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We developed an analog very large-scale integrated system of two mutu­
ally inhibitory silicon neurons that display several different stable oscilla­
tions. For example, oscillations can be synchronous with weak inhibitory 
coupling and alternating with relatively strong inhibitory coupling. All 
oscillations observed experimentally were predicted by bifurcation anal­
ysis of a corresponding mathematical model. The synchronous oscilla­
tions do not require special synaptic properties and are apparently robust 
enough to survive the variability and constraints inherent in this physical 
system. 

In biological experiments with oscillatory neuronal networks, block­
ade of inhibitory synaptic coupling can sometimes lead to synchronous 
oscillations. An example of this phenomenon is the transition from alter­
nating to synchronous bursting in the swimming central pattern gener­
ator of lamprey when synaptic inhibition is blocked by strychnine. Our 
results suggest a simple explanation for the observed oscillatory transi­
tions in the lamprey central pattern generator network: that inhibitory 
connectivity alone is sufficient to produce the observed transition. 
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1 Introduction---- -----------------

Experimental studies, especially in the realm of central pattern generators 
{CPGs), have emphasized the importance of reciprocal inhibitory connec­
tions in producing alternating oscillations, whereas excitatory connections 
or electrical connections are thought to mediate synchronous oscillations. 
The potential synchronizing role of weak inhibitory connections is often dis­
regarded. However, when the strength of inhibitory connections is reduced 
by experimental treatments in some preparations, a transition from alterna­
tion to synchronization has been observed. A particularly relevant example 
of this type of transition is provided by experiments with the lamprey spinal 
cord (Cohen & Harris-Warrick, 1984; Alford, Sigvardt, & Williams, 1990). 
The segmental CPGs of the lamprey swim system are composed of two recip­
rocally inhibitory units that represent oscillatory neural networks located on 
contralateral sides of the spinal cord. The oscillations in the units are based 
on intrinsic membrane and circuit properties. Under normal conditions, the 
two units oscillate in antiphase. However, in the presence of strychnine, 
which blocks glycinergic inhibitory coupling, they oscillate synchronously 
(Cohen & Harris-Warrick, 1984; Alford et al., 1990). 

Theoretical studies of oscillatory neural networks have shown that in­
hibitory connections can lead to synchronization (Lytton & Sejnowski, 1991; 
Wang & Rinzel, 1993; Destexhe, Contreras, Sejnowski, & Stereade, 1994; 
Golomb, Wang, & Rinzel, 1994; Borisyuk, Borisyuk, Khibnik, & Roose, 1995; 
Bush & Sejnowski, 1996; White, Chow, Ritt, Soto-Trevino, & Kopell, 1998; 
Chow, White, Ritt, & Kopell, 1998; Rubin & Terman, 2000). In particular, 
mutually inhibitory connections in a two-cell system can produce stable 
synchronous oscillations in some regimes of parameter space. In the limit 
of weak coupling, asymptotic methods are useful in finding phase-locked 
periodic solutions and determining their stability {Malkin, 1956; Blechman, 
1981; Kuramoto, 1984; Ermentrout & Kopell, 1991; Cymbalyuk, Nikolaev, 
& Borisyuk, 1994; Hoppensteadt & Izhikevich, 1997). It has been empha­
sized that in order to synchronize oscillations, some parameters such as 
rate of rise or decay of synaptic coupling should be sufficiently slow with 
respect to the spike waveform (Wang & Rinzel, 1992; Van Vreeswijk, Ab­
bot, & Ermentrout, 1994; Gerstner, van Hemmen, & Cowan, 1996; Terman, 
Kopell, & Bose, 1998). Also, insight about the synchronization properties of 
a system of oscillatory neurons can be gained by characterizing the intrin­
sic membrane properties of the component neurons by establishing their 
phase-response curve type {Hansel, Mato, & Meunier, 1995; Ermentrout, 
1996; Hoppensteadt & Izhikevich, 1997; Rinzel & Ermentrout, 1998; Izhike­
vich, 1999). 

However, some behaviors observed in mathematical models may not 
be observed in real systems due to constraints imposed by the physical 
world. For example, a parameter regime corresponding to synchronous 
oscillations in a given model may be so narrow that noise in the system 
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or mismatch among the oscillators prevents a reliable observation of this 
particular behavior. 

For this article, we conducted experiments with silicon neurons to test 
the robustness of different oscillatory regimes observed in a corresponding 
mathematical model. We have implemented neural oscillators using neu­
romorphic very large-scale integrated (Vl.SI) circuits that are fabricated in 
standard silicon microelectronic processes (Mead, 1989; Patel, Cymbalyuk, 
Calabrese, & DeWeerth, 1999). In addition, we have derived a mathematical 
model describing the silicon neuron's dynamic properties (Patel et al., 1999). 
Using a system of two mutually inhibitory connected silicon neurons, we 
demonstrate stable synchronous oscillations as well as other behaviors pre­
dicted by the mathematical model. Thus, the dynamic behaviors revealed 
in the experiments are sufficiently robust to persist under the physical con­
straints inherent in silicon neuron technology. These experimental observa­
tions help to build intuitions as to how such behaviors may be observed in 
experiments with real neurons. 

We show that a physical system of two silicon neurons can display stable 
synchronous oscillations with weak inhibitory coupling, thus realizing the 
predictions developed by exploring a corresponding mathematical model. 
These synchronous oscillations do not require synaptic connections possess­
ing significant delay, or slow rise and decay properties, and are sufficiently 
robust to survive the physical constraints. We suggest a simple explanation 
for the observed oscillatory transitions in the lamprey CPG network: that 
inhibitory connectivity alone is sufficient to produce the observed transition. 

2 Silicon Neuron--- -----------------

We have implemented a silicon neuron (Patel & DeWeerth, 1997; Patel et 
al., 1999) inspired by a mathematical model of an excitable cell (Morris & 
Lecar, 1981). The mathematical model describes the dynamics of a neuron 
possessing an inward Ca2+ current with instantaneous activation dynamics, 
an outward K+ current with slow activation dynamics, and a leak current. 
This model appears to be at a reasonable level of reduction of the neuronal 
dynamics reconciling relative simplicity of analysis with biophysical plau­
sibility (Rinzel & Ermentrout, 1998; Skinner, Turrigiano, & Marder, 1993). 

The design of our silicon neuron is based on subthreshold operation of 
MOS (metal-oxide-semiconductor) transistors and the current-mode tech­
niques described by Mahowald and Douglas (1991). The basic building 
block is a voltage-controlled conductor implemented with a single MOS 
transistor. A pair of complementary MOS transistors is shown in Figures lA 
and lB. The 1-V characteristics of the voltage-controlled conductor, imple­
mented with an n-type MOS transistor (see Figure IA), is described by 

(2.1) 
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Figure 1: Building blocks and circuit schematic of the silicon neuron. (A) n-type 
and (B) p-type MOS transistors are used as conductors. The bulk node of a tran­
sistor, which is usually not displayed, is the fourth terminal of MOS transistors. 
The bulk nodes of n-MOS transistors are typically connected to the lowest po­
tential in the circuit (Gnd},and thebulknodesofp-MOSareconnected to highest 
potential in the circuit (Vd4). (C) Circuit schematic of the silicon neuron. Tran­
sistors M1 • M2 and M3 emulate voltage-gated calcium, potassium, and synaptic 
currents, respectively. 
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where Io is the drain-to-source current, Io and K are physical constants that 
depend on the fabrication process, Ur is the thermal voltage (kT / q), VG and 
Vs are the gate and source voltages with respect to the bulk node, and Vos 
is the drain-to-source voltage (Mead, 1989). The drain-to-source current of 
the complementary pMOS transistor (see Figure lB) is also described by 
equation 2.1; however, the signs of all voltages are reversed. For both nMOS 
and pMOS transistors, the gate current is zero. For Vos » Ur, the transistor 
operates in its saturation region where the drain-to-source current is given 
by 

IsAT ~ Ioe("Vc-Vsl/Ur. (2.2) 

For Vos « Ur and a fixed value of V GS (gate-to-source voltage), the transis­
tor operates in its ohmic region where the I-V characteristic is approximately 
linear: 

(2.3) 

The schematic diagram of the silicon neuron is shown in Figure lC. The 
voltage across the capacitors C1 is the state variable representing the mem­
brane potential, V, and the voltage across the capacitors C2 is the slow-state 
variable corresponding to activation of K+ current, W. 

Current conservation at node V yields 

(2.4) 

where apiH, aNiL correspond to the Ca2+ and K+ currents, respectively, 
and lat is an externally applied current. Currents iH and ii are the output 
currents of the differential pair circuits enclosed in the dashed boxes B1 and 
Bi, respectively. ap and aN describe the ohmic effects of transistors Mt and 
Mz, respectively. In our implementation, there is no membrane leak current. 
Current conservation at node W yields 

(2.5) 

where ix is the output current of the operational transconductance amplifier 
(OTA) and f3p and f3N represent the ohmic effects of pull-up and pull-down 
transistors inside the OTA. The output currents of a differential pair cir­
cuit and an OTA circuit, derived by using equation 2.2, are described by 
a Fermi function and a hyperbolic tangent function, respectively (Mead, 
1989). Substituting these functions into equations 2.4 and 2.5 yields 

. e"(V-Vn)/Ur 

C1 V = f (V, W) = Ia1ap + lBH 1 + e"(V-Vtt)/Ur ap 
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where 

ap = 1 _ e<CV- Vn,g11)/ Ur), 

aN = 1 - e<<Vu..-V)/Ur), 

{Jp = 1 _ e((W- V..,) / UT , 

!JN = 1 - e(-W/ Ur). 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
(2.10) 

(2.11) 

In the above formulation, the bulk nodes of nMOS and pMOS transistors 
are connected to Vi.ow and V Highi respectively. 

As shown in Figure lC, an inhibitory synapse is implemented with a 
single nMOS transistor, MJ, whose gate voltage is determined by the drain­
to-source current of Ms. The synaptic current isyn responds to changes in the 
presynaptic potential instantaneously. For a neuron with a single inhibitory 
synapse, equation 2.6 is modified as follows: 

C1 V = f (V, W) - isyn. (2.12) 

where f(V, W) is given in equation 2.6 and 

(2.13) 

In equation 2.13, Vprt corresponds to the membrane potential of the presy­
naptic neuron, aN is given in equation 2.9, and lBsyn represents the maximal 
synaptic conductance. 

3 Experimental Characterization of the Model ----- ----

We focused our experiments on the quantification of observed behaviors in a 
two-cell silicon neuron network connected by mutually inhibitory synapses 
along with the characterization of the corresponding mathematical model. 
The observed behaviors were quantified by sampling the voltage wave­
forms (approximately 20 periods' worth) and postprocessing the data. The 
oscillatory behaviors were studied while lBsyn was varied from approxi­
mately 5 pA to 1 µ,A. The parameters of the silicon neuron were set so that 
each neuron, in the absence of synaptic coupling, behaved as an oscillator. 

Most of the parameters in the mathematical model of the silicon neuron 
were measured experimentally. Three others were inaccessible for measure­
ments. These were estimated based on the circuit design and adjusted to fit 
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the experimental data. Directly measured parameters were VHigh· VL.ow. VH, 
and V dd· Current sources lBH and lBL were measured in voltage-clamp ex­
periments via the membrane potential node. The value of K = 0.65 was 
determined by measuring the slope of the steady-state activation curve of 
the inward current. At room temperature, UT is approximately 0.025 volts. 
The values of Ct and C2 were determined by matching the period of oscilla­
tions observed in the silicon model with that observed in the mathematical 
model. Because W is an inaccessible node, we estimate the value of I-r by 
assuming current sources lBH and I-r match to within an order of magni­
tude. The exact value of I-r was chosen to match the bifurcation diagram 
resulting from experimental data to that computed from the mathematical 
model.1 

Through a series of voltage-clamp experiments, we characterized the 
synaptic coupling in our model neuron. By turning off all current sources 
except lBsyn and damping V to a constant voltage, the current at the node 
V was measured. Figure 2A shows the measured steady-state synaptic cur­
rents when V is damped at V = 5.0 volts, and Vpre is swept from 0 to 
5 volts. Figure 28 shows the measured steady-state synaptic currents when 
V pre = 5.0 volts, and V is swept from 0 to 5 volts. The data shown in Fig­
ure 2A validate the sigmoid characteristic described in equation 2.13, and 
the data shown in Figure 28 correspond to the function describing the factor 
aN (see equation 2.9). 

It is interesting that when the system of two silicon neurons has had 
well-matched frequencies and the strength of coupling has been reduced 
to a value less than the smallest measurable IBsyn. IBsyn < 3 pA, the neu­
rons have oscillated synchronously. This evidence supports the prediction 
derived from our mathematical model that this system demonstrates syn­
chronous oscillations even if the strength of synaptic connection tends to 
zero. Nevertheless, it does not exclude the possibility that a parasitic elec­
trotonic component of synaptic coupling might be responsible for this syn­
chronizing effect. 

To investigate whether a parasitic electrotonic component of synaptic 
coupling exists, the experiments described for Figures 2A and 28 were per­
formed with all current sources (including Iasyn) turned off; the results are 
shown in Figure 2C and Figure 20, respectively. Figure 20 reveals leak 
currents that increase with an increase in the clamp voltage of the postsy­
naptic cell. These leak currents are due to a parasitic (reversed biased) diode 
present on the drain terminal of all MOS transistors. In an experiment cor­
responding to Figure 2A, we set the damp voltage to V = 0.3 volts to 
minimize the effects of the leak currents described above. The result, shown 

1 The adjusted parameters used in the mathematical model are lBL = 48.0 nA, l BH = 
6.437 nA, I, i.: 2.81 nA, lat = 15.0 nA, Vttiglr = Vdd = 5.0 volts, VLDw = 0.0 volts, 

VH = VL = Vthresh = 2.0 volts, and Ct = C2 = 35 pF. 
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Figure 2: Experimental characterization of synaptic connection. (A) Synaptic 
current is presented with the membrane potential clamped at V = 2.5 volts, the 
presynaptic potential swept from 0.0 to 5.0 volts, and the synaptic weight set 
at 18Syn = 1.45 nA. (B) The synaptic current is presented with the presynaptic 
potential clamped at V pre = 5.0 volts, the membrane's clamp voltage swept from 
0.0 to 5.0 volts, and the synaptic weight set at 18syn = 1.45 nA. In (C) and (D), 
the synaptic currents are presented under the same conditions as in (A) and (B), 
respectively; however, Issyn has been turned off. 

in Figure 2C, demonstrates that very weak electrotonic coupling does exist 
(approximately 100 H2). 

To investigate whether parasitic capacitive coupling exists, we measured 
the step response from V pre to V, with all current sources turned off. Al­
though small, there is a measurable amount of capacitive coupling between 
V and Vpre· For a 5-volt step in Vpm the measured change in V is 26 mvolts, 
which corresponds to a coupling capacitance of approximately 50 JF. 
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4 Observed Behaviors as lBsyn Is Varied ------------

The mathematical model presented above and the silicon neurons show a 
number of similar stable oscillatory behaviors. In the mathematical model, 
we call a limit cycle stable if it is asymptotically stable. We evaluate the 
stability by calculating characteristic multipliers using the bifurcation anal­
ysis software LocBif (Khibnik, Kuznetsov, Levitin, & Nikolaev, 1993). In 
the silicon neuron experiments, our criterion for the stability of oscillations 
was that they persist in the presence of inherent noise and small voltage 
perturbations. 

As we varied the strength of the inhibitory connections, lBsyn, we ob­
served the following corresponding stable oscillatory behaviors in both 
the silicon neuron experiments and the mathematical model (experimental 
behavior-model behavior): 

synchronous oscillations (see Figure 38)-synchronous limit cycle, SC 

phase-shifted oscillations (see Figures 3A and 4A and 4B)-a pair of 
phase-shifted nonsymmetric limit cycles-NSCt/NSC2 

alternating oscillations (see Figure 3C)-antiphase limit cycle, AC 

drifting oscillations (see Figure 4C)-stable torus T 

Here we do not present certain behaviors that are stable in the mathe­
matical model but have not been observed experimentally. It is possible that 
these behaviors were not observed b ecause the basin of attraction with the 
necessary initial conditions is so narrow. The model demonstrates different 
asymmetric limit cycles, where, for example, one model neuron oscillates 
with higher amplitude and half the frequency of the other (see Figures SA 
and SC). As another example, one model neuron may demonstrate small­
amplitude spindle-like oscillations, and the other would oscillate with the 
waveform similar to that of an uncoupled oscillator (see Figures SB and 
SD). Due to the symmetry in the system, nonsymmetric oscillations always 
appear in pairs. For instance, in the case of Figures SA and SC, depending 
on initial conditions, one or the other neuron oscillates with the larger am­
plitude and the smaller frequency. It is interesting to note that Jung, Kiemel, 
and Cohen (1996) observed a similar pair of limit cycles in a model of lam­
prey segmental oscillator. 

Comparison of Figures 6 and 8 to Figures 7 and 9 shows good qualitative 
correspondence between dynamic behaviors and transitions occurring in 
the systems when lBsyn was varied. In the model, the synchronous limit cy­
cle is stable for lBsyn E [O, 0.140) nA. It loses stability at point a (see Figure 7), 
at the critical value lBsyn = 0.140 nA, and undergoes a Neimark-Sacker torus 
bifurcation. In the mathematical model, a stable torus is observed at lBsyn 
smaller than the critical value at point a. Therefore, we infer that this is a 
subcritical torus bifurcation, and a stable torus appears at a fold torus bifur-
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Figure 3: Experimentally obtained oscillatory modes of the two silicon neurons 
connected by mutually inhibitory synapses. (A, D) Phase-shifted oscillations 
and (B, E) synchronous oscillations were both stable when the connections were 
of moderate value, (Issyn = 1.4 nA). By proper choice of initial conditions, one 
could choose the oscillatory mode observed. The alternating oscillations (C, F) 
were stable, if the connections were strong,· (185yn = 1464.9 nA). Here and in 
Figure 4, solid and dashed lines differentiate the membrane potentials of the 
two silicon neurons, Vi and V2 • (A-C) Data collected during 3 seconds. 

cation together with an unstable torus. Thus, for some values of 1BSyn1 a stable 
torus coexists with the stable synchronous limit cycle and an unstable torus. 
At point a the unstable torus disappears, and synchronous oscillations lose 
stability. Similarly, in experiments with silicon neurons, synchronous oscil­
lations were observed for the inhibitory connections ranging from zero up to 
moderate strengths of coupling, lBsyn = 2.70 nA (see point a, Figure 6). Cor­
responding to the mathematical model, we observed drifting oscillations 
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Figure 4: Experimentally bbtainJ oscillatory modes of the two silicon neurons 
connected via inhibitory ~onnect:ibns of moderate strength, I8syn = 3.2 nA. (A, 
B) Phase-shifted oscillati6b coe,ill;ted with (C) drifting oscillations. 

l 11 J I I I . 

coexisting with sync:hrObous o illations at Iasyn close to the critical value. 
An example of the ~g oscillations for stronger coupling is presented at 
Figure 4C along with th~ pair dt phase-shifted oscillations (see Figures 4A 
and 4B). 

In the model for the moderate strength of synaptic coupling, the pair of 
stable phase-shifted limit cycles NSC1/NSC2 is observed, so that depending 
on the initial conditions, one or the other oscillator leads. For the parameters 
provided, we observed phase differences rp e [0.33, 0.67). The NSCi/NSC2 
appear at the fold bifurcation for limit cycles together with a pair of unstable 
phase-shifted limit cycles, Iasyn = 0.0564 nA (see point b, Figure 7) and dis­
appear at the pitchfork limit cycle bifurcation, Iasyn = 6.511 nA (see point c, 
Figure 7), where NSC1 and NSC2 merge and AC becomes stable. Similar 
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Figure 5: Examples of stable, nonsym.metric limit cycles obtained from the math­
ematical model of the two symmetrically inhibitory coupled identical silicon 
neurons. These limit cycles were not observed in experiments. (A, C) One of the 
two oscillators demonstrates 2.5 times larger amplitude and twice as large pe­
riod, representing 1:2 synchronization mode: Vi = 3.52888 volts, W1 = 1.87397 
volts, V2 = 1.72983 volts, W2 = 1.79920 volts, Iasyn = 1.9947 nA. (B, 0) One 
of the two oscillators shows high-amplitude oscillations, and the other shows 
small-amplitude "spindle" oscillations: Vi = 3.15062 volts, W1 = 1.79645 volts, 
V2 = 1.75655 volts, W2 = 1.89334 volts, Iasyn = 11.9122 nA. 

behaviors were observed experimentally. For sufficiently strong synaptic 
connections, we observed only alternating oscillations. As we made the 
strength of the connections weaker, at lBsyn :::::: 6.34 nA (see point c in Fig­
ure 6), two phase-shifted oscillations branched from the alternating oscilla­
tions, which became unstable for the weaker coupling. As Iasyn decreased 
to Iasyn :::::: 1.51 nA, the phase difference between oscillations went from 
¢ = 0.50 (for alternating oscillation) to ¢ :::::: 0.22 (¢ :::::: 0.76 for the other 
branch). 

The model and experimental data have qualitatively similar dependen­
cies of the amplitude (compare Figure SA and Figure 9A) and the period 
(compare Figure SB and Figure 9B) on the strength of coupling. Synchronous 
oscillations in both cases have amplitude and period close to the corre­
sponding values in the uncoupled system. Phase-shifted oscillations lay on 
the transition from synchronous oscillations to alternating oscillations. Our 
silicon neurons also demonstrated that stronger inhibitory synaptic con-
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Figure 6: Experimentally obtained bifurcation diagram for the two mutually 
inhibitory silicon neurons. The phase difference,¢, of different phase-locked 
oscillations is plotted against strength of the synaptic connections, Issyn· Syn­
chronous oscillations are stable for weak coupling and give rise to stable drifting 
oscillations at the moderate strength of coupling a (Issyn = 2.70 nA). A pair of 
phase-shifted oscillations appeas at point b (Issyn ~ 1.40+1.62 nA), is stable for 
moderate strengths of coupling, and gives stability to alternating oscillations, 
merging at point c (Issyn ~ 5.62 + 7.06 nA). Alternating oscillations remain 
stable for the strong inhibitory connections. Here and in Figure 7, circles, trian­
gles, and X's represent synchronous oscillations, phase-shifted oscillations, and 
alternating oscillations, respectively. 

nections produced slower oscillations (see Figures SB and 9B}, reproducing 
qualitatively the frequency dependence observed in stryclmine experiments 
in the lamprey (Cohen & Harris-Warrick,.1984; Grillner & Wallen, 1980). 

Under the condition of identical intrinsic periods of our silicon neu­
rons, we observed synchronous oscillations experimentally in the absence 
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Figure 7: The bifurcation diagram of phase-locked oscillations obtained for the 
mathematical model of the two symmetrically inhibitory coupled identical os­
cillators as strength of connection, lBsyn1 is varied. The synchronous limit cycle, 
stable with weak coupling, became unstable at a subcritical Neimark-Sacker 
torus bifurcation at moderate coupling strength at point a (IBsyn = 0.140 nA). 
The pair of stable nonsymmetrical phase-shifted limit cycles NSCt/NSC2 ap­
pears along with the pair of unstable nonsymmetrical phase-shifted limit cycles 
UNSCtf UNSC2 at fold bifurcation for limit cycles at point b, lBsyn = 0.0564 nA. 
Antiphase limit cycle is stable for the strong inhibitory connection and loses 
stability on the pitchfork limit cycle bifurcation, giving stability to the pair of 
phase-shifted limit cycles NSCtfNSC2 at point c (IBsyn = 6.511 nA). 

of synaptic coupling. To eliminate the possibility that synchronization ap­
pears primarily due to parasitic electrotonic coupling, we investigated the 
system with approximately 2% disparity in the intrinsic oscillation periods 
such that phase locking was disrupted and drifting oscillations ensued. By 
adding weak inhibitory coupling, we were then able to return the circuit to 
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Figure 8: Experimentally observed amplitude and period of phase-locked os­
cillations of the two mutually inlubitory silicon neurons. The (A) amplitude, A, 
and the (B) period, T, of the oscillations are shown against strength of synaptic 
connection, Issyn · 

stable synchronous oscillations. Thus, inhibitory coupling can synchronize 
mismatched oscillators that parasitic coupling, even if it exists, is too weak to 
synchronize. Note that our conclusion-synchronous oscillations are main­
tained by weak inhibitory coupling-is also supported by the mathematical 
model, which exhibited synchronous oscillations even for negligibly small 
coupling. 

5 Discussion----------------------

We have described a pair of coupled silicon neurons implemented using 
VLSI technology and compared experimental results from these neurons to 
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Figure 9: Amplitude and period of phase-locked oscillations obtained for the 
mathematical model of the two symmetrically inhibitory coupled identical os­
cillators as strength of connection, IBsyn 1 is varied. Circles, triangles, and X's 
represent the synchronous limit cycle, phase-shifted limit cycle, and antiphase 
limit cycle, respectively. 

simulation data from a corresponding mathematical model. In particular, 
we have shown that the silicon circuits can replicate many of the dynamical 
regimes seen in a mathematical model. Thus, silicon neurons can be used to 
demonstrate that these mathematically predicted behaviors can exist stably 
in real-world systems. 

The described results point to a role for inhibitory connections in the 
generation of rhythmic behavior in biological CPGs. In the spinal CPG 
network of the lamprey, for example, segmental oscillators normally pro­
duce alternating oscillations. However, when bathed in strydmine, syn­
chronous oscillations replace the alternating oscillations. It is known that 
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strong contralateral inhibitory (glycinergic) connections, which can be 
blocked by strychnine, exist in the CPG network. It has been proposed 
that the transition from alternating to synchronous oscillations can be ac­
counted for by weak contralateral excitatory connections (Cohen & Harris­
Warrick, 1984; Alford et al., 1989). The strychnine-dependent transition may 
be due to changes in the relative strength of excitatory and inhibitory con­
nections, that is, the left and right oscillators are connected by relatively 
strong reciprocal inhibitory connections parallel to comparatively weaker 
reciprocal excitatory coupling (Cohen & Harris-Warrick, 1984; Alford et al., 
1989). 

While it is known that a few neurons with crossed excitatory connections 
do exist, the results shown here demonstrate that there is an alternative ex­
planation for the phase transition. We suggest that the simplest explanation 
is that inhibitory connections alone can produce the observed transition. In 
addition, electrotonic coupling between the left and right oscillatory neu­
rons may exist and produce synchronous oscillations when inhibitory con­
nections are weak or disrupted by strychnine. Moreover, it has been shown 
in a mathematical model that electrotonic coupling alone can, under some 
conditions, reproduce the transition from synchronous to alternating oscil­
lations in a circuit of two coupled Hindmarsh-Rose neurons (Cymbalyuk et 
al., 1994). There are three basic hypotheses that can account for the influence 
of strychnine on the dynamical behavior of the spinal CPG: 

1. The inhibitory connections produce stable alternating oscillations when 
they are strong and synchronous oscillations when they are suffi­
ciently weak (in particular, when they are under the influence of 
strychnine). 

2. The inhibitory connections are accompanied by the electrical connec­
tions, which can produce synchronous oscillations when inhibitory 
connections are weak or blocked. 

3. If inhibitory connections are strong and excitatory connections are 
weak, then as inhibitory connections are blocked, excitatory connec­
tions become relatively stronger, facilitating stable synchronous oscil­
lations. 

These hypotheses are complementary in the sense that all may be valid si­
multaneously. The first two hypotheses have not been proposed previously. 
They appear, however, to be the most biologically plausible. 

It is also interesting to note that the quasi-periodic behavior observed in 
our silicon model experiments and mathematical model might conform to 
experiments with the lamprey. Lesher et al. (1998) have shown that lamprey 
spinal central pattern generators might employ a chaos control mechanism 
based on a skeleton of unstable oscillations. According to this mechanism, 
the CPGs exhibit unstable oscillations rather than stable oscillations. It is 
synaptic connectivity or control signals that appear to provide stability to 
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the desired regime. In future work, the systems of silicon neurons could 
give some insight to the potential for this control mechanism. 

We are developing a variety of silicon neurons and associated systems of 
neurons that implement biologically inspired motor behaviors such as axial 
locomotion (DeWeerth, Patel, Simoni, Schimmel, & Calabrese, 1997; Patel, 
Holleman, & DeWeerth, 1998). These efforts are directed at the creation 
of dynamical sensorimotor systems that exhibit tightly coupled sensory 
feedback and motor learning, providing platforms for both testing biological 
hypotheses and addressing engineering applications. A major challenge in 
this development lies in the derivation of mathematical models that facilitate 
qualitative and quantitative understanding of the complex behaviors of 
these systems. The modeling of individual silicon neurons and circuits, as 
exemplified by this article, provides the foundation for this effort. 
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