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Salient object detection has a wide range of applications in computer vision tasks. Although tremendous progress has beenmade in recent
decades, theweak light image still poses formidable challenges to current saliencymodels due to its low illumination and low signal-to-noise
ratio properties. Traditional hand-crafted features inevitably encounter great difficulties in handling images with weak light backgrounds,
while most of the high-level features are unfavorable to highlight visually salient objects in weak light images. In allusion to these problems,
an optimal feature selection-guided saliency seed propagationmodel is proposed for salient object detection in weak light images.(emain
idea of this paper is to hierarchically refine the saliency map by learning the optimal saliency seeds in weak light images recursively.
Particularly, multiscale superpixel segmentation and entropy-based optimal feature selection are first introduced to suppress the back-
ground interference.(e initial saliency map is then obtained by the calculation of global contrast and spatial relationship. Moreover, local
fitness and global fitness are used to optimize the prediction saliency map. Extensive experiments on six datasets show that our saliency
model outperforms 20 state-of-the-art models in terms of popular evaluation criteria.

1. Introduction

Aiming to mimic human visual system (HVS), which has the
ability to effortlessly sort out the most attractive things from
the scene in front of eyes, the goal of salient object detection
is to calculate the most important objects in an image. For
the moment, salient object detection can substantially fa-
cilitate a series of applications, such as image segmentation
[1, 2], object recognition [3], image retrieval [4], image
compression [5], and photo cropping [6].

By computing pixel or region uniqueness in either low-
level cue or high-level cue, existing salient object detection
models can be broadly divided into two types. (1) Bottom-up
models are usually unsupervised and based on local contrast
or global contrast. (ese methods tend to suffer from false
detections in the context of cluttered background and less
effective visual features. (2) Top-down models mainly le-
verage supervised learning to guide object detection.
However, the complexity of the algorithm and the diversity
of objectives limit the generality of these methods.

Although a large number of bottom-up and top-down
salient object detection models have been proposed, most of

them are only designed for normal light scenes. (ese sa-
liency models are confronted with significant challenges in
weak light images due to low signal-to-noise ratio and lack of
well-defined features to capture saliency information in low
lighting scenarios. (e most likely reasons may attribute to
two aspects: (1) current hand-crafted visual features can
hardly evaluate the objectness in weak light images; (2) most
of the high-level features normally present enormous
challenges in detecting accurate object boundary informa-
tion, which can be easily blurred due to multiple levels of
convolution layers and pooling layers in common con-
volutional neural network models.

To address these challenges, this paper proposes an
optimal feature selection-based saliency seed propagation
model for salient object detection in weak light images (the
code of this paper can be downloaded from https://drive.
google.com/open?id�1w0qBapNVygh8TOOp7AijFWOxsY
xdRcWa). Several hand-crafted visual features are selected to
hierarchically refine the saliency map obtained from the
high-level cues recursively. (e flowchart of our model is
presented in Figure 1.(e optimal low-level features are first
selected to give a robust expression for weak light images,
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which aims to capture more objectness information and
contributes to the prediction of salient objects under weak
light conditions. Next, two cost functions are introduced to
iteratively optimize the foreground seeds and background
seeds of the initial saliency map, which can continuously
compensate for salient information and remove nonsalient
information to generate more precise object details. To
estimate the overall performance, the proposed model is
compared with 20 state-of-the-art salient object detection
models on six datasets.

(e paper is an extended version of our previously
accepted conference paper [7], which provides a more de-
tailed explanation and richer experimental demonstration.
To sum up, this research has four main contributions: (1) a
bottom-up visual saliency model, which requires no train-
ing, is explored toward weak light images, (2) an effective
feature selection strategy is put forward to provide a robust
representation of saliency information, (3) two cost func-
tions are built to refine the initial saliency seeds recursively,
and (4) a nighttime image (NI) dataset (the nighttime image
(NI) dataset can be downloaded from https://drive.google.
com/open?id�0BwVQK2zsuAQwX2hXbnc3ZVMzejQ) is
constructed to verify the performance of our model.

(e rest of this paper is organized as follows. Section 2
reviews the related works of saliency detection. Section 3
introduces the proposed saliency model. Section 4 presents
the experimental results of the state-of-the-art models and
the proposed model on six datasets. (e conclusion of this
paper is given in Section 5.

2. Related Works

Numerous salient object detection models have been pro-
posed recently (see [8] for review); the main task of them is
to highlight the most important visual regions for further
processing. Depending on whether the task-independent or
task-dependent is considered, they can be categorized as the
bottom-up models and the top-down models, respectively.

Bottom-up saliency models are stimuli-driven and rely on
low-level features. One typical model was presented by Itti et al.
[9], which is mainly based on the center-surround difference of
multiple features. Following this pioneering work, various
bottom-up saliency models were proposed. Goferman et al. [10]

computed the saliency value of image patches by implementing
the local and global contrasts. Cheng et al. [11] executed the
saliency computation by calculating the histogram and region
contrasts. Xu et al. [12] introduced the contrast and spatial
distribution strategies to evaluate the image saliency. Kim et al.
[13] estimated the local saliency and global saliency based on
regression and high-dimensional color transform. Hu et al. [14]
performed salient object detection by utilizing the compactness
hypothesis of color feature and texture feature. Huang and
Zhang [15] presented a minimum directional contrast based
salient object detection method. Wang et al. [16] exploited the
pyramid attention and salient edges to guide the salient object
detection. Sun et al. [17] detected the salient objects by
employing a cascaded bottom-up feature aggregationmodule to
capture the detailed information of low-level features. Jiang et al.
[18] proposed a task-independent saliency model based on the
bidirectional absorbing Markov chains. Molin et al. [19]
exploited a neuromorphic dynamic bottom-up saliency detec-
tion method, which is feed-forward and requires no training.
Typically, these bottom-up saliency models tend to face many
difficult problems in handling images of a busy background and
struggle to predict the true salient objects, which are in a low-
contrast weak light environment.

Top-down saliency models are task-driven and rely on
high-level perceptual learning. Xu et al. [20] used the support
vector machine (SVM)model to produce the superpixel-level
saliency map. Qu et al. [21] proposed a deep learning-based
salient object detection model by combining the superpixel-
based Laplacian propagation and the trained convolutional
neural network (CNN) model. Mu et al. [22] designed a
region covariance-based CNN method to learn the saliency
value of image patches. Wang et al. [23] employed the top-
down process for coarse-to-fine saliency estimation. Mu
et al. [24] explored global convolutional and boundary re-
finement in a top-down manner to guide the learning of
salient objects. Qiu et al. [25] introduced an automatic top-
down fusion (ATDF) saliency model, which utilizes the
global information to guide the learning of underlying
knowledge. Zhang et al. [26] developed a top-down mul-
tilevel fusion method for RGB-D salient object detection.
Wang et al. [27] progressively optimized the salient objects
by exploiting the fixation map in a top-down mode. Xu et al.
[28] utilized a progressive architecture with a knowledge
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Figure 1: Overview of the proposed salient object detection model in the weak light image.
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review network (PA-KRN) for salient object detection, which
compensates for the important information in a top-down
way. Dong et al. [29] presented a bidirectional collaboration
network (BCNet) for salient object detection, which inte-
grates feature fusion and feature aggregation in an edge-
guided top-down progressive pathway. (ese top-down
saliency models generally have high computational com-
plexity and are relatively ineffective in determining accurate
boundary and localization of salient objects under weak light
conditions.

Since saliency detection in a weak light environment is a
challenging problem, there were few studies on the salient
object detection of weak light images [30, 31]. Mu et al. [30]
proposed an ant colony optimization (ACO) based saliency
model for predicting the salient objects on weak light images.
Xu et al. [31] explored an image enhancement method for
salient object detection in weak light images. (ese saliency
models, however, are not robust enough to capture the
salient objects in real-time. Different from these previous
methods, the proposed model creates a totally unsupervised
algorithm by integrating the bottom-up measures and the
single-objective optimization cues. Specifically, (1) the
proposed saliency model explores low-level features to
represent the object properties and selects the most effective
ones based on the entropy information; (2) the superpixel-
level saliency is directly estimated by the feature dissimilarity
and spatial similarity; (3) the prior saliency map, which
contains the foreground seeds and the background seeds, is
generated by implementing the bottom-up measures; (4) the
single-objective optimization cues are formulated by de-
signing the fitness-based cost functions to iteratively opti-
mize the salient and nonsalient seeds; and (5) experimental
results indicate that the proposedmodel can generate a high-
performance saliency map in real time.

3. The Proposed Saliency Model

(e proposed optimal feature selection-guided saliency seed
propagation model is presented in detail in this section. (e
input image is first segmented into superpixels at three
scales. (en, 12 features are extracted from the pre-
processing image, and only nine optimal ones are chosen for
the next calculation. Next, the initial saliency map is
computed by combining the global contrast and center
prior. And then, the new saliencymap can be obtained by the
foreground and background seeds from the previous one.
Two cost functions which are based on global fitness and
local fitness are defined to control the end of the iteration. At
last, the optimal saliency map is obtained, and the results of
three scales are integrated to get the final saliency map.

3.1. Multiscale Superpixel Segmentation. To make full use of
the midlevel information and preserve the object structure
context of the input image, the simple linear iterative clus-
tering (SLIC) algorithm [32] is used to divide the input image
into N superpixels (denoted as si , i � 1, . . . , N). (is
operation can boost the efficiency of the method by re-
garding the superpixel as a processing unit. For saliency

detection, the background region is more likely to have
semblable superpixels at different scales, while the salient
regions may have similar superpixels at some scales. (at is,
the fusion of the acquired salient superpixels at different
scales can more accurately represent the real salient regions.
However, as the number of superpixels increases, the time
required for superpixel segmentation also increases. For
accuracy and efficiency, our model generates the superpixels
at three different scales, where the superpixel number N is
set to 100, 200, and 300, respectively. (e final saliency map
is the integration of the obtained multiscale saliency maps.

3.2. Effective Feature Extraction. Given an input image, 12
low-level visual features are extracted, containing nine color
features in three color spaces, the texture feature based on
local entropy information, the orientation feature fused by
the information in four directions, the gradient feature
obtained from the horizontal and vertical vectors. Since the
effectiveness of these various features varies according to the
contrasts of different input images, nine optimal ones are
selected from the 12 features, and the adaptive selection
strategy is mainly based on the global information entropy of
these features. (e feature extraction process is introduced
in detail as follows.

3.2.1. Color Features. (e input image is first normalized to
eliminate the interference of shadow and light (see pre-
processing in Figure 1). (is preprocessing is a general
procedure in our model, including processing both normal
light images and weak light images. (en, the input image is
transformed from RGB color space to LAB, HSV, and
YCbCr color spaces to capture nine color features. (e L, A,
and B components of LAB color space can describe all colors
visible to the human eye, which are closer to human visual
perception in weak light images. (e H, S, and V compo-
nents of HSV color space can be very intuitive to represent
the hue, depth, and bright degree, which have good ro-
bustness in low lightness and weak light images. (e Y, Cb,
and Cr components of YCbCr color space can better per-
ceive the intensity changes and the chromatic differences,
which are more conducive to highlight the salient object
information in weak light images.

3.2.2. Texture Feature. (e 2-dimensional entropy of the
original image is mainly used to represent the texture fea-
ture. Let I, (0≤ I≤ 255) denote the gray value of an image
pixel, and let J, (0≤ J≤ 255) denote the average gray value of
its neighborhood pixels; the spatial synthesis characteristic
of gray distribution can be expressed as follows:

pIJ �
f(I, J)

R
2 , (1)

where f(I, J) is the frequency of the characteristic tuple (I, J)

and R2 is the size of the neighborhood region. (e discrete 2-
dimensional entropy of the input image is defined as follows:
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E � 
255

I�0
pIJlogpIJ. (2)

Since the entropy information has strong resistance
against noise interference and geometric deformation, the
texture feature changes of salient objects in the weak light
image can be well estimated by the variations in entropy.

3.2.3. Orientation Feature. (e orientation feature is com-
puted by executing the Gabor filter of different directions
(denoted as gθ(x, y)) on the grayscale image (denoted as
gray(x, y)) via

O � 
θ∈ 0∘ ,45∘,90∘,135∘{ }

gray(x, y)∗gθ(x, y). (3)

(e rotational invariance and the global property of the
orientation feature make it have less impact from weak light
scenes.

3.2.4. Gradient Feature. (e gradient feature is calculated by
averaging the vertical gradient and horizontal gradient via

G � |gray(x + 1, y) − gray(x, y)|

+|gray(x, y + 1) − gray(x, y)|.
(4)

(us, the magnitude information of local grayscale
changes can be represented by the gradient feature, which
can overcome the interference of a low signal-to-noise ratio
in the weak light image.

3.2.5. Optimal Feature Selection. Feature selection plays an
important role in predicting the real salient objects in weak light
images. Gopalakrishnan et al. [33] proposed an unsupervised
feature selection method, which removes the irrelevant features
by maximizing the mixing rate of Markov processes of different
features. However, naive inclusion of irrelevant features for a
particular image can easily lead to performance degradation.
Liang et al. [34] explored feature selectionmethods in supervised
saliency learning, the features utilized in the model are highly
redundant. Naqvi et al. [35] selected useful features by mea-
suring the feature quality. However, they use a large number of
features trying to explain all possible saliency-related factors,
which increases the time cost and ignores some truly effective
features. Since the goal of our model is to identify a small set of
optimal features, with which the salient object detection in the
weak light image can be both efficient and effective, traditional
adaptive feature selection techniques are not suitable for us. (e
proposed model mainly extracts 12 features to participate in the
salient object calculation. Due to the fact that the effectiveness of
each feature is different when the image contrast changes, which
can be seen in Figure 2, nine optimal features (denoted as Fk ,
k � 1, . . . , 9) that can better describe the attributes of the
corresponding weak light image are then selected from the
extracted 12 different visual features L, A, B, H, S, V, Y,{

Cb, Cr, E, O, G} by calculating the 1-dimensional entropy in-
formation of these feature maps as follows:

entropy � 
255

I�0
pIlogpI, (5)

where pI denotes the proportion of image pixels and I

denotes the grayscale values of these pixels.
As a statistical feature form, the mean information

content contained in the aggregation properties of image
grayscale distribution can be well represented by image
entropy information. (e greater the entropy of the feature
map Fk  is, the more efficient this feature will be. (us, the
selected nine optimal features could better account for the
visual saliency of the corresponding weak light image.

3.3. Initial Saliency Map Generation. (e global contrast
measure and the spatial relationship strategy of the feature
map are calculated to estimate the saliency value of each
superpixel as follows:

Sal si(  � 

N

j�1,j≠ i

���������������

Fk si(  − Fk si( ( 
2



1 + pos si, sj 

⎛⎜⎜⎝ ⎞⎟⎟⎠ × c si( ,

c si(  � exp −
xi − x′( 

2

2v
2
x

−
yi − y′( 

2

2v
2
y

⎛⎝ ⎞⎠,

(6)

where pos(si, sj) is the Euclidean distance between super-
pixels si and sj. c(si) denotes the spatial distance between the
coordinate (xi, yi) and image center (x′, y′).vx and vy are
variables, which are decided by the vertical and horizontal
information of the input image.

3.4. SaliencyMapOptimization. To achieve clean and uniform
salient objects, optimization strategies are considered to improve
detection accuracy. Zhu et al. [36] presented a principled op-
timization structure to fuse multiple low-level saliency cues, the
whole framework mainly relies on the background cues, and it
does not work well in weak light images, of which the back-
ground information is cluttered. Lu et al. [37] devoted to
learning optimal saliency seeds set by utilizing a large margin
formulation of discriminant saliency criterion. However, the
gradient descent they used is not robust inweak light images and
is not efficient for high accuracy salient object detection. In the
proposed model, we built two cost functions to refine the
generated saliency seeds recursively, which is an effective and
straightforward manner to obtain more accurate salient objects
in weak light images. (e initial saliency map (denoted as
Smapk, k � 0) is first segmented into the salient region and
nonsalient region by utilizing Otsu’s thresholding [38]. (e
salient region and nonsalient region can be seen as the fore-
ground seeds (denoted as FS) and the background seeds
(denoted as BS) of the input image, respectively. (e larger the
difference between the superpixel and the foreground region is,
the lower the saliency value of this superpixel is. Conversely, the
greater the difference between the superpixel and the back-
ground region is, the higher the saliency value of this superpixel
will be. (us, the saliency value of si can be updated based on
foreground seeds FS and background seeds BS as follows:
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SalFS si(  � 
sj∈FS,j≠ i

1
���������������

Fk si(  − Fk sj  
2



+ pos si, sj  

,

(7)

SalBS si(  � 
sj∈BS,j≠ i

���������������

Fk si(  − Fk sj  
2



1 + pos si, sj  
, (8)

Sal si(  � 1 − exp −
SalFS si(  + SalBS si( 

2
   × c si( . (9)

(en, a new saliency map (denoted as Smapk, k � 1) of
the first iteration optimization is obtained. (e Otsu’s
method is reused to generate new FS and BS; the saliency
map of the next generation (denoted as Smapk+1) can be
computed according to (7-9). Finally, two cost functions are
implemented to decide whether the iteration procedures
meet the end condition or not:

minimize

f1(k) � Smapk − Smapk− 1( 
2

f2(k) � 
N

i�1


N

j�1

Sal si(  − Sal sj  
2

1 + pos si, sj 

, where k≥ 1, si, sj ∈ Smapk, 1≤ i, j≤N.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(10)

(e function f1(k) mainly represents the global fitness,
which denotes that the smaller the change between the
saliency map of the new generation Smapk and the previous
generation Smapk−1 is, the more optimization of the ob-
jective can be. (e function f2(k) mainly represents the
local fitness, which denotes that the smaller the difference
between the superpixel Sal(si) and its neighboring super-
pixels Sal(sj) is, the better the saliency information of each
decision variable can be. By minimizing the two functions
f1(k) and f2(k), the optimal superpixel-level saliency map
can be obtained.

4. Experiment Results

Comprehensive experiments are carried out on six datasets
to estimate the performance of our model against 20 state-
of-the-art salient object detection models.

4.1. Experimental Setup

4.1.1. Testing Datasets. (e six test datasets contain five
public datasets and the proposed weak light image
dataset as follows: (1) the MSRA dataset [39] includes
10000 images which have relatively high contrast and
only simple background; (2) the SOD dataset [40] in-
cludes various images of multiple objects and complex
background; (3) the CSSD dataset [41] includes complex
natural scenes; (4) the DUT-OMRON dataset [42] in-
cludes complex and challenging images; (5) the PAS-
CAL-S dataset [43] includes images of cluttered
background; and (6) our NI dataset includes 200 weak
light images, which are captured at night with a stand
camera. (e resolution of these images is 640 × 480,
and the human-annotated ground-truths (GTs) are also
given.
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Figure 2: (e top row contains the test images with different contrasts. (e bottom row is the corresponding entropy bar graphs of 12
different features.
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4.1.2. Comparison Models. (e first 15 state-of-the-art sa-
liency models include: Itti’s (IT) model [9], spectral residual
(SR) model [44], frequency-tuned (FT) model [45], non-
parametric (NP)model [46], context-aware (CA)model [10],
image signature (IS) model [47], low rank matrix recovery
(LR)model [48], patch distinct (PD)model [49], graph-based
manifold ranking (MR) model [42], saliency optimization
(SO) model [36], bootstrap learning (BL) model [50], generic
promotion (GP) model [51], spatiochromatic context (SC)
model [52], structured matrix decomposition (SMD) model
[53], and multiple-instance learning (MIL) model [54]. All
these experiments are performed by MATLAB software on
an Intel i5-5250 CPU (1.6GHz) PC with 8GB RAM.

4.1.3. Evaluation Criteria. To estimate the overall perfor-
mance of various saliency models, seven criteria are used,
including the true positive rates and false positive rates
(TPRs-FPRs) curve, the precision-recall (PR) curve, the area
under the curve (AUC) score, themean absolute error (MAE)
score, the weighted F-measure (WF) score, the overlapping
ratio (OR) score, and the average execution time per image
(in seconds).

(e TPR is defined as the ratio of salient pixels that are
correctly detected to all the true salient pixels, and FPR
corresponds to the ratio of falsely detected salient pixels to all
the true nonsalient pixels. (e precision is computed as the
ratio of correctly detected salient pixels to all the detected
salient pixels, and the recall is the same as TPR, which
measures the comprehensiveness of the detected salient
pixels. By varying the threshold over the obtained saliency
map, different TPRs, FPRs, precisions, and recalls can be
calculated by comparing the generated different binary
images with GT via

TPR �
TP

TP + FN
,

FPR �
FP

FP + TN
,

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

(11)
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Figure 3: (e TPRs-FPRs curves performance comparisons of different saliency models on the six datasets. (a) MSRA dataset. (b) SOD
dataset. (c) CSSD dataset. (d) DUT-OMRON dataset. (e) PASCAL-S dataset. (f ) NI dataset.

6 Scientific Programming



where the true positive (TP) is the collection of pixels that
correctly identify the salient object; the false positive (FP) is
the collection of pixels that falsely identify the salient object;
the true negative (TN) is the collection of pixels that correctly
identify the nonsalient pixels; and the false negative (FN) is
the collection of pixels which falsely identify the nonsalient
pixels.

(e TPRs-FPRs curve and the PR curve can be generated
by plotting the corresponding ratios. (e AUC score is
calculated by measuring the proportion of the area under the
TPRs-FPRs curve, which can give an intuitive indication of
how well the obtained saliency map represents the real
salient objects. (e MAE score is calculated as the average
absolute difference between the generated saliency map
(denoted as Salmap) and the ground-truth (denoted as GT)
via

MAE � mean(|Salmap(x, y) − GT(x, y)|). (12)

(e smaller the MAE value is, the higher the similarity
between Salmap and GTis.(e F-measure score is computed
as the weighted harmonic mean of the precision and the
recall via

Fβ �
1 + β2 precision · recall

β2 · precision + recall
, (13)

where β2 � 0.3 is the parameter to weigh the precision and
recall. (e WF score is calculated by adding a weighting
function to the detection errors [55].

(e OR score is measured by computing the overlapping
ratio of salient pixels between the binary saliency map
(denoted as Bmap) and GT via

OR �
|Bmap(x, y)∩GT(x, y)|

|Salmap(x, y)∪GT(x, y)|
. (14)

4.2. Experimental Results. (e quantitative performances of
our salient object detection method against the other 15
saliency models on the six datasets are presented in Figure 3
and 4 and Tables 1–6. (e best three experimental results of
Table 1–6 are highlighted in the red, blue, and green fonts,
respectively. In particular, the up-arrow ↑ denotes the larger
the value is, the better the performance of the saliency model
is. At the same time, the down-arrow ↓ indicates the opposite
meaning. As shown in the quantitative results, our salient
object detection model performs the first or second per-
formance on the five public datasets in most cases and
obtains the best performance on the NI dataset in a relatively
low time-consuming.

OnMSRA, DUT-OMRON, and PASCAL-S datasets ((a),
(d) and (e) of Figures 3 and 4 and Tables 1–3), our model
achieves the best performance on the TPRs-FPRs curve, PR
curve, and AUC score, while the saliency model SO obtains
the best MAE score and WF score, and the saliency model
MIL obtains the best OR score. (e main reason is that the
SO model used boundary connectivity and global optimi-
zation to increase its robustness, and the MIL model in-
troduced a multiple-instance learning approaches to
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Figure 4: (e PR curves performance comparisons of different saliency models on the six datasets. (a) MSRA dataset. (b) SOD dataset.
(c) CSSD dataset. (d) DUT-OMRON dataset. (e) PASCAL-S dataset. (f ) NI dataset.
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increase precision. (ese two saliency models take full ad-
vantage of the background measures, which can be of some
effect in detecting the salient object under complex back-
ground conditions. Although the MAE score, WF score, and
OR score of the proposed saliency model are slightly lower
than the two models SO and MIL, our detection results are
more competitive than the other models. (e average time
consumption of theMILmodel is more than 100 seconds per
image, which is not efficient in generating the saliency map.

On the SOD dataset (Figures 3(b) and 4(b), and Table 4),
our saliency model has the best performance on the TPRs-
FPRs curve, PR curve, AUC score, WF score, and OR score.
In terms of theMAE criterion, the proposed model performs
the second-best performance, which only has a small gap
(0.0025) with the best MAE score of the SO model.

On the CSSD dataset (Figures 3(c) and 4(c), and Ta-
ble 5), our saliency model performs the best performance
on the TPRs-FPRs curve, PR curve, and AUC score. (e
MAE, WF, and OR scores of the proposed model are
slighter than the best results achieved by the SMD model.
(e SMD model is based on the structured matrix de-
composition with two regularizations, which has a strong
potential in detecting the image of complex environments.
(e main reason for the poor performance of the proposed
model on these metrics is that the selected optimal features
contain less useful information that can effectively dis-
tinguish the salient objects.

On the NI dataset (Figures 3(f) and 4(f ), and Table 6),
our saliency model is superior, as it achieves the best per-
formance on these criteria with a relatively short time-
consuming.

(e qualitative comparisons of saliency maps generated
by the various salient object detection models on the six
datasets are shown in Figure 5, indicating that our saliency
model can detect the real salient object accurately in complex
and/or weak light images (more detected saliency maps can
be downloaded from https://drive.google.com/open?
id�0BwVQK2zsuAQwQjZHeUJ1dlBsQms).

Since the standard real-world images and the weak
light images have different properties, the proposed
framework employs a feature selection strategy over the
candidate feature set to pick out the most relevant features
that apply to different types of images, which ensures that
our model can be adapted to both standard saliency
datasets and the weak light image dataset. In addition, we
further optimize the saliency results through iteration to
ensure robustness.

To further verify the effectiveness of our model, we have
added some experiments with other five state-of-the-art
deep learning-based saliency models (NLDF [56], LPS [57],
BAS [58], F3Net [59], and LDF [60]) to better illustrate the
advantages of the proposed flowchart. (e subjective per-
formance comparisons of the proposed model with the latest
deep saliency models are shown in Figure 6.

MSRA SOD CSSD DUT-OMRON PASCAL-S NI Dataset

Input

GT

IT

SR

FT

NP

CA

IS

LR

PD

MR
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GP

SC
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Figure 5: Visual comparisons of saliency maps construction using different approaches on the six datasets.
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As can be seen in Figure 6, the saliency maps of the
NLDF and F3Net models cannot capture the effective salient
objects in weak light images. (e saliency results of the LPS
model are seriously interfered with by the background noise.
(e saliency maps generated by the BASmodel can highlight
the salient objects with less noise, but the detected salient
objects are incomplete. (e LDF model has difficulty in
detecting the whole objects and is prone to failure. Relatively
speaking, the proposed model can accurately detect the real
salient objects from the background on weak light images.

5. Conclusion

In this paper, we propose an optimal feature selection-based
saliency seed propagation model to detect the salient object
in weak light images. (e main idea of the proposed saliency
model is to execute saliency calculation by learning the
optimal hand-crafted visual features and refining the fore-
ground seeds and background seeds recursively. Guided by
the optimized saliency seeds, the final saliency map can be
achieved by fusing the multiple superpixel-level saliency
maps at three different scales. Comprehensive experiments
demonstrate that our saliency model performs satisfactory
results against 20 state-of-the-art saliency models on five
public datasets and a weak light image dataset.

Serving as a preprocessing step, salient object detection
can efficiently focus on the most interesting area associated
with the current visual task and it facilitates various com-
puter vision applications such as image classification, object
segmentation, visual tracking, etc. (e proposed salient
object detection model can be used to optimize correlational
vision applications under weak light conditions, and it is of
great application value to the monitoring system. In the
future, we will further improve the time performance of the
proposed saliency model and explore more potential
applications.
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