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LETTER Communicated by Shimon Edelman

Clustering Irregular Shapes Using High-Order Neurons

H. Lipson
Mechanical Engineering Department, Technion—Israel Institute of Technology, Haifa
32000, Israel

H. T. Siegelmann
Industrial Engineering and Management Department, Technion—Israel Institute of
Technology, Haifa 32000, Israel

This article introduces a method for clustering irregularly shaped data
arrangements using high-order neurons. Complex analytical shapes are
modeled by replacing the classic synaptic weight of the neuron by high-
order tensors in homogeneous coordinates. In the �rst- and second-order
cases, this neuron corresponds to a classic neuron and to an ellipsoidal-
metric neuron. We show how high-order shapes can be formulated to
follow the maximum-correlation activation principle and permit simple
local Hebbian learning. We also demonstrate decomposition of spatial
arrangements of data clusters, including very close and partially over -
lapping clusters, which are dif�cult to distinguish using classic neurons.
Superior results are obtained for the Iris data.

1 Introduction

In classical self-organizing networks, each neuron j is assigned a synaptic
weight denoted by the column-vector w(j). The winning neuron j(x) in re-
sponse to an input x is the one showing the highest correlation with the
input, that is, neuron j for which w(j)Tx is the largest,

j(x) D argj max kw (j)Txk (1.1)

where the operator k¢k represents the Euclidean norm of a vector. The use
of the term w(j)Tx as the matching criterion corresponds to selection of the
neuron exhibiting the maximum correlation with the input. Note that when
the synaptic weights w(j) are normalized to a constant Euclidean length,
then the above criterionbecomes the minimumEuclidean distance matching
criterion,

j(x) D argj minkx ¡ w (j)k, j D 1, 2, . . . , N. (1.2)

However, the use of a minimum-distance matching criterion incorporates
several dif�culties. The minimum-distance criterion implies that the fea-
tures of the input domain are spherical; matching deviations are considered
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Figure 1: (a) Two data clusters with nonisotropic distributions, (b) close clusters,
(c) curved clusters not linearly separable, and (d) overlapping clusters

equally in all directions, and distances between features must be larger than
the distances between points within a feature. These aspects preclude the
ability to detect higher-order, complex, or ill-posed feature con�gurations
and topologies, as these are based on higher geometrical properties such as
directionality and curvature. This constitutes a major dif�culty, especially
when the input is of high dimensionality, where such con�gurations are
dif�cult to visualize and detect.

Consider, for example, the simple arrangements of two data clusters re-
siding in a two-dimensional domain, shown in Figure 1. The input data
points are marked as small circles, and two classical neurons (a and b) are
located at the centers of each cluster. In Figure 1a, data cluster b exhibits
a nonisotropic distribution; therefore, the nearest neighbor or maximum
correlation criterion does not yield the desired classi�cation because devia-
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tions cannot be considered equally in all directions. For example, point p is
farther away from neuron b than is point q, yet point p de�nitely belongs to
cluster b while point q does not. Moreover, point p is closer to neuron a but
clearly belongs to cluster b. Similarly, two close and elongated clusters will
result in the neural locations shown in Figure 1b. More complex clusters as
shown in Figure 1c and Figure 1d may require still more complex metrics
for separation.

There have been several attempts to overcome the above dif�culties us-
ing second-order metrics: ellipses and second-order curves. Generally the
use of an inverse covariance matrix in the clustering metric enables cap-
turing linear directionality properties of the cluster and has been used in
a variety of clustering algorithms. Gustafson and Kessel (1979) use the co-
variance matrix to capture ellipsoidal properties of clusters. Davé (1989)
used fuzzy clustering with a non-Euclidean metric to detect lines in images.
This concept was later expanded, and Krishnapuram, Frigui, and Nasraoui
(1995) use general second-order shells such as ellipsoidal shells and sur-
faces. (For an overview and comparison of these methods, see Frigui &
Krishnapuram, 1996.) Abe and Thawonmas (1997) discuss a fuzzy classi-
�er (ML) with ellipsoidal units. Incorporation of Mahalanobis (elliptical)
metrics in neural networks was addressed by Kavuri and Venkatasubrama-
nian (1993) for fault analysis applications and by Mao and Jain (1996) as a
general competitive network with embedded principal component analysis
units. Kohonen (1997) also discusses the use of adaptive tensorial weights
to capture signi�cant variances in the components of input signals, thereby
introducing a weighted elliptic Euclidean distance in the matching law. We
have also used ellipsoidal units in previous work (Lipson, Hod, & Siegel-
mann, 1998).

At the other end of the spectrum, nonparametric clustering methods such
as agglomerative techniques (Blatt, Wiseman, & Domany, 1996) avoid the
need to provide a parametric shape for clusters, thereby permitting them to
take arbitrary forms. However, agglomerative clustering techniques cannot
handle overlappingclusters as shown in Figure 1d. Overlapping clusters are
common in real-life data and represent inherent uncertainty or ambiguity
in the natural classi�cation of the data. Areas of overlap are therefore of
interest and should be explicitly detected.

This work presents an attempt to generalize the spherical-ellipsoidal
scheme to more general metrics, thereby giving rise to a continuum of pos-
sible cluster shapes between the classic spherical-ellipsoidal units and the
fully nonparametric approach. To visualize a cluster metric, we draw a hy-
persurface at an arbitrary constant threshold of the metric. The shape of the
resulting surface is characteristic of the shape of the local dominance zone of
the neuron and will be referred to as the shape of the neuron. Some examples
of neuron distance metrics yielding practically arbitrary shapes at various
orders of complexity are shown in Figure 2. The shown hypersurfaces are
the optimal (tight) boundary of each cluster, respectively.
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Figure 2: Some examples of single neuron shapes computed for the given clus-
ters (after one epoch). (a–f) Orders two to seven, respectively.

In general, the shape restriction of classic neurons is relaxed by replacing
the weight vector or covariance matrix of a classic neuron with a general
high-order tensor, which can capture multilinear correlations among the
signals associated with the neurons. This also permits capturing shapes
with holes and/or detached areas, as in Figure 3. We also use the concept of
homogeneous coordinates to combine correlations of different orders into
a single tensor.

Although carrying the same name, our notion of high-order neurons is
different from the one used, for example, by Giles, Griffen, and Maxwell,
(1988), Pollack (1991), Goudreau, Giles, Chakradhar, & Chen (1994), and
Balestrino and Verona (1994). There, high-order neurons are those that
receive multiplied combinations of inputs rather than individual inputs.
Those neurons were also not used for clustering or in the framework of
competitive learning. It appears that high-order neurons were generally
abandoned mainly due to the dif�culty in training such neurons and their
inherent instability due to the fact that small variations in weight may cause
a large variation in the output. Some also questioned the usefulness of high-
order statistics for improvingpredictions (Myung, Levy, & William,1992). In
this article we demonstrate a different notion of high-order neurons where
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Figure 3: A shape neuron can have nonsimple topology: (a) A single �fth-order
neuron with noncompact shape, including two “holes.” (b)A single fourth-order
neuron with three detached active zones.

the neurons are tensors, and their order pertains to their internal tenso-
rial order rather than to the degree of the inputs. Our high-order neurons
exhibit good stability and excellent training performance with simple Heb-
bian learning. Furthermore, we believe that capturing high-order informa-
tion within a single neuron facilitates explicit manipulation and extraction
of this information. General high-order neurons have not been used for
clustering or competitive learning in this manner.

Section 2 derives the tensorial formulation of a single neuron, starting
with a simple second-order (elliptical) metric, moving into homogeneous
coordinates, and then increasing order for a general shape. Section 3 dis-
cusses the learning capacity of such neurons and their functionality within
a layer. Finally, section 4 demonstrates an implementation of the proposed
neurons on synthetic and real data. The article concludes with some remarks
on possible future extensions.

2 A “General Shape” Neuron

We adopt the following notation:

x, w column vectors
W , D matrices
x(j), D(j) the jth vector /matrix corresponding to the jth neuron /class
xi , Dij element of a vector/matrix
xH , DH vector /matrix in homogeneous coordinates
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m order of the high-order neuron
d dimensionality of the input
N size of the layer (the number of neurons)

The modeling constraints imposed by the maximum correlation match-
ing criterion stem from the fact that the neuron’s synaptic weight w(j) has
the same dimensionality as the input x, that is, the same dimensionality as
a single point in the input domain, while in fact the neuron is modeling
a cluster of points, which may have higher-order attributes such as direc-
tionality and curvature. We shall therefore refer to the classic neuron as a
�rst-order (zero degree) neuron, due to its correspondence to a point in
multidimensional input space.

To circumvent this restriction, we augment the neuron with the capacity
to map additional geometric and topological information, by increasing its
order. For example, as the �rst-order is a pointneuron, the second-order case
will correspond to orientation and size components, effectively attaching a
local oriented coordinate system with nonuniform scaling to the neuron
center and using it to de�ne a new distance metric. Thus, each high-order
neuron will represent not only the mean value of the data points in the
cluster it is associated with, but also the principal directions, curvatures,
and other features of the cluster and the variance of the data points along
these directions. Intuitively, we can say that rather than de�ning a sphere,
the high-order distance metric now de�nes a multidimensional-oriented
shape with an adaptive shape and topology (see Figures 2 and 3).

In the following pages, we brie�y review the ellipsoidal metric and es-
tablish the basic concepts of encapsulation and base functions to be used
in higher-order cases where tensorial notation becomes more dif�cult to
follow.

For a second-order neuron, de�ne the matrix D(j) 2 Rd£d to encapsulate
the direction and size properties of a neuron, for each dimension of the
input, where d is the number of dimensions. Each row i of D(j) is a unit row
vector vT

i corresponding to a principal direction of the cluster, divided by
the standard deviation of the cluster in that direction (the square root of
the variance si). The Euclidean metric can now be replaced by the neuron-
dependent metric,

dist(x, j) D
®®D(j) ¡

x ¡ w (j)¢®® ,

where

D (j) D

2
66666664

1p
s1

0 ¢ ¢ ¢ 0

0 1p
s2

...
...

. . . 0
0 ¢ ¢ ¢ 0 1p

sd

3
77777775

2
666664

vT
1

vT
2
...

vT
d

3
777775

, (2.1)
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such that deviations are normalized with respect to the variance of the data
in the direction of the deviation. The new matching criterion based on the
new metric becomes

i(x) D argj min
®®®dist(x)(j)

®®®

D argj min
®®®D (j)

±
x ¡ w (j)

²®®® , j D 1, 2, . . . , N. (2.2)

The neuron is now represented by the pair (D(j), w(j)), where D(j) repre-
sents rotation and scaling and w(j) represents translation. The values of D(j)

can be obtained from an eigenstructure analysis of the correlation matrix
R(j) D Sx(j)x(j)T 2 Rd£d of the data associated with neuron j. Two well-
known properties are derived from the eigenstructure of principal compo-
nent analysis: (1) the eigenvectors of a correlation matrix R pertaining to
the zero mean data vector x de�ne the unit vectors vi representing the prin-
cipal directions along which the variances attain their extremal values, and
(2) the associated eigenvalues de�ne the extremal values of the variances
si. Hence,

D (j) D l
(j)¡ 1

2 V(j), (2.3)

where l (j) D diag(R(j)) produces the eigenvalues of R(j) in a diagonal form
and V(j) D eig(R(j)) produces the unit eigenvectors of R(j) in matrix form.
Also, by de�nition of eigenvalue analysis of a general matrix A,

AV D lV

and hence

A D VTlV. (2.4)

Now, since a term kak equals aTa, we can expand the term kD(j)(x ¡ w(j))k
of equation 2.2 as follows:

®®®D (j)
±

x ¡ w (j)
²®®® D

±
x ¡ w (j)

²T
D (j)TD (j)

±
x ¡ w (j)

²
. (2.5)

Substituting equations 1.2 and 2.3, we see that

D (j)TD (j) D
£
v1, v2, . . . , vd

¤

2
6666664

1
s1

0 ¢ ¢ ¢ 0

0 1
s2

...
...

. . . 0
0 ¢ ¢ ¢ 0 1

sd

3
7777775

2
666664

vT
1

vT
2
...

vT
d

3
777775

D R(j)¡1
, (2.6)
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meaning that the scaling and rotation matrix is, in fact, the inverse of R(j).
Hence,

i(x) D argj min
µ±

x ¡ w (j)
²T

R¡1
±

x ¡ w (j)
²¶

, j D 1, 2, . . . , N, (2.7)

which corresponds to the term used by Gustafson and Kessel (1979) and in
the maximum likelihood gaussian classi�er (Duda & Hart, 1973).

Equation 2.7 involves two explicit terms, R(j) and w(j), representing the
orientation and size information, respectively. Implementations involving
ellipsoidal metrics therefore need to track these two quantities separately, in
a two-stage step. Separate tracking, however, cannot be easily extended to
higher orders, which requires simultaneous tracking of additional higher-
order qualities such as curvatures. We therefore use an equivalent represen-
tation that encapsulates these terms into one and permits a more systematic
extension to higher orders.

We combine these two coef�cients into one expanded covariance denoted
RH

(j) in homogenous coordinates (Faux & Pratt, 1981), as

RH
(j) D Sx

(j)
H x

(j)
H

T
, (2.8)

where in homogenous coordinatesx
(j)
H 2R(dC1)£1 and is de�ned by xH D

µ
x
–
1

¶
.

In this notation, the expanded covariance also contains coordinate per-
mutations involving 1 as one of the multiplicands, and so different (lower)
orders are introduced. Consequently, RH

(j) 2 R(dC1)£(dC1). In analogy to the
correlation matrix memoryand autoassociative memory(Haykin, 1994), the
extended matrix RH

(j), in its general form, can be viewed as a homogeneous
autoassociative tensor. Now the new matching criterion becomes simply

i(x) D argj min
µ

XTR
(j)
H

¡1
X

¶

D argj min
®®®®R

(j)
H

¡ 1
2 X

®®®® ,

D argj min
®®®®R

(j)
H

¡1
X

®®®® , j D 1, 2, . . . , N. (2.9)

This representation retains the notion of maximum correlation, and for con-
venience, we now denote RH

¡1(j) as the synaptic tensor.
When we moved into homogenous coordinates, we gained the following:

� The eigenvectors of the original covariance matrix R(j) represented
directions. The eigenvectors of the homogeneous covariance matrix
RH

(j) correspond to both the principal directions and the offset (both
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second-order and �rst-order) properties of the cluster accumulated
in RH

(j). In fact, the elements of each eigenvector correspond to the
coef�cient of the line equation ax C by C ¢ ¢ ¢ C c D 0. This property
permits direct extension to higher-order tensors in the next section,
where direct eigenstructure analysis is not well de�ned.

� The transition to homogeneous coordinates dispensed with the prob-
lem created by the fact that the eigenstructure properties cited above
pertained only to zero-mean data, whereas RH

(j) is de�ned as the co-
variance matrix of non-zero-mean data. By using homogeneous coor-
dinates, we effectively consider the translational element of the cluster
as yet another (additional) dimensions. In this higher space, the data
can be considered to be zero mean.

2.1 Higher Orders. The ellipsoidal neuron can capture only linear di-
rectionality, not curved directionalities such as that appearing, for instance,
in a fork, in a curved or in a sharp-cornered shape. In order to capture
more complex spatial con�gurations, higher-order geometries must be in-
troduced.

The classic neuron possesses a synaptic weight vector w(j), which cor-
responds to a point in the input domain. The synaptic weight w(j) can be
seen as the �rst-order average of its signals, that is, w(j) D

P
xH (the last

element xHdC1 D 1 of the homogeneous coordinates has no effect in this
case). Ellipsoidal units hold information regarding the linear correlations
among the coordinates of data points represented by the neuron by using
RH

(j) D
P

xHxH
T . Each element of RH is thus a proportionality constant

relating two speci�c dimensions of the cluster. The second-order neuron
can therefore be regarded as a second-order approximation of the corre-
sponding data distribution. Higher-order relationships can be introduced
by considering correlations among more than just two variables. We may
consequently introduce a neuron capable of modeling a d-dimensional data
cluster to an mth-order approximation.

Higher-order correlations are obtained by multiplying the generating
vector xH by itself, in successive outer products, more than just once. The
process yields a covariance tensor rather than just a covariance matrix
(which is a second-order tensor). The resulting homogeneous covariance
tensor is thus represented by a 2(m ¡ 1)-order tensor of rank d C 1, denoted
by Z

(j)
H 2 R(dC1)£¢¢¢£(dC1), obtained by 2(m ¡1) outer products of xH by itself:

Z
(j)
H D x2(m¡1)

H . (2.10)

The exponent consists of the factor (m ¡ 1), which is the degree of the ap-
proximation, and a factor of 2 since we are performing autocorrelation, so
the function is multiplied by itself. In analogy to reasoning that leads to
equation 2.9, each eigenvector (now an eigentensor of order m ¡ 1) corre-
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Figure 4: Metrics of various orders: (a) a regular neuron (spherical metric), (b) a
“square” neuron, and (c) a neuron with “two holes.”

sponds to the coef�cients of a principal curve, and multiplying it by input
points produces an approximation of the distance of that input point from
the curve. Consequently, the inverse of the tensor Z

(j)
H can then be used to

compute the high-order correlation of the signal with the nonlinear shape
neuron, by simple tensor multiplication:

i(x) D argi min
®®®®Z

(j)
H

¡1
xm¡1

H

®®®® , j ¡ 1, 2, . . . , N, (2.11)

where denotes tensor multiplication. Note that the covariance tensor can
be inverted only if its order is an even number, as satis�ed by equation 2.10.
Note also that the amplitude operator is carried out by computing the root
of the sum of the squares of the elements of the argument. The computed
metric is now not necessarily spherical and may take various other forms,
as plotted in Figure 4.

In practice, however, high-order tensor inversion is not directly required.
To make this analysis simpler, we use a Kronecker notation for tensor prod-
ucts (see Graham, 1981). Kronecker tensor product �attens out the elements
of X Y into a large matrix formed by taking all possible products between
the elements of X and those of Y. For example, if X is a 2£3 matrix, then
XY is

X Y D

"
Y ¢ X1,1 Y ¢ X1,2 Y ¢ X1,3
- - - - - - - - - - - - - - - - - - - -
Y ¢ X2,1 Y ¢ X2,2 Y ¢ X2,3

#
, (2.12)

where each block is a matrix of the size of Y. In this notation, the internal
structure of higher-order tensors is easier to perceive, and their correspon-
dence to linear regression of principal polynomial curves is revealed. Con-
sider, for example, a fourth-order covariance tensor of the vector x D fx, yg.
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The fourth-order tensor corresponds to the simplest nonlinear neuron ac-
cording to equation 2.10, and takes the form of the 2£2£2£2 tensor:

«
x x x x

¬
D

«
R R

¬
D

"
x2 xy
xy y2

#


"
x2 xy
xy y2

#

D

2
66664

x4 x3y x3y x2y2

x3y x2y2 x2y2 xy3

- - - - - - - - - - - - - - - - - - - - -
x3y x2y2 x2y2 xy3

x2y2 xy3 xy3 y4

3
77775

. (2.13)

The homogeneous version of this tensor also includes all lower-order per-
mutations of the coordinates of xH D fx, y, 1g, namely, the 3£3£3£3 tensor:

ZH(4) D
«
xH, xH, xH , xH

¬
D

«
RH , RH

¬
D

2
64

x2 xy x
xy y2 y
x y 1

3
75

2
64

x2 xy x
xy y2 y
x y 1

3
75

D

2
6666666666666664

x4 x3y x3 x3y x2y2 x2y x3 x2y x2

x3y x2y2 x2y x2y2 xy3 xy2 x2y xy2 xy
x3 x2y x2 x2y xy2 xy x2 xy x

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
x3y x2y2 x2y x2y2 xy3 xy2 x2y xy2 xy
x2y2 xy3 xy2 xy3 y4 y3 xy2 y3 y2

x2y xy2 xy xy2 y3 y2 xy y2 y
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
x3 x2y x2 x2y xy2 xy x2 xy x
x2y xy2 xy xy2 y3 y2 xy y2 y
x2 xy x xy y2 y x y 1

3
7777777777777775

. (2.14)

Remark. It is immediately apparent that the matrix in equation 2.14 corre-
sponds to the matrix to be solved for �nding a least-squares �t of a conic
section equation ax2 C by2 C cxy C dxC eyC f D 0 to the data points. Moreover,
the set of eigenvectors of this matrix corresponds to the coef�cients of the
set of mutually orthogonal best-�t conic section curves that are the principal
curves of the data. This notion adheres with Gnanadesikan’s (1977) method
for �nding principal curves. Substitution of a data point into the equation of
a principal curve yields an approximation of the distance of the point from
that curve, and the sum of squared distances amounts to equation 2.11. Note
that each time we increase order, we are seeking a set of principal curves of
one degree higher. This implies that the least-squares matrix needs to be two
degrees higher (because it is minimizing the squared error), thus yielding
the coef�cient 2 in the exponent of equation 210.
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3 Learning and Functionality

In order to show that higher-order shapes are a direct extension of classic
neurons, we show that they are also subject to simple Hebbian learning. Fol-
lowing an interpretation of Hebb’s postulate of learning, synaptic modi�ca-
tion (i.e., learning) occurs when there is a correlation between presynaptic
and postsynaptic activities. We have already shown in equation 2.9 that the
presynaptic activity xH and postsynaptic activity of neuron j coincide when

the synapse is strong; that is, RH
(j)¡1

xH is minimum. We now proceed to
show that in accordance with Hebb’s postulate of learning, it is suf�cient to
incur self-organization of the neurons by increasing synapse strength when
there is a coincidence of presynaptic and postsynaptic signals.

We need to show how self-organization is obtained merely by increasing
RH

(j), where j is the winning neuron. As each new data point arrives at a
speci�c neuron j in the net, the synaptic weight of that neuron is adapted
by the incremental corresponding to Hebbian learning,

ZH
(j)(k C 1) D ZH

(j)(k) C g(k)x
(j)
H

2(m¡1)
, (3.1)

where k is the iteration counter and g(k) is the iteration-dependent learn-
ing rate coef�cient. It should be noted that in equation 2.10, Z

(j)
H becomes a

weighted sum of the input signals x2(m¡1)
H (unlike RH in equation 2.8, which

is a uniform sum). The eigenstructure analysis of a weighted sum still pro-
vides the principal components under the assumption that the weights are
uniformly distributed over the cluster signals. This assumption holds true
if the process generating the signals of the cluster is stable over time, a basic
assumption of all neural network algorithms (Bishop, 1997). In practice, this
assumption is easily acceptable, as will be demonstrated in the following
sections.

In principle, continuous updating of the covariance tensor may create
instability in a competitive environment, as a winner neuron becomes in-
creasingly dominant. To force competition, the covariance tensor can be
normalized using any of a number of factors dependent on the application,
such as the number of signals assigned to the neuron so far or the distri-
bution of data among the neuron (forcing uniformity). However, a more
natural factor for normalization is the size and complexity of the neuron.

A second-order neuron is geometrically equivalent to a d-dimensional
ellipsoid. A neuron may be therefore normalized by a factor V proportional
to the ellipsoid volume:

V / p
s1 ¢ s2 ¢ ¢ ¢ ¢ ¢ sd D

dY

iD1

p
si / 1q

det
R(j)


. (3.2)

During the competition phase, the factors R(j)x / V are compared, rather than
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just R(j)x, thus promoting smaller neurons and forcing neurons to become
equally “fat.” The �nal matching criteria for a homogeneous representation
are therefore given by

j(x) D argj min
®®® OR¡1

H
(j)xH

®®® , j D 1, 2, . . . , N, (3.3)

where

OR(j)
H D

R
(j)
Hr

det
R(j)

H


. (3.4)

Covariance tensors of higher-order neurons can also be normalized by
their determinant. However, unlike second-order neurons, higher-order
shapes are not necessarily convex, and hence their volume is not neces-
sarily proportional to their determinant. The determinant of higher-order
tensors therefore relates to more complex characteristics, which include the
deviation of the data points from the principal curves and the curvature
of the boundary. Nevertheless, our experiments showed that this is a sim-
ple and effective means of normalization that promotes small and simple
shapes over complex or large, concave �ttings to data. The relationship be-
tween geometric shape and the tensor determinant should be investigated
further for more elaborate use of the determinant as a normalization crite-
rion.

Finally, in order to determine the likelihood of a point’s being associated
with a particular neuron, we need to assume a distribution function. As-
suming gaussian distribution, the likelihood p(j)(xH ) of data point xH being
associated with cluster j is proportional to the distance from the neuron and
is given by

p(j)(xH) D
1

(2p )d /2
e¡ 1

2

®®OZ( j) XH

®®2

. (3.5)

4 Algorithm Summary

To conclude the previous sections, we provide a summary of the high-
order competitive learning algorithm for both unsupervised and supervised
learning. These are the algorithms that were used in the test cases described
later in section 5.

Unsupervised Competitive learning.

1. Select layer size (number of neurons N) and neuron order (m) for a
given problem.
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2. Initialize all neurons with ZH D
P

x2(m¡1)
H where the sum is taken over

all input data, or a representative portion, or unit tensor or random
numbers if no data are available. To compute this value, write down
xm¡1

H as a vector with all mth degree permutations of fx1, x2, . . . , xd, 1g,
and ZH as a matrix summing the outer product of these vectors. Store
ZH and Z¡1

H / f , for each neuron, where f is a normalization factor (e.g.,
equation 3.4).

3. Compute the winner for input x. First compute vector xm¡1
H from x as

in section 2, and then multiply it by the stored matrix Z¡1
H / f . Winner

j is the one for which the modulus of the product vector is smallest.

4. Output winner j.

5. Update the winner by adding x2(m¡1)
H to ZH

(j) weighted by the learning
coef�cient g(k) where k is the iteration counter. Store ZH and ZH

¡1 / f ,
for the updated neuron.

6. Go to step 3.

Supervised Learning.

1. Set layer size (number of neurons) to number of classes, and select
neuron order (m) for a given problem.

2. Train. For each neuron, compute Z
(j)
H D

P
x2(m¡1)

H where the sum is
taken over all training points to be associated with that neuron. To
compute this value, write down xH

m¡1 as a vector with all mth degree
permutations of fx1, x2, . . . , xd, 1g, and ZH as a matrix summing the
outer product of these vectors. Store ZH

¡1 / f for each neuron.

3. Test. Use test points to evaluate the quality of training.

4. Use. For each new input x, �rst compute vector xm¡1
H from x, as in

section 2, and then multiply it by the stored matrix Z¡1
H / f . Winner j is

the one for which modulus of the product vector is smallest.

5 Implementation with Synthesized and Real Data

The proposed neuron can be used as an element in any network by replacing
lower-dimensionality neurons and will enhance the modeling capability of
each neuron. Depending on the application of the net, this may lead to
improvement or degradation of the overall performance of the layer, due to
the added degrees of freedom. This section provides some examples of an
implementation at different orders, in both supervised and unsupervised
learning.

First, we discuss two examples of second-order (ellipsoidal) neurons
to show that our formulation is compatible with previous work on el-
lipsoidal neural units (e.g., Mao & Jain, 1996). Figure 5 illustrates how
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Figure 5: (a–c) Stages in self-classi�cation of overlapping clusters, after learning
200, 400, and 650 data points, respectively (one epoch).

a competitive network consisting of three second-order neurons gradu-
ally evolves to model a two-dimensional domain exhibiting three main
activation areas with signi�cant overlap. The second-order neurons are
visualized as ellipses with their boundaries drawn at 2s of the distribu-
tion.

The next test uses a two-dimensional distribution of three arbitrary clus-
ters, consisting of a total of 75 data points, shown in Figure 6a. The network
of three second-order neurons self-organized to map this data set and creates
the decision boundaries shown in Figure 6b. The dark curves are the deci-
sion boundaries, and the light lines show the local distance metric within
each cell. Note how the decision boundary in the overlap area accounts for
the different distribution variances.

Figure 6: (a) Original data set. (b)Self-organized map of the data set. Dark curves
are the decision boundaries, and light lines show the local distance metric within
each cell. Note how the decision boundary in the overlap area accounts for the
different distribution variances.
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Table 1: Comparison of Self-Organization Results for IRIS Data.

Method Epochs Number misclassi�ed or
Unclassi�ed

Super paramagnetic (Blatt et al., 1996) 25
Learning vector quantization /
Generalized learning vector quantization
(Pal, Bezdek, & Tsao, 1993) 200 17
K-means (Mao & Jain, 1996) 16
Hyperellipsoidal clustering
(Mao & Jain, 1996) 5

Second-order unsupervised 20 4

Third-order unsupervised 30 3

The performance of the different orders of shape neuron has also been
assessed on the Iris data (Anderson, 1939). Anderson’s time-honored data
set has become a popular benchmark problem for clustering algorithms.
The data set consists of four quantities measured on each of 150 �owers
chosen from three species of iris: Iris setosa, Iris versicolor, and Iris virginica.
The data set constitutes 150 points in four-dimensional space. Some re-
sults of other methods are compared in Table 1. It should be noted that
the results presented in the table are “best results;” third-order neurons
are not always stable because the layer sometimes converges into different
classi�cations.1

The neurons have also been tried in a supervised setup. In supervised
mode, we use the same training setup of equations 2.8 and 2.10 but train
each neuron individually on the signals associated with it, using

Z
(j)
H D Sx2(m¡1)

H , xH 2 ª
(j),

where in homogeneous coordinates xH D
hx–
1

i
and ª(j) is the jth class.

In order to evaluate the performance of this technique, we trained each
neuron on a random selection of 80% of the data points of its class and
then tested the classi�cation of the whole data set (including the remain-
ing 20% for cross validation). The test determined the most active neuron

1 Performance of third-order neurons was evaluated with a layer consisting of three
neurons randomly initialized with normal distribution within the input domain with
mean and variance of the input, and with learning factor of 0.3 decreasing asymp-
totically toward zero. Of 100 experiments carried out, 95% locked correctly on the
clusters, with an average 7.6 (5%) misclassi�cations after 30 epochs. Statistics on per-
formance of cited works have not been reported. Download MATLAB demos from
http://www.cs.brandeis.edu/ lipson/papers/geom.htm.

http://www.cs.brandeis.edu/lipson/papers/geom.htm
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Table 2: Supervised Classi�cation Results for Iris Data.

Number Misclassi�ed
Order Epochs Average Best

3-hidden-layer neural network (Abe et al., 1997) 1000 2.2 1
Fuzzy hyperbox (Abe et al., 1997) 2
Fuzzy ellipsoids (Abe et al., 1997) 1000 1
Second-order supervised 1 3.08 1
Third-order supervised 1 2.27 1
Fourth-order supervised 1 1.60 0
Fifth-order supervised 1 1.07 0
Sixth-order supervised 1 1.20 0
Seventh-order supervised 1 1.30 0

Notes: Results after one training epoch, with 20% cross validation. Averaged results are
for 250 experiments.

for each input and compared it with the manual classi�cation. This test
was repeated 250 times, with the average and best results shown in Table
2, along with results reported for other methods. It appears that on aver-
age, supervised learning for this task reaches an optimum with �fth-order
neurons.

Figure 7 shows classi�cation results using third-order neurons for an
arbitrary distribution containing close and overlapping clusters.

Finally, Figure 8 shows an application of third- through �fth-order neu-
rons to detection and modeling of chromosomes in a human cell. The cor-
responding separation maps and convergence error rates are shown in Fig-
ures 9 and 10, respectively.

Figure 7: Self-classi�cation of synthetic point clusters using third-order neu-
rons.
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Figure 8: Chromosome separation. (a) Designated area. (b) Four third-order
neuron self-organized to mark the chromosomes in designated area. Data from
Schrock et al. (1996).

6 Conclusions and Further Research

We have introduced high-order shape neurons and demonstrated their
practical use for modeling the structure of spatial distributions and for
geometric feature recognition. Although high-order neurons do not di-
rectly correspond to neurobiological details, we believe that they can pro-
vide powerful data modeling capabilities. In particular, they exhibit use-
ful properties for correctly handling close and partially overlapping clus-
ters. Furthermore, we have shown that ellipsoidal and tensorial clustering
methods, as well as classic competitive neurons, are special cases of the
general-shape neuron. We showed how lower-order information can be
encapsulated using tensor representation in homogeneous coordinates, en-
abling systematic continuation to higher-order metrics. This formulation
also allows for direct extraction of the encapsulated high-order information
in the form of principal curves, represented by the eigentensors of each
neuron.

The use of shapes as neurons raises some further practical questions,
which have not been addressed in this article and require further research,
and are listed below. Although most of these issues pertain to neural net-
works in general, the approach required here may be different:

� Number of neurons. In the examples provided, we have explicitly
used the number of neurons appropriate to the number of clusters.
The question of network size is applicable to most neural architec-
ture. However, our experiments showed that overspeci�cation tends
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Figure 9: Self-organization for chromosome separation. (a–d) Second- through
�fth-order, respectively.

to cause clusters to split into subsections, whileunderspeci�cation may
cause clusters to unite.

� Initial weights. It is well known that sensitivity to initial weights is a
general problem of neural networks (see, for example, Kolen & Pollack,
1990, and Pal et al., 1993). However, when third-order neurons were
evaluated on the Iris data with random initial weights, they performed
with average 5% misclassi�cations. Thus, the capacity of neurons to
be spread over volumes may provide new possibilities for addressing
the initialization problem.

� Computational cost. The need to inverta high-order tensor introduces
a signi�cant computational cost, especially when the input dimension-
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Figure 10: Average error rate in self-organization for chromosome separation
of Figure 9, respectively.

ality is large. There are some factors that counterbalance this computa-
tional cost. First, the covariance tensor needs to be inverted only when
a neuron is updated, not when it is activated or evaluated. When the
neuron is updated, the inverted tensor is computed and then stored
and used whenever the neuron needs to compete or evaluate an input
signal. This means that the whole layer will need only one inversion
for each training point and no inversions for nontraining operation.
Second, because of the complexity of each neuron, sometimes fewer of
them are required. Finally, relatively complex shapes can be attained
with low orders (say, third order).

� Selection of neuron order. As in many other networks, there is much
domain knowledge about the problem that comes into the solution
through choice of parameters such as the order of the neurons. How-
ever, we also estimate that due to the rather analytic representation
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of each neuron, and since high-order information is contained with
each neuron independently, this information can be directly extracted
(using the eigentensors). Thus, it is possible to decompose analytically
a cross-shapes fourth-order cluster into two overlapping elliptic clus-
ters, and vice versa.

� Stability versus �exibility and enforcement of particular shapes.
Further research is required to �nd methods for biasing neurons to-
ward particular shapes in an attempt to seek particular shapes and help
neuron stability. For example, how would one encourage detection of
triangles and not rectangles?

� Nonpolynomial base functions. We intend to investigate the proper-
ties of shape layers based on nonpolynomial base functions. Noting
that the high-order homogeneous tensors give rise to various degrees
of polynomials, it is possible to derive such tensors with other base
functions such as wavelets, trigonometric functions, and other well-
established kernel functions. Such an approach may enable modeling
arbitrary geometrical shapes.
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