through the small intestine, this study
describes the movement of the gastric juice.

Nomenclature

R1, R2: Shapes of the wave walls
t: Time in a wave frame
λ1: Relaxation time
α1: Fractional time derivative parameter
c
.
: Rate of the shear strain

U, W: )e components of the velocity in a laboratory
frame

u, w: )e components of the velocity in a wave frame
P: )e pressure in a laboratory frame
p: )e pressure in a wave frame
σ: Fluid’s electric conductance
Bo: )e intensity of the external magnetic field
ρ: Density
g: Gravity constant
αt: Linear coefficient of the thermal expansion

αc: Coefficient of the viscosity at constant
concentration

cp: Specific heat
K: )ermal conductivity
QO: Heat generation coefficient
φ: Wave amplitude in the dimensionless form
ε: Radius ratio
θ: )e distribution of temperature
Θ: )e distribution of concentration
T0, T1: Inner and outer tube temperature
C0, C1: Inner and outer tube concentration
δ: Wavenumber
μ: Fluid viscosity
M: Hartmann number
Re: Reynolds number
Pr: Prandtl number
Gr: Grashof number
β: )e heat source/sink parameter
Br: Brinkman number
Sr: Soret number
Sc: Schmidt number.
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