
A Fast Data Structure for Disk-Based Audio Editing

Dominic Mazzoni and Roger B. Dannenberg

School of Computer Science, Carnegie Mellon University
email: [dmazzoni, rbd]@cs.cmu.edu

Abstract
Computer music research calls for a good tool to display
and edit music and audio information. Finding no suitable
tools available that are flexible enough to support various
research tasks, we created an open source tool called
Audacity that we can customize to support annotation,
analysis, and processing. The editor displays large audio
files as well as discrete data including MIDI. Our
implementation introduces a new data structure for audio
that combines the speed of non-destructive editing with the
direct manipulation convenience of in-place editors. This
paper describes the data structure, its performance,
features, and its use in an audio editor.

1 Introduction
Audio editors can be classified as either in-place or non-

destructive, depending on whether they modify original
samples on disk or not. The first audio editors, as described
by Kirby and Shute (1988) and Moorer (1990) were non-
destructive, and they were modeled after tape-based editors,
with similar control panels and basic operations, with the
main advantage that edits could be changed or reversed
later. However, these types of editors force users to keep all

of the original audio clips that are used to create the final
mix, and once the editing is complete, an additional step is
required to actually produce the output audio file from the
originals. Another disadvantage is that as edits build up,
more and more processing must be done in order to play the
audio, at some point hurting real-time performance. In this
sense, non-destructive editors are not well-suited to large
numbers of edits or to displaying the results of arbitrary
sound manipulations. Often, processed samples must be
written to a new file before they can be viewed, and usually
this implies some extra file management tasks for the user.

As personal computers have grown faster and more
powerful, new audio editors have emerged that more closely
resemble a computer word-processor or computer painting
program than a reel-to-reel tape editor. These editors allow
users to perform many effects on their audio files in place,
with all changes affecting the original waveform data on
disk. This makes editing much simpler and faster, especially
for small files, and eliminates the extra step at the end, since
the current copy of the entire project is always stored on
disk. Modified waveforms can be viewed immediately since
computed samples are directly available. Unfortunately, in-
place editors do not scale with the size of the file: editing
operations such as cut, paste, and undo take more time as
the size of the file grows. Today both types of audio editor
are popular.

Our work adopts the in-place editor model, where
computation is performed immediately on stored samples
and where the results of computations are immediately
viewable on the screen. However, we introduce an
implementation with performance that compares to a non-
destructive editor. Unlike in-place or non-destructive
editors, our approach scales well with both the size of the
file and the number of edits. We have incorporated this
approach in a cross-platform audio editor named Audacity.
Because of its data structures, it can perform insertions and
deletions extremely quickly, and it also supports multiple
undo, which is also nearly instantaneous. Unlike a non-
destructive editor, Audacity always has the current version
of the audio file on disk, so it does not need to do any real-
time processing in order to play the audio at any time. This
also means that the user can safely throw away the original
files or modify them in a different program without
worrying that some audio project is depending on parts of

Figure 1. Using Audacity on Linux.

them. The core editing functionality of Audacity is
finished, but we are continuing to develop the program
under the open-source model to add features and improve its
interface.

2 Data Structure
In order to achieve fast editing while writing changes to

disk, Audacity uses a Sequence data structure, a generic
structure that was recently described and analyzed by
Charles Crowley (1996). A Sequence is an abstraction of an
ordered array of small values (like samples in the case of
audio) that supports the following operations:

Get(i, l): Retrieve l consecutive samples from the ith sample.
Set(i, l): Change l consecutive samples from the ith sample.
Insert(i, l): Insert l consecutive samples before the ith sample.
Delete(i, l): Delete l consecutive samples from the ith sample.

If the primary goal is to do disk-based editing, the strict

algorithmic complexity of these operations (i.e. O(l)) is not
nearly as important as the number and magnitude of disk
operations that must take place for each editing operation.
There may be many ways to implement a Sequence
efficiently with respect to disk operations, but the way we
chose is to store the samples in small blocks of size k to 2k,
where k is suitably chosen to be small enough that
processing one block takes negligible time, but not so small
that the audio is split into an unreasonable number of
blocks. The limited range of block sizes is critical to
guarantee good performance. Very large blocks make small
edits take too long, and very small blocks reduce
throughput. In our implementation, we store each block in a
separate file on disk and we found that k=16K two-byte
samples nearly maximizes efficiency (in terms of editing
speed).

By making the restriction that all of the blocks in a
Sequence must be between k and 2k samples, we guarantee
that an insert or delete operation of any size involves
reading or writing only a constant number of blocks on disk.
The structure that holds the sorted list of pointers to the
blocks and their relation to one another can be kept in
memory, and it can be implemented as a binary tree or even
as a simple dynamic array without sacrificing performance.

The intuition behind the k-2k restriction is that whenever
you’re given a block of at least k samples (but possibly
much more), you can always split it into some number of
blocks such that each block contains between k and 2k
samples.

As an example, consider the operation Delete(i, l). By
searching the list of blocks, we find that sample i is in block
a, and that sample i+l is in block b. (See Figure 2.) The
blocks strictly between a and b contain all deleted samples,
so we can remove them from the list immediately (deleting
their associated files). Then we remove the deleted samples
from the end of a and the beginning of b, taking time at
most 4k. Now one or both of blocks a and b may contain

fewer than k samples. However, now combine block a with
block a-1, and block b with block b+1. (If block a is the
first, or block b is the last, then this step is not necessary
because the first and last blocks have no minimum number
of samples.) It is easy to see that the number of samples in
block a plus a-1, and similarly in b plus b+1, is between k
and 4k. The samples can thus be reapportioned into either a
single block or two blocks such that all blocks in the list
now satisfy the k-2k property, and while only modifying a
constant number of blocks on disk. The operation Insert(i,
l) is more complicated than Delete, but the idea is the same.

Splitting each audio track into blocks has many other
benefits. By adding a reference count to each block, we
make it possible for multiple tracks or even multiple places
in the same track to share the same audio data, with minimal
extra storage requirements. This also makes it easy to have
multiple versions of an audio file around and implement an
undo feature easily.

This data structure also lends itself very well to
implementing other important features of an audio editor.
Although it is occasionally useful to see the individual
samples of a waveform, most of the time we want to see a
few seconds, or even minutes, of audio on the computer
screen at once. It is impractical to scan through minutes
worth of audio just to render an image of the waveform on
the screen, and thus audio editors need to cache a reduction
of the audio somewhere in order to render it more quickly
when the level of magnification is small. The most
common type of reduction is to display the peaks – i.e. the
minimum and maximum amplitudes of the samples
represented by each pixel.

We take advantage of our Sequence structure and store
these reductions in each block. By design, we have chosen
our block size so that the time needed to process the
samples in a single block is almost negligible. In our
particular implementation, for every block we calculate the
minimum and maximum of each group of 256 samples

Figure 2. Deleting samples from a Sequence.

0 1 a-1 a a+1 b-1 b b+1 m-1m-2

sample i sample i+l

0 1 a-1 a link

create new blocks

deref split blocks

a+1 a+2

within it, and store these numbers at the beginning of the
file on disk for fast lookup.

3 Performance Measurements
In order to determine just how quickly this

implementation of a Sequence performs in practice when
doing many insertions and deletions, we set up the
following benchmark: Using a fixed value for k
(corresponding to blocks containing between 16K and 32K
samples), we took audio files of sizes varying from 1MB to
512MB and imported them into the data structure. Then we
performed 100 random edits, where each edit consists of
cutting a random segment out of the file and inserting it at a
different random location. Each benchmark was automated
and run several times on our test computer, a Linux-based
system containing a Pentium III at 500MHz and an Ultra
ATA hard drive.

We had hoped to find that the total time to perform this
sequence of operations was constant independent of total
file size, and this is approximately true. We found actually it
does take longer to perform operations as the data size
increases (see Figure 3). The trend is not linear, but has a
large jump, most likely due to disk caching: as the file size
grows, less and less of the total file can be kept in the disk
cache, so the probability that the samples at the boundary of
a cut or paste are in the cache goes down. There are also
some in-memory data structures that grow with the file size,
but these structures are fairly small even for very large files.

For all practical purposes, though, editing operations do
not take time proportional to the size of the edit. We are
pleased that the average time per editing operation is only
about an eighth of a second, even when the total file size is
half a gigabyte. This is over 100 times faster than the
conventional in-place editing approach and comparable to a
non-destructive editor as we had hoped. Users never suffer
from long delays that are common with in-place editors.

We also did benchmarks to verify that storing audio data
in small files did not affect performance. By comparing
different block sizes, we discovered that for block sizes
below a certain threshold, performance seriously degrades,
as the time overhead required to find and open each file
dominates the time to read the data. On our test system, this
minimum size is 32K bytes (16K two-byte samples), but
this number is dependent on the speed of the host computer
and the operating system used. However, as long as we
choose block sizes larger than this minimum, performance
is roughly the same. This is consistent with the observation
by Abbott (1984) that by using large enough buffers, one
can achieve high bandwidth reading blocks of audio that are
scattered all over the disk.

Our only remaining cause for concern is that it is
annoying to deal with large numbers of small data files
manually. While any modern operating system can handle
tens of thousands of files in a single directory without any
problems, the user interfaces that people use to interact with

their file systems often have issues with this number of files,
whether you are using UNIX command-line tools or
Microsoft Windows Explorer. It is also noticeably slower to
delete a thousand files than one big one. These concerns
should be considered when choosing whether or not to
implement this structure, and if so, when choosing what
block size to use.

4 Current Status
Audacity was originally created as an audio research

tool. We added tools for interactive labeling of audio, MIDI
display, and spectral analysis to support various research
projects, including labeling and annotation of audio
recordings, and automatic pitch extraction.

We have also released the code to Audacity under an
open-source license, encouraging others to study the source
code for ideas and donate their contributions to the
community. So far contributors have added many custom
effects and customization options. It was our intention that
Audacity be useful for general editing tasks in addition to
specialized research goals. By accepting commercial plug-
ins (in the VST format), Audacity has access to high-quality
digital effects. Audacity uses the wxWindows toolkit and
runs natively on Linux, Win32, and Macintosh systems.

5 Conclusions
We have found that by storing audio data in small

blocks, we can achieve the speed and responsiveness of
non-destructive editors, with the convenience, simplicity of
design, and waveform visualization advantages of in-place
editors. Not only can cuts and pastes be done in near

Figure 3. These performance measurements show
that the time to perform one editing operation,
while small, is affected by the total size of the file,
probably due to less disk caching.

0

20

40

60

80

100

120

140

1 4 16 64 256 1024

A
vg

 T
im

e
pe

r
E

di
t O

pe
ra

tio
n

(m
s)

Total file size (MB)

constant time, but unlimited undo and redo can also be
implemented with very little extra space overhead. The
entire data structure can be abstracted by a C++ class that
allows the programmer to treat the structure as if it were a
flat file while the class handles the internal details of the
structure itself.

Our approach also allows disk blocks holding portions
of an audio file to be reused after a certain number of
editing operations have been applied, conserving disk space
while still allowing a certain number of steps to be undone.
Furthermore, our approach automatically merges small
adjacent edits into a reasonably large, single block of data to
improve playback performance. Finally, it encourages
editors where users are never required to keep track of and
manage the underlying files to get good performance or to
minimize disk space. Because of all this, we believe that
many can benefit from using this data structure as an
alternative to storing audio data in a large flat file or using
edit decision lists.

6 Acknowledgments
The authors are grateful to Bernard Mont-Reynaud and

Andy Moorer for offering perspectives on digital audio
editors. Additional thanks go to Eli Brandt for valuable
feedback on this paper. This material is based upon work
supported by NSF Award #0085945, an IBM Faculty
Partnership Award, and an NSF Graduate Research
Fellowship.

References
Abbott, Curtis. 1984. “Efficient editing of digital sound on disk.”

Journal of the Audio Engineering Society, June, pp. 394 - 402.
Crowley, Charles. 1996. “Data Structures for Text Sequences.”

http://www.cs.unm.edu/~crowley/papers/sds/sds.html
Kirby, D.G. and Shute, S.A. 1988. “The exploitation and

realization of a random access digital audio editor.” IEEE
Broadcasting Convention, pp. 368 – 371.

Mazzoni, Dominic et. al. Audacity. 2001. (Software).
http://www.cs.cmu.edu/~music/audacity/

Moorer, James A. 1990. “Hard-Disk Recording and Editing of
Digital Audio.” 89th AES convention, September.

