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LETTER Communicated by Steven Nowlan

Probabilistic Motion Estimation Based on Temporal Coherence

Pierre-Yves Burgi
Centre Suisse d’Electronique et Microtechnique, 2007 Neuchâtel, Switzerland

Alan L. Yuille
Norberto M. Grzywacz
Smith-Kettlewell Eye Research Institute, San Francisco, CA 94115, U.S.A.

We develop a theory for the temporal integration of visual motion mo-
tivated by psychophysical experiments. The theory proposes that input
data are temporally grouped and used to predict and estimate the motion
�ows in the image sequence. This temporal grouping can be considered
a generalization of the data association techniques that engineers use to
study motion sequences. Our temporal grouping theory is expressed in
terms of the Bayesian generalization of standard Kalman �ltering. To
implement the theory, we derive a parallel network that shares some
properties of cortical networks. Computer simulations of this network
demonstrate that our theory qualitatively accounts for psychophysical
experiments on motion occlusion and motion outliers. In deriving our
theory, we assumed spatial factorizability of the probability distributions
and made the approximation of updating the marginal distributions of
velocity at each point. This allowed us to perform local computations and
simpli�ed our implementation. We argue that these approximations are
suitable for the stimuli we are considering (for which spatial coherence
effects are negligible).

1 Introduction

Local motion signals are often ambiguous, and many important motion phe-
nomena can be explained by hypothesizing that the human visual system
uses temporal coherence to resolve ambiguous inputs. (Temporal coher-
ence is the assumption that motion in natural images is mostly temporally
smooth, that is, it rarely changes direction or speed abruptly.) For example,
the perceptual tendency to disambiguate the trajectory of an ambiguous
motion path by using the time average of its past motion was �rst reported
by Anstis and Ramachandran (Ramachandran & Anstis, 1983; Anstis & Ra-
machandran, 1987). They called this phenomenon motion inertia. Other mo-
tion phenomena involving temporal coherence include the improvement
of velocity estimation over time (McKee, Silverman, & Nakayama, 1986;
Ascher, 1998), blur removal (Burr, Ross, & Morrone, 1986), motion-outlier
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detection (Watamaniuk, McKee, & Grzywacz, 1994), and motion occlusion
(Watamaniuk & McKee, 1995). Another example of the integration of motion
signals over time comes from a recent experiment by Nishida and Johnston
(1999) on motion aftereffects, where an orientation shift in the direction
of the illusory rotation appears to involve dynamic updating by motion
neurons. These motion phenomena pose a serious challenge to motion per-
ception models. For example, in motion-outlier detection, the target dot is
indistinguishable from the background noise if one observes only a few
frames of the motion. Therefore, the only way to detect the target dot is
by means of its extended motion over time. Consequently, explanations
based solely on single, large local-motion detectors as in the motion energy
and elaborated Reichardt models (Hassenstein & Reichardt, 1956; van San-
ten & Sperling, 1984; Adelson & Bergen, 1985; Watson & Ahumada, 1985;
for a review of motion models, see Nakayama, 1985) seem inadequate to
explain these phenomena (Verghese, Watamaniuk, McKee, & Grzywacz,
1999). Also, it has been argued (Yuille & Grzywacz, 1998) that all these ex-
periments could be interpreted in terms of temporal grouping of motion
signals involving prediction, observation, and estimation. The detection of
targets and their temporal grouping could be achieved by verifying that
the observations were consistent with the motion predictions. Conversely,
failure in these predictions would indicate that the observations were due
to noise, or distractors, which could be ignored. The ability of a system to
predict the target’s motions thus represents a powerful mechanism to ex-
tract targets from background distractors and might be a powerful cue for
the interpretation of visual scenes.

There has been little theoretical work on temporal coherence. Grzywacz,
Smith, and Yuille (1989) developed a theoretical model that could account
for motion inertia phenomena by requiring that the direction of motion
varies slowly over time while speed could vary considerably faster. More
recently Grzywacz, Watamaniuk, and McKee (1995) proposed a biologically
plausible model that extends the work on motion inertia and allows for the
detection of motion outliers. It was observed (Grzywacz et al., 1989) that
for general three-dimensional motion, the direction, but not the speed, of
the image motion is more likely to be constant and hence might be more
reliable for motion prediction. This is consistent with the psychophysical
experiments on motion inertia (Anstis & Ramachandran, 1987) and tempo-
ral smoothing of motion signals (Gottsdanker, 1956; Snowden & Braddick,
1989; Werkhoven, Snippe, & Toet, 1992), which demonstrated that the di-
rection of motion is the primary cue in temporal motion coherence. Other
reasons that might make motion direction more reliable than speed are the
unreliability of local speed measurement due to the poor temporal resolu-
tion of local motion units (Kulikowski & Tolhurst, 1973; Holub & Morton-
Gibson, 1981) and involuntary eye movements.

This article presents a new theory for visual motion estimation and pre-
diction that exploits temporal information. This theory builds on our pre-
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vious work (Grzywacz et al., 1989, 1995; Yuille & Grzywacz, 1998) and on
recent work on tracking of object boundaries (Isard & Blake, 1996). In ad-
dition, this article gives a concrete example of the abstract arguments on
temporal grouping proposed by Yuille and Grzywacz (1998). To this end,
we use a Bayesian formulation of estimation over time (Ho & Lee, 1964),
which allows us simultaneously to makepredictions over time, update those
predictions using new data, and reject data that are inconsistent with the
predictions. (We will be updating the marginal distributions of velocity at
each image point rather than the full probability distribution of the entire
velocity �eld, which would require spatial coupling.) This rejection of data
allows the theory to implement basic temporal grouping (for speculations
about more complex temporal grouping, see Yuille & Grzywacz, 1998). This
basic form of temporal grouping is related to data association as studied by
engineers (Bar-Shalom & Fortmann, 1988) but differs by being probabilistic
(following Ho & Lee, 1964). Finally, we show that our temporal grouping
theory can be implemented using locally connected networks, which are
suggestive of cortical structures.

In deriving our theory, we made an assumption of spatial factorizability
of the probability distributions and made the approximation of updating
the marginal distributions of velocity at each point. This allowed us to per-
form local computations and simpli�ed our implementation. We argued
that these assumptions and approximations (as embodied in our choice of
prior probability) are suitable for the stimuli we are considering but would
need to be revised to include spatial coherence effects (Yuille & Grzywacz,
1988, 1989). The prior distribution used in this article would need to be mod-
i�ed to incorporate these effects. (For speculations about how this might be
achieved, see Yuille & Grzywacz, 1998.) There is no dif�culty in generalizing
the Bayesian theory to deal with complex hierarchical motion, but it is un-
clear whether the speci�c implementation in this article can be generalized.

The article is organized as follows. The theoretical framework for mo-
tion prediction and estimation is introduced in section 2. Section 3 gives
a description of the speci�c model chosen to implement the theory in the
continuous time domain. Implementation of the model using a locally con-
nected network is addressed in sections 4 and 5. The model’s predictions
are tested in section 6 by performing computer simulations on the motion
phenomena described previously. Finally, we discuss relevant issues, such
as the possible relationship of the model to biology, in section 7.

2 The Theoretical Framework

2.1 Background. The theory of stochastic processes gives us a mathe-
matical framework for modeling motion signals that vary over time. These
processes can be used to predict the probabilities of future states of the sys-
tem (e.g., the future velocities) and are called Markov if the probability of
future states depends on only their present state (i.e., not on the time history
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of how they arrived at this state). Incomputer vision, Markov processes have
been used to model temporal coherence for applications such as the optimal
fusing of data from multiple frames of measurements (Matthies, Kanade, &
Szeliski, 1989; Clark & Yuille, 1990; Chin, Karl, & Willsky, 1994). Such op-
timal fusing is typically de�ned in terms of least-squares estimates, which
reduces to Kalman �ltering theory (Kalman, 1960). Kalman �lters have been
applied to a range of problems in computer vision (see Blake & Yuille, 1992,
for several examples), and to neuronal mode by Rao and Ballard (1997).
Because Kalman �lters are (recursive) linear estimators that apply only to
gaussian densities, their applicability in complex scenes involving several
moving objects is questionable. Onesolution, which we brie�y discuss, is the
use of data association techniques (Bar-Shalom & Fortmann, 1988). In this
article, however, we follow Isard and Blake (1996) and propose a Bayesian
formulation of temporal coherence, which is a generalization of standard
Kalman �lters and can deal with targets moving in complex backgrounds.

We begin by deriving a generalization of Kalman �lters that is suitable
for describing the temporal coherence of simple motion. (Our development
follows the work of Ho & Lee, 1964.) Consider the state vector Exk describ-
ing the status of a system at time tk (in our theory, Exk denotes the velocity
�eld at every point in the image). Our knowledge about how the system
might evolve to time k C 1 is described in a probability distribution function
p(ExkC1 |Exk), known as the “prior” (in our theory, this prior will encode the
temporal coherence assumption). The measurement process that relates the
observation Ezk of the state vector to its “true” state is described by the likeli-
hood distribution function p(Ezk |Exk) (in our theory, Ezk will be the responses of
basic motion units at every place in the image). From these two distribution
functions, it is straightforward to derive the a posteriori distribution func-
tion p(ExkC1 |ZkC1), which is the distribution of ExkC1 given the whole past set
of measurements ZkC1

.D (Ez0, . . . , EzkC1) (note that although the prediction
of the future depends only on the current state, the estimate of the current
state does depend on the entire past history of the measurements). Using
Bayes’ rule and a few algebraic manipulations (Ho & Lee, 1964), we get

p(ExkC1 |ZkC1) D
p(EzkC1 |ExkC1)
p(EzkC1 |Zk)

p(ExkC1 |Zk), (2.1)

where p(ExkC1 |Zk) is prediction for the future state ExkC1 given the current set
of past measurements Zk, and p(EzkC1 |Zk) is a normalizing term denoting the
con�dence in the measure EzkC1 given the set of past measurements Zk. The
predictive distribution function can be expressed as

p(ExkC1 |Zk) D
Z

p(ExkC1 |Exk )p(Exk |Zk )dExk. (2.2)

Equations 2.1 and 2.2 are generalizations of the Wiener-Kalman solu-
tion for linear estimation in presence of noise. Its evaluation involves two
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stages. In the prediction stage, given by equation 2.2, the probability distribu-
tion p(ExkC1 |Zk) for the state at time k C 1 is determined. This function, which
involves the present state and the Markov transition describing the dynam-
ics of the system, has a variance larger than that of p(Exk |Zk ). This increase
in the variance results from the nondeterministic nature of the motion. In
the measurement stage, performed by equation 2.1, the new measurements
EzkC1 are combined using Bayes’ theorem and, if consistent, reinforce the
prediction and decrease the uncertainty about the new state. (Inconsistent
measurements may increase the uncertainty still further.)

It was shown (Ho & Lee, 1964) that if the measurement and prior prob-
abilities are both gaussian, then equations 2.1 and 2.2 reduce to the stan-
dard Kalman equations, which update the mean and the covariance of
p(ExkC1 |ZkC1) and p(ExkC1 |Zk) over time. Gaussian distributions, however, are
nonrobust (Huber, 1981), and an incorrect (outlier) measurement can seri-
ously distort the estimate of the true state. Standard linear Kalman �lter
models are therefore not able to account for the psychophysical data that
demonstrate, for example, that human observers are able to track targets
despite the presence of inconsistent (outlier) measurements (Watamaniuk
et al., 1994; Watamaniuk & McKee, 1995). Various techniques, known collec-
tively as data association (Bar-Shalom & Fortmann, 1988), can be applied to
reduce these distortions by using an additional stage that decides whether to
reject or accept the new measurements. From the Bayesian perspective, this
extra stage is unnecessary; robustness can be ensured by correct choices of
the measurement and prior probability models. More speci�cally, we spec-
ify a measurement model that is robust against outliers.

2.2 Prediction and Estimation Equations for a Flow Field. We intend to
estimate the motion �ow �eld, de�ned over the two-dimensional image ar-
ray, at each time step. We describe the �ow �eld as fEv(Ex, t)g, where the paren-
theses f¢g denote variations over each possible spatial position Ex in the image
array. The prior model for the motion �eld and the likelihood for the ve-
locity measurements are described by the probability distribution functions
P(fEv(Ex, t)g |fEv(Ex, t ¡ d)g) and P(f Ew (Ex, t)g|fEv(Ex, t)g) (see section 3 for details),
where d is time increment and f Ew (Ex, t)g D fw1(Ex, t), w2(Ex, t), . . . , wM(Ex, t)g
represents the response of the local motion measurement units over the
image array. Our theory requires that the local velocity measurements are
normalized so that

PM
iD1 w i(Ex, t) D 1 for all Ex and at all times t (see section 3

for details). We let W(t) D (f Ew (Ex, t)g, f Ew (Ex, t ¡ d)g, . . .) be the set of all mea-
surements up to and including time t, and P(fEv(Ex, t ¡ d)g |W(t ¡ d)) be the
system’s estimated probability distribution of the velocity �eld at time t¡d.
Using equations 2.1 and 2.2 described above, we get

P(fEv(Ex, t)g|W(t)) D
P(f Ew (Ex, t)g |fEv(Ex, t)g)P(fEv(Ex, t)g |W (t ¡ d))

P(f Ew (Ex, t)g |W(t ¡ d))
, (2.3)
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for the estimation, and

P(fEv(Ex, t)g|W(t ¡d))

D
Z

P(fEv(Ex, t)g|fEv(Ex, t ¡d)g)P(fEv(Ex, t ¡ d)g|W(t ¡d))d[fEv(Ex, t ¡ d)g], (2.4)

for the prediction.

2.3 The Marginalization Approximation. For simplicity and computa-
tional convenience, we assume that the prior and the measurement distribu-
tions are chosen to be factorizable in spatial position, so that the probabilities
at one spatial point are independent of those at another. This restriction pre-
vents us from including spatial coherence effects which are known to be im-
portant aspects of motion perception (see, for example, Yuille & Grzywacz,
1988). For the types of stimuli we are considering, these spatial effects are
of little importance and can be ignored.

In mathematical terms, this spatial-factorization assumption means that
we can factorize the prior Pp and the likelihood Pl so that

Pp(fEv(Ex, t)g|fEv(Ex0 , t ¡d)g) D
Y

Ex

pp(Ev(Ex, t) |fEv(Ex0, t ¡ d)g)

Pl(f Ew (Ex, t)g |fEv(Ex, t)g) D
Y

Ex

pl(f Ew (Ex, t) |Ev(Ex, t)g). (2.5)

A further restriction is to modify equation 2.4 so that it updates the
marginal distributions at each point independently. This again reduces spa-
tial coherence because it decouples the estimates of velocity at each point in
space. Once again, we argue that this approximation is valid for the class of
stimuli we are considering. This approximation will decrease computation
time by allowing us to update the predictions of the velocity distributions
at each point independently. The assumption that the measurement model
is spatially factorizable means that the estimation stage, equation 2.3, can
also be performed independently.

This gives update rules for prediction Ppred :

Ppred (Ev(Ex, t) |W (t ¡ d)) D
Z

[dEv(Ex0 , t ¡d)]Pp(EvT(Ex, t) |fEv(Ex0 , t ¡ d)g)

Pe(fEv(Ex0, t ¡d)g|W(t ¡d)), (2.6)

and for estimation Pe:

Pe(Ev(Ex, t)|W (t)) D
Pl( Ew (Ex, t)|Ev(Ex, t))Ppred(Ev(Ex, t) |W(t ¡ d))

P( Ew (Ex, t)|W(t ¡d))
. (2.7)

In what follows we will consider a speci�c likelihood and prior function
that allow us to simplify theseequations and de�ne probability distributions
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on the velocities at each point. This will lead to a formulation for motion
prediction and estimation where computation at each spatial position can
be performed in parallel.

3 The Model

We now describe a speci�c model for the likelihood and prior functions
that, as we will show, can account for many psychophysical experiments
involving temporal motion coherence. Based on this speci�c prior function,
we then derive a formulation for motion prediction in the continuous time
domain.

3.1 Likelihood Function. The likelihood function gives a probabilistic
interpretation of the measurements given a speci�c motion. It is probabilistic
because the measurement is always corrupted by noise at the input stage.
(In many vision theories, the likelihood function depends on the image
formation process and involves physical constraints, such as the geometry
and surface re�ectance. Because we are considering psychophysical stimuli,
consisting of moving dots, we can ignore such complications.)

To determine our likelihood function, we must �rst specify the input
stage. Ideally, this would involve modeling the behaviors of the cortical
cells’ sensing natural image motion, but this would be too complex to be
practical. Instead, we use a simpli�ed model of a bank of receptive �elds
tuned to various velocities Evi (Ex, t), i D 1 ¢ ¢ ¢ M, and positioned at each im-
age pixel. These cells have observation activities fw i(Ex, t)g that are intended
to represent the output of a neuronally plausible motion model such as
Grzywacz and Yuille (1990). (In our implementation, these simple model
cells receive contributions from the motion of dots falling within a local
neighborhood, typically the four nearest neighbors. Intuitively, the closer
the dot is to the center of the receptive �eld and the closer its velocity is
to the preferred velocity of the cell, then the larger the response. The spa-
tial pro�le and velocity tuning curve of these receptive �elds are described
by gaussian functions whose covariance matrices S m:x and S m:v depend on
the direction of Ev(Ex, t), and are speci�ed in terms of their longitudinal and
transverse components s2

m:x,L, s2
m:x,T and s2

m:v,L, s2
m:v,T. For more details, see

the appendix.)
The likelihood function speci�es the probability of the receptive �eld

responses conditioned on a “true” external motion �eld. Ideally this should
correspond exactly to the way the motion measurements are generated.
We make a simpli�cation, however, by assuming that the measurements
depend on only the velocity �eld at that speci�c position. This simpli�es
the mathematics at the risk of making the system slightly sensitive to motion
blur (i.e., the measurement stageallows for several dots to in�uence the local
measurement—provided the dots lie within the receptive �eld—but the
likelihood function assumes that only a single dot causes the measurement.)
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We can therefore write Pl (f Ew (Ex, t)g|fEv(Ex, t)g) D
Q

x Pl ( Ew (Ex, t) |Ev(Ex, t)), where
fEv(Ex, t)g is the external velocity �eld. We now specify

Pl( Ew (Ex, t) |Ev(Ex, t))

D
Yl(w1(Ex, t), w2(Ex, t), . . . , wM(Ex, t), Ev(Ex, t))R

¢ ¢ ¢
R

PJ (j1, j2, . . . , jM, Evj (Ex, t))dj1dj2, . . . , djM
, (3.1)

where PJ is the joint probability distribution and we set Yl to be

Yl(w1(Ex, t), w2(Ex, t), . . . , wM(Ex, t), Ev(Ex, t)) D Ew (Ex, t) ¢ Ef (Ev(Ex, t)), (3.2)

which is attractive (see Yuille, Burgi, & Grzywacz, 1998) because it leads to
a simple linear update rule, and with tuning curves f given by:

fi(Ev(Ex, t)) D
e¡(1/2)(Evi ¡Ev)T S ¡1 (Evi ¡Ev)

PM
jD1 e¡(1 /2)(Evj ¡Ev)T S ¡1 (Evj ¡Ev) , (3.3)

where S is the covariance matrix that depends on the direction of Ev(Ex, t) and
is speci�ed in terms of its longitudinal and transverse components s2

l:v,L and
s2

l:v,T). The experimental data (Anstis & Ramachandran, 1987; Gottsdanker,
1956; Werkhoven et al., 1992) suggest that temporal integration occurs for
velocity direction rather than for speed. This is built into our model by
choosing the covariances so that the variance is bigger in the direction of
motion than in the perpendicular direction (i.e., the velocity component
perpendicular to the motion has mean zero and very small variance so
the direction of motion is fairly accurate, but the variance of the velocity
component along the direction of motion is bigger, which means that the
estimation of the speed is not accurate). We have assumed that the response
of the measurement device is instantaneous . It would be possible to adapt
the likelihood function to allow for a time lag, but we have not pursued this.
Such a model might be needed to account for motion blurring.

3.2 Prior Function. We now turn to the prior function for position and
velocity. For a dot moving at approximately constant velocity, the state
transitions for position and velocity are given respectively by Ex(t C d) D
Ex(t) C dEv(t) C Evx(t), and Ev(t C d) D Ev(t) C Evv(t), where Evx(t) and Evv(t) are
random variables representing uncertainty in the position and velocity. Ex-
tending this model to apply to the �ow of dots in an image requires a
conditional probability distribution Pp(Ev(Ex, t) |fEvj(Exi, t ¡ d)g), where the set
of spatial positions and the set of allowed velocities are discretized with
the spatial positions set to be fExi: i D 1, . . . , Ng, and the velocities at Exi to
fEvj: j D 1, . . . , Mg. We are assuming that Pp(fEv(Exi, t)g|.) D

Q
i Pp(Ev(Exi, t) |.) so

that the velocities at each point are predicted independent of each other. We
also assume that the prior is built out of two components: (1) the probability
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p(Ex|Exi , Evj(Exi , t ¡d)) that a dot at position Exi with velocity Evj at time t ¡d will
be present at Ex at time t and (2) the probability P(Ev(Ex, t) |Evj(Exi, t ¡ d)) that it
will have velocity Ev(Ex, t). These components are combined to give:

Pp(Ev(Ex, t)|fEvj(Exi, t ¡d)g)

D
1

K(Ex, t)

X

i

X

j

P(Ev(Ex, t) |Evj(Exi, t ¡d)) p(Ex|Exi, Evj(Exi, t ¡ d)), (3.4)

where K(Ex, t) is a normalization factor chosen to ensure that
Pp(Ev(Ex, t) |fEvj(Exi, t ¡ d)g) is normalized. The two conditional probability dis-
tribution functions in equation 3.4 are assumed to be normally distributed,
and thus,

p(Ex |Exi, Evj (Exi, t ¡d)) » e¡(1/2)(Ex¡Exi ¡d Evj(Exi ,t¡d))TS ¡1
x (Ex¡Exi ¡dEvj (Exi ,t¡d)) (3.5)

P(Ev(Ex, t) |Evj(Exi , t ¡ d)) » e¡(1 /2)(Ev(Ex,t)¡Evj (Exi ,t¡d))T S ¡1
v (Ev(Ex,t)¡Evj (Exi ,t¡d)). (3.6)

These functions express the belief that the dots are, on average, moving
along a straight trajectory (see equation 3.5) with constant velocity (see
equation 3.6). The covariances S x and S v, which quantify the statistical
deviations from the model, are de�ned in a coordinate system based on
the velocity vector Evj. These matrices are diagonal in this coordinate system
and are expressed in terms of their longitudinal and transverse components
s2

x,L, s2
x,T , s2

v,L, s2
v,T. (This model predicts future positions and velocities in-

dpendently; it does not take into account the possibility that if the speed
increases during the motion, then the dot will travel further. This is an ac-
ceptable, and standard, approximation provided that d is small enough. It
becomes exact in the limit as d 7! 0.)

3.3 Continuous Prediction. Computer simulations of equation 2.6 (even
for the simple case of moving dots) require large-kernel convolutions, which
require excessive computational time. Instead, we reexpress equation 2.6 in
the continuous time domain. (Such a reexpression is not always possible
and depends on the speci�c choices of probability distributions. Note that a
similar approach has been applied for the computation of stochastic comple-
tion �elds by Williams and Jacobs (1997a, 1997b).) As shown in the appendix
for Gaussian priors, the evolution of P(Ev(Ex, t) |W (t ¡d)) for d ! 0 satis�es a
variant of a partial differential equation, known as Kolmogorov’s forward
equation or Fokker-Planck equation. Our equation is a nonstandard variant
because, unlike standard Kolmogorov theory, our theory involves probabil-
ity distributions at every point in space that interact over time. It is given
by:

@

@t
P(Ev(Ex, t)) D

1
2

»
@T

@Ev
S Ev

@

@Ev

¼
P(Ev(Ex, t)) C

1
2

»
@T

@Ex
S Ex

@

@Ex

¼
P(Ev(Ex, t))
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¡ Ev ¢ @

@Ex
P(Ev(Ex, t)) C

1
|V |

@

@Ex

Z
EvP(Ev(Ex, t))dEv. (3.7)

where |V | is the volume of velocity space
R

dEv, and f @T

@ExS Ex
@
@Ex g and f @T

@Ev S Ev
@
@Ev g

are scalar differential operators (for isotropic diffusions, these scalar op-
erators are Laplacian operators). The terms on the right-hand side of this
equation stand for velocity diffusion (�rst term), spatial diffusion (second
term) with deterministic drift (third term), and normalization (fourth term).
This equation is local and describes the spatiotemporal evolution of the
probability distributions P(Ev(Ex, t)).

4 The Implementation

We now address the implementation of the update rule for motion estima-
tion (see equations 2.7). At each spatial position, two separate cells’ popu-
lations are assumed: one for coding the likelihood function and another for
coding motion estimation. If we were to choose the large-kernel convolution
for motion prediction (see equation 2.6), then the network implementation
would reduce to two positive linear networks multiplying each other fol-
lowed by a normalization, illustrated in Figure 1 (see Yuille et al., 1998). But
a problem with implementing this network on serial computers is that the
range of the connections between motion estimation cells depends on the
magnitude of Evj (that is, we would need long-range connections for high
speed tunings). Such long-range connections occur in biological systems,
like the visual cortex, but are not well suited to very large-scale integrated
or serial computer implementations. Alternatively, using our differential
equation for predicting motion (see equation 3.7) involves only local con-
nections. We now focus on this new implementation (see Figure 2).

Kolmogorov’s equation can be solved on an arbitrary lattice using a Tay-
lor series expansion. The spatial term, which contains the diffusion and
drift terms, can be written so that the partial derivatives at lattice points
are functions of the values of the closest neighbor points. For the sake of
numerical accuracy, we have chosen a spatial mesh system where the points
are arranged hexagonally. Furthermore, we found it convenient to express
the velocity vectors in polar coordinates where their norm s and angle h

can be represented on a rectangular mesh. The change of variable is given
by Qp(s, h ) D sp(Ev). In polar coordinates, the differential operator @T

@Ev S Ev
@
@Ev

becomes

Lv[ Qp] D
1
2

s2
v,L

@2 Qp
@s2 ¡

¡
s2

v,L ¡ 1
2

s2
v,T

¢
@

@s

¡
1
s

Qp
¢

C
1
2

s2
v,T

@2 Qp
@h 2

1
s2 , (4.1)

where s2
v,L and s2

v,T are the variances in the longitudinal and transverse
directions, respectively.



Probabilistic Motion Estimation 1849

Figure 1: Network for motion estimation. The network consists of two inter-
acting layers. The top square shows the observation layer consisting of cells
organized in columns on the (x, y) lattice. At each of the 12 spatial positions,
there is a velocity column, which we display by two cells, shown as circles, with
the adjacent arrows indicating their velocity tunings (here either horizontal or
vertical). The lower square represents the estimation layer, which also consists
of cells organized as columns on the (x, y) lattice. In the measurement stage, the
observation cells in�uence the estimation cells by excitatory (indicated by the
plus sign) connections and multiplicative interactions (indicated by the cross
sign). The excitation is higher between cells with similar velocity tuning, which
we indicate by strong (solid lines) or weak (dashed lines) connections. In the
prediction stage, cells within the estimation layer excite each other (again with
the strength of the excitation being largest for cells with similar velocity tuning).
Inhibitory connections within the columns are used to ensure normalization.
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Figure 2: Network for motion estimation using continuous prediction. (A) Con-
tinuous motion prediction (lower part of the network) is accomplished through
nearest-neighbor spatial interactions—in this case, on a hexagonal lattice. The
velocity distribution is represented at each spatial position by a set of velocity
cells (small circles) organized according to a polar representation (small panel).
Observation cells in the measurement layer (upper part) in�uence the estima-
tion cells by multiplicative interactions (indicated by £) to yield the motion
estimation a. (B) Interactions between two populations of velocity cells involve
cells tuned to the same velocities; interactions within a population involve cells
tuned to different velocities.

We let the activities of the M motion estimation cells at time t be repre-
sented by a vector Ea(Ex, t) D (a1(Ex, t), . . . , aM(Ex, t)). The iterative method for
determining such activities involves a four-step scheme. The �rst three steps
are concerned with solving Kolmogorov’s equation. For a cell at position
Ex D (x, y) and of velocity tuning Evm D (s, h ), the three steps are:

a
tC1/4
x,y,s,h D at

x,y,s,h C D t
X

õ ,
A õ , (s)at

x,y,sC õ D s,h CDh

a
tC1/2
x,y,s,h D a

tC1/4
x,y,s,h C Ds

X

i,Â
Bi,Â(s, h )atC1 /4

xCi,yCÂ,s,h

a
tC3/4
x,y,s,h D a

tC1/2
x,y,s,h ¡ D t

M

X

s0 ,h 0

X

i,Â
Bi,Â(s0 , h 0 )atC1 /2

xCi,yCÂ,s0,h 0 (4.2)

where the coef�cients Aõ , and Bi,Â are functions of s, h , and the covariance
matrices. The constants D s, Dh represent the quantization factors for s and
h . The superscripts t C 1 /4, t C 1 /2, t C 3/4 indicate the order in which these
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three steps proceed (a single time step for the complete system is broken
down into four substeps for implementational convenience).

The �rst step is to evaluate the velocity differential operator and involves
four neighbor cells. The second step calculates the spatial differential op-
erator and involves six neighbor points (on the hexagonal spatial lattice).
Periodic boundary conditions are assumed in space and velocity. The third
step performs the normalization. To guarantee stability of the whole iter-
ative method, the time step D t has been determined using von Neumann
analysis (see Courant & Hilbert, 1953), which considers the independent so-
lutions, or eigenmodes, of �nite-difference equations. Typically the stability
conditions involve ratios between the time step and the quantization scales
of space and velocity.

If we are performing prediction without measurement, then the fourth
step—determining the activity of the motion estimation cells—simply re-
duces to

atC1
x,y,s,h D a

tC3/4
x,y,s,h . (4.3)

If there are measurements, then we apply the motion estimation equation,
2.7, which consists of multiplying the motion prediction with the likelihood
function (as de�ned by equations 2.8 and 2.9). Therefore, the complete up-
date rule is

atC1
x,y,s,h D

1
N(Ex, t C 1)

a
tC3/4
x,y,s,h ¢

X

j

wj(Ex, t) ¢ fj(Evm (Ex, t)), (4.4)

where N(Ex, t C 1) is a normalization constant to impose
PM

m D1 am (Ex, t C 1) D
1, 8Ex, t so that we can interpret these activities as the probabilities of the
true velocities.

5 Methods

Our model has two extreme forms of behavior depending on how well the
input data agree with the model predictions. If the data are generally in
agreement with the model’s predictions, then it behaves like a standard
Kalman �lter (i.e., with gaussian distributions) and integrates out the noise.
At the other extreme, if the data are extremely different from the prediction,
then the model treats the data as outliers or distractors and ignores them.
We are mainly concerned here with situations where the model rejects data.
The precise situation where noise and distractors start getting confused is
very interesting, but we do not address it here.

We �rst checked the ability of our model to integrate out weak noisy
stimuli for tracking a single dot moving in an empty background. For this
situation, temporal grouping (data association) is straightforward, and so



1852 P.-Y. Burgi, A. L. Yuille, and N. M. Grzywacz

Figure 3: Speed discrimination for two moving dots. This graph shows the
improved ability of our theory to estimate the relative speed of two dots (one
of which is moving at 2 jumps per second) as a function of the number of
jumps. The level of 80% correct discrimination is reached for diminishing speed
differences (measured by dV /V) when the number of jumps increases, consistent
with psychophysics (McKee et al., 1986).

standard Kalman �lters can be used. To evaluate the model, we ran a set of
trials that plotted the relative estimation of two velocities as a function of
the number of jumps. The graph we obtained (see Figure 3) is very similar
to those reported in the psychophysical literature (McKee et al., 1986).

Henceforth, we assume that the model is able to integrate out noisy in-
put. For the remaining experiments, we assumed that the local velocity
measurements were “noisy” in the sense that the measurement units spec-
i�ed a probability of velocity measurements rather than a single velocity.
However, the “probability of velocities” itself was not noisy.

We next tested our model on three psychophysical motion phenomena.
First, we considered the improved accuracy of velocity estimation of a sin-
gle dot over time (Snowden & Braddick, 1989; Watamaniuk, Sekeuler, &
Williams, 1989; Welch, Macleod, & McKee, 1997; Ascher, 1998). Then we ex-
amined the predictions for the motion occlusion experiments (Watamaniuk
& McKee, 1995). Finally we investigated the motion outlier experiments
(Watamaniuk et al., 1994).

For all simulations, we set the parameters as follows. All dots were mov-
ing at a speed of 6 jumps per second (jps), where one jump corresponds to the
distance separating two neighboring pixels in the horizontal direction. The
longitudinal and transverse components of the covariances matrices were
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sm:x,L D 0.8 jump, sm:x,T D 0.4 jump, sm:v,L D 3.2 jps, and sm:v,T D 2.6 jps for
the measurement, sl:v,L D 2.2 jps, and sl:v,T D 1.1 jps for the likelihood func-
tion, and sx,L D 0.6 jump, sx,T D 0.3 jump, sv,L D 0.8 jps, and sv,T D 0.4 jps
for the prior function. Theseparameters were chosen by experimenting with
the computer implementation, but the results are relatively insensitive to
their precise values; detailed �ne tuning was not required.

Except for one of the occluder experiments (the occluder de�ned by dis-
tractor motion), where we used 18 velocity channels (six equidistant direc-
tions and three speeds), we used 30 velocity channels positioned at each
spatial position, that is, six equidistant directions (thus Dh D 60 degrees,
starting at the origin) and �ve speeds (D r D 2 jps, with the slowest speed
channel tuned to 2 jps). To guarantee stability of the numerical method, we
set the time increment to D t D 0.6 ms. Initial conditions were uniformly
distributed density functions. There were 32 £ 32 spatial positions.

6 Results

6.1 Velocity Estimation in Time. For this experiment, the stimulus was
a single dot moving in an empty background. To evaluate how the velocity
estimation evolves in time, we measured two numbers. The �rst number
was the sharpness of the velocity probability at each position, which we de-
�ne to be the negative of the entropy of the distribution (the entropy of
the distribution is given by ¡

PM
jD1 aj(Ex, t) log aj (Ex, t)) plus the maximum of

the entropy (to ensure that the sharpness is nonnegative). Observe that the
sharpness is the Kullback-Leibler divergence D(akU) between the veloc-
ity distribution aj(Ex, t) and the uniform distribution Uj D 1 /M, 8 j (more
precisely, D(akU) D

PM
jD1 aj(Ex, t) logfaj(Ex, t) /Ujg.) As is well known (Cover

& Thomas, 1991) the Kullback-Leibler divergence is positive semide�nite,
taking its minimum value of 0 when aj D Uj, 8j and increases the more aj
differs from the uniform distribution Uj (i.e., the sharper the distribution aj
becomes). Hence the higher this sharpness is, the more precise the velocity
estimate is. Moreover, the sharpness will be lowest in positions where there
are no dots moving (i.e., for which wj (Ex, t) D 1 /M, j D 1, . . . , M). The target,
a coherently moving dot, should have a relatively high sharpness response
surrounded by low sharpness responses in neighboring positions. The sec-
ond number is the con�dence factor P( Ew (Ex, t) |W (t ¡ d)) in equation 2.7. This
measures how probable the model judges the new input data. The higher
this number is, the more the new measurement is consistent with the pre-
diction (and hence the more likely that the measurement is due to coherent
motion).

Theresults of motion estimation for this experimental stimulus are shown
in Figure 4. This �gure shows an initial fast decrease in the entropy of the
velocity distribution followed by a slow decrease (i.e., an increase in sharp-
ness of the density function). Also shown is the increase in the con�dence
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Figure 4: Single dot experiment. A single dot is moving with constant velocity.
(A) Increasing accuracy of the velocity estimate with time is visible byan increase
in the con�dence factor and the sharpness of the density function. Observe how
both the con�dence and sharpness increase rapidly at �rst but then quickly
start to �atten out. (Our model outputs a data point at each time frame, and our
plotting package joins them together by straight-line segments.) (B) Sharpness
of the density function shown for each spatial position at successive time frames.
The system converges to a single peak in the velocity estimation (though we do
not show this here).
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factor of the target velocity estimation at each new iteration. These two ef-
fects indicate the increased accuracy of the velocity estimation with each
new iteration, consistent with the psychophysical literature (Snowden &
Braddick, 1989; Watamaniuk el al., 1989; Welch et al., 1997; Ascher, 1998).
Note that for coherent motion, the sharpness of the model increases rapidly
at �rst and then appears to slow down. Our results suggest that the model
reaches an asymptotic limit, although they do not completely rule out a con-
tinual gradual increase. We argue that asymptotic behavior is more likely
as both the predictions and the measurements have inherent noise that can
never be eliminated. Moreover, it can be proven that the standard (gaussian)
Kalman model will converge to an asymptotic limit depending on the vari-
ances of the prior and likelihood functions (we veri�ed this by computer
simulations). It seems also that human observers reach a similar asymptotic
limit, and their accuracy does not become in�nitely good with an increasing
number of input stimuli. In addition, we plot the sharpness of the veloc-
ity estimates as a function of spatial position in Figure 4B (each column of
velocity-tuned cells has a sharpness associated with its velocity estimate).

We also tested the estimation of velocity for a dot moving on a circular
trajectory, and our model can successfully estimate the dot’s speed, although
the sharpness and con�dence are not as high as they are for straight motion
(recall that the prior prefers straighttrajectories). This again seems consistent
with the psychophysics (Watamaniuk et al., 1994; Verghese et al., 1999).

6.2 Single Dot with Occluders. Next, we explored what would happen
if the target dot went behind an occluding region where no input measure-
ments could be made (we call this a black occluder). The results were the
same as the previous case until the target dot reached the occluder. In the
occluded region, the motion model continued to propagate the target dot,
but, lacking supporting observations, the probability distribution started to
diffuse in space and in velocity. This dual diffusion can be seen in Figure 5,
where the sharpness of velocity estimation is shown after the dot entered the
occluding region. Observe the decrease in sharpness of the density function,
indicating a degradation of velocity estimation, when the target is behind the
occluder. However, the model still has enough “momentum” to propagate
its estimate of the target dot’s position even though no measurements are
available (this will break down if the occluder gets too large). This is consis-
tent with the �ndings by Watamaniuk and McKee (1995), who showed that
observers had a higher-than-average chance of detecting the target when it
emerges from the occluder into a noisy background.

We then tested our model with motion occluders—occluders de�ned by
motion �ows as described in Watamaniuk andMcKee (1995) (seeFigure 6A).
We use the same measures as for the single isolated dot. We also plot the
cells’ activities as a function of the direction tuning for the cells tuned to the
optimal speed (see Figure 6B). The plot indicates that the cells can signal
nonzero probabilities for several motions at the same time. After entering the
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Figure 5: Single dot experiment with Black occluder. (A) This representation
shows how the spatial blur and sharpness of the velocity distribution change
with time (measured in time frames) when a single dot moving along the y-axis
gets occluded and reappears. The occluding area is from y D 15 up to y D 22.
(B) The y-location of the peak of velocity distribution as a function of time.
Motion inertia (momentum) keeps the peak moving during the occlusion, albeit
with a tendency to slow down (as visible by the wider plateau around time
frame 20).
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Figure 6: Single dot experiment with occluders de�ned by distractor motion.
(A) The occluder is de�ned by the vertical motion of distractor dots, visible as
circles in the left-top frame with arrows indicating velocity (the dots’ speed is 6
jumps per second and is represented by the length of the lines). The target mo-
tion, shown at time frame 15 and visible as a diamond, is moving horizontally
from left to right. The height and width of the rectangles at each point indicate
the con�dence and sharpness, respectively (a small rectangle indicates low con-
�dence and sharpness). The lattice, marked with small dots, is hexagonal for
the measurement, estimation, and prediction stages. (B) The probability distri-
bution of the velocity cells tuned to 6 jumps per second plotted as a function of
directional tuning at different time steps. The motion-inertia effect of the target
motion on the distractors is visible at time frame 18 as the target dot enters the
occluder and two peaks start developing in the probability distribution. The
bigger the occluder, the more the peak induced by the motion of the distractor
dots starts dominating. But as the dot reemerges from the occluder, it rapidly
becomes sharp again, as visible at time frame 20.
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occluding region, the peak corresponding to the target motion gets smaller
than the peak due to the occluders. However, the peak of the target remains,
and so the target peak can increase rapidly as the target exits from the oc-
cluders. Our model predicts that it is easier to deal with black occluders than
with motion occluders, which is not consistent with the psychophysics that
shows a rough similarity of effects for both types of occluders. We offer
two possible explanations for this inconsistency. First, the model’s direc-
tionally selective units and /or prediction-propagation mechanism have too
broad a directional tuning. Narrowing it may lead to weaker interactions
between the motion occluder and the target. Second, in contrast with the
black occluders, the motion occluders may group together as a surface,
which would help explain why the visual system may be more tolerant of
motion occluders. (Such a heightened tolerance might compensate for the
initial putative advantage of the black occluders.) Kanizsa (1979) demon-
strates several perceptual phenomena, which appear to require this type
of explanation. In motion, similar effects have been modeled by Wang and
Adelson (1993) in their work on layered motion. A limitation of our current
model is that it does not include such effects.

6.3 Outlier Detection. In the outlier detection experiments (Watama-
niuk et al., 1994; Verghese et al., 1999), the target dot is undergoing regular
motion, but it is surrounded by distractor dots, which are undergoing ran-
dom Brownian motion. To show the velocity estimation at each position,
we plot the response of our network using a rectangle to display the two
properties of sharpness and con�dence. The width of the rectangle gives
the sharpness of the set of cells at that point, and the height gives the con�-
dence factor. The arrow shows the mean of the estimated velocity. It can be
seen in Figure 7 that the target dot’s signal rapidly reaches large sharpness
and con�dence by comparison to the distractor dots, which are not moving
coherently enough to gain con�dence or sharpness. The sharpness of the
target dot’s signal does not grow monotonically because the distractor dots
sometimes interfere with the target’s motion by causing distracting activity
in the measurement cells.

7 Discussion

This work provides a theory for temporal coherence. The theory was for-
mulated in terms of Bayesian estimation using motion measurements and
motion prediction. By incorporating robustness in the measurement model,
the system could perform temporal grouping (or data association), which
enabled it to choose what data should be used to update the state estima-
tion and what data could be ignored. We also derived a continuous form
for the prediction equation, and showed that it corresponds to a variant
of Kolmogorov’s equations at each node. In deriving our theory, we made
an assumption of spatial factorizability of the probability distributions and
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Figure 7: Outlier detection. A target dot (shown as a diamond with line pointing
rightward, indicating its velocity) is halfway down the stimulus frame moving
from left to right with noise-free motion. It is surrounded by distractor dots
undergoing Brownian motion. After a few time step, the model gives high con-
�dence and sharpness for the target dot. Observe that motion estimates of the
distractor dots can sometimes become sharp if their motion direction is not
changing too radically between two time frames (see the large rectangles at
the bottom of the estimation and prediction panels.) Graphic conventions as in
Figure 6.

made the approximation of updating the marginal distributions of velocity
at each point. This allowed us to perform local computations and simpli�ed
our implementation. Weargued that theseassumptions and approximations
(as embodied in our choice of prior probability) are suitable for the stimuli
we are considering, but they would need to be revised to include spatial
coherence effects (Yuille & Grzywacz, 1988, 1989). The prior distribution
used in this article would need to be modi�ed to incorporate these effects.

In addition, recent results by McKee and Verghese (personal communi-
cation) suggest that a more sophisticated prior may be needed. Their results
seem to show that observers are better at predicting where there is likely to
be motion rather than what the velocity will be. Recall that our prior proba-
bility model has two predictive components based on the current estimation
of velocity at each image position. First, the velocity estimation is used to
predict the positions in the image where the velocity cells would be excited.
Second, we predict that the new velocity is close to the original velocity. By
contrast, McKee and Verghese’s results seem to show that human observers
can cope with reversals of motion direction (such as a ball bouncing off a
wall). This is a topic of current research, and we note that priors that al-
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low for this reversal have already been developed by the computer vision
tracking community (Isard & Blake, 1998).

Simulations of the model seem in qualitative agreement with a number
of existing psychophysical experiments on motion estimation over time,
motion occluders and motion outliers (McKee et al., 1986; Watamaniuk &
McKee, 1995; Watamaniuk et al., 1994). Such a qualitative agreement is char-
acterized by three main features: (1) the �nal covariance of the motion esti-
mate, (2) the number of jumps needed to reach such a �nal covariance, and
(3) the extent of motion inertia during an occlusion, or between two mea-
surements. These three features are controlled as follows: the likelihood’s
covariance matrix determines the initial distribution, and thus the number
of jumps to reach the desired covariance, while the prior ’s covariance matrix
affects all three features by imposing an upper bound to the covariance and
setting the time constants of the diffusion process between measurements.

Implementation of the model’s equations led to a network that shares
interesting similarities with known properties of the visual cortex. It in-
volves a columnar structure where the columns, at each spatial point, are
composed of a set of cells tuned to a range of velocities (columnar structures
exist in the cortex but none has yet been found for velocities). The observa-
tion cell layer involves local connections within the columns to compute the
likelihood function. The estimated velocity �ow is computed in a second
layer. If these layers exist, it would be natural for them to lie in cortical areas
involved with motion such as MT and MST (Maunsell & Newsome, 1987;
Merigan & Maunsell, 1993). The estimation layer carries out the calculation
according to Kolmogorov’s equation, or the discrete long-range version de-
scribed in Yuille et al. (1998), and consists of spatial columns of cells that
excite locally each other to predict the expected velocities in the future. The
calculation requires excitatory and inhibitory synapses (i.e., no “negative
synapses”). The inputs from the observation layer multiply the predictions
in the estimated layer. Finally, we postulate that inhibition occurs in each
column to ensure normalization of the velocity estimates at each column.
This normalization could be implemented by lateral inhibition as proposed
by Heeger (1992).

A dif�cult aspect of this network, as a biological model, is its need for
multiplications (such multiplications arise naturally from our probabilistic
formulation using the rules for combining probabilities). Neuronal mul-
tiplication mechanisms were argued for by Reichardt (1961) and Poggio
and Reichardt (1973, 1976) on theoretical grounds. A speci�c biophysical
model to approximate multiplication was proposed by Torre and Poggio
(1978). Detailed investigations of this model, however, showed that it pro-
vided at best a rough approximation for multiplication (Grzywacz & Koch,
1987). Moreover, experiments showed that motion computations in the rab-
bit retina, for which the model was originally proposed, were not well ap-
proximated by multiplications (Grzywacz, Amthor, & Mistler, 1990). Recent
related work (Mel, Ruderman, & Archie, 1988; Mel, 1993), though arguing
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for multiplication-like processing, has not attempted to attain good approx-
imations to multiplication. On the other hand, the complexities of neurons
make it hard to rule out the existence of domains in which they perform
multiplications. Overall, it seems best to be agnostic about neuronal mul-
tiplication and trust that more detailed experiments will resolve this issue.
More pragmatically, it may be best to favor neuronal models that corre-
spond to known biophysical mechanisms. The biophysics of neurons may
prevent them from performing “perfect” Bayesian computations, and per-
haps one should instead seek optimal models that respect these biophysical
limitations.

Finally, we emphasize that simple networks of the type we propose can
implement Bayesian generalizations of Kalman �lters for estimation and
prediction. The popularity of standard linear Kalman �lters is often due to
pragmatic reasons of computational ef�ciency. Thus, linear Kalman �lters
areoften used even when they are inappropriate as models of the underlying
processes. In contrast, the main drawback of such Bayesian generalizations
is the high computational cost, although statistical sampling methods can
be used successfully in some cases (see Isard & Blake, 1996). Our study
shows that these computational costs may be better dealt with by using
networks with local connections, and we are investigating the possibility
of implementing our model on parallel architectures in the expectation that
we will then be able to do Bayesian estimation of motion in real time.

Appendix

A.1 Receptive Field Tunings. More precisely, we set:

wi (Ex, t) D
yi(Ex, t)

PN
jD1 yj(Ex, t)

,

where

yi (Ex, t) D A C l1
X

Ex02Nbh(Ex)

G(Ex0 ¡ Ex : bEvT (Ex0 , t), so
x,t, so

x, l)

£ G(EvT(Ex0 , t) ¡ Evi : EvT (Ex0 , t), so
v,t, so

v,l)

C (1 ¡l1)
X

Ex02Nbh(Ex)

G(Ex0 ¡ Ex : bEvT(Ex0 , t ¡d), so
x,t, so

x,l)

£ G(EvT(Ex0 , t ¡d) ¡ Evi : EvT (Ex0 , t ¡d), so
v,t, so

v, l),

and the three terms of the right-hand side of the equation are explained as
follows.

The �rst term, A, is the rest activity of the cells. It ensures that we will
have observations w i(Ex, t) D 1/N, 8i if no velocity is present. In other words,
if no dot moves across the cell, then all velocities are considered to be equally
likely.
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The second term contains summations over true velocities (i.e., dots)
within the receptive �eld of the cell. It contains a spatial decay term G(Ex0 ¡
Ex: ., ., .) and a velocity tuning curve G(EvT(Ex0) ¡ Evi : ., ., .). G is a gaussian
function with longitudinal and tranverse variances s.,l s.,t de�ned in terms
of the direction bEvT (Ex0 , t). In addition, the velocity tuning can depend on
the speed

EvT(Ex0 , t)
. The observation model therefore assumes that the cell

can measure the components of position and velocity most accurately in
the direction perpendicular to the true motion of the stimulus. Intuitively,
the closer the dot is to the center of the receptive �eld and the closer its
velocity is to the preferred velocity of the cell, then the larger the response
is. In realistic motions (i.e., not dots!) we can typically assume that the
velocity will be constant within each cell except at motion boundaries and
transparencies (though there are receptive �elds at multiple scales, and so
the velocity may not be constant within the large cells).

The third term is similar to the second, except that it contains memory of
the true velocity at time t ¡d. This “memory” is due to the delayed response
of the cell. 0 · l1 · 1, so the third term is always positive.

The response of the observation cells at a point Ex at time t can be thought
of as a local estimate of the probability of velocity. If there is no true velocity
to be observed, then the response of all these cells would be uniform (i.e.,
w i(Ex, t) D 1 /N, 8 i). If the cells receive input from a single true velocity,
then the observation cell best tuned to this velocity will have the biggest
response. The closer the true velocity stimulus (i.e., the dot) is to the center
of the cell, then the stronger the peak. By contrast, multiple peaks can occur
if there are several motions in the receptive �eld. This can occur for motion
transparency, near-motion boundaries, and occluding motion. It can also
occur in our model if there is one true motion in the receptive �eld at time
t ¡d and a different motion at time t.

A.2 Kolmogorov’ s Equation. In this appendix, we derive Kolmogorov’s
equation for motion prediction. Let us consider equation 2.6 for d ! 0. Tak-
ing this limit is tricky and requires Itô calculus (Jazwinski, 1970). Our case is
also nonstandard because our theory involves probability distributions at
every point in space, which interact over time. This means that we cannot
simply use the standard Kolmogorov’s equations, which apply to a single
distribution only. Here we give a simple derivation that which uses delta
functions and is appropriate when the prior model is based on a gaussian
G(.). The prior speci�ed by equations 3.4 and 3.5 is written as:

P(Ev(Ex, t C d) |fEv0 (Ex0 , t)g)

D
Z

dEx0
Z

dEv0 (Ex0 )G(Ev(Ex, t C d) ¡ Ev0 (Ex0 , t) : dS Ev )

£
G(Ex ¡ Ex0 ¡ dEv0 (Ex0 , t) : dS Ex )R

dEx00
R

dEv00(Ex00)G(Ex ¡ Ex00 ¡ dEv00(Ex00, t)IdS Ex)
. (A.1)
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The normalization term in the denominator is used to ensure that the prob-
abilities of the velocities integrate to one at each spatial point Ex. In this equa-
tion, we have scaled the covariances S by d. This is necessary for taking the
limit as d 7! 0 (Jazwinski, 1970).

Between observations we can express the evolution of the prior density
P(Ev(Ex, t)) as

@P(Ev(Ex, t))
@t

D lim
d 7!0

»
P(Ev(Ex, t C d) |fEv0(Ex0 , t)g) ¡ P(Ev(Ex, t))

d

¼

D lim
d 7!0

1
d

»Z
dEx0

Z
dEv0(Ex0 )P(Ev(Ex, tCd) |fEv0 (Ex0, t)g)P(fEv0 (Ex0 , t)g)

¡ P(Ev(Ex, t))
¼

. (A.2)

We now perform a Taylor series expansion of P(Ev(Ex, t C d)|fEv0 (Ex0 , t)g) in
powers ofd keeping the zeroth and�rst-order terms (higher-order terms will
vanish when we take the limit as d 7! 0). To perform this expansion, we use
the assumption that this distribution is expressed in terms of gaussians. As
d 7! 0, these gaussians will tend toward delta functions, and the derivatives
of gaussians will tend toward derivatives of delta functions (thereby sim-
plifying the expansion). This derivation can be justi�ed rigorously, playing
detailed attention to convergence issues, by the use of distribution theory
or the application of Itô calculus. If we expand G(Ev(Ex, t C d) ¡ Ev0 (Ex0, t) : dS Ev )
about d D 0, we �nd that the zeroth-order term is a Dirac delta function
with argument Ev(Ex, t C d) ¡ Ev0 (Ex0 , t). This term can therefore be integrated
out. The derivative with respect to d will effectively correspond to differen-
tiating the gaussian with respect to the covariance. By standard properties
of the gaussian, this will be equivalent to a second-order spatial deriva-
tive. We will get similar terms if we expand G(Ex ¡ Ex0 ¡ dEv0 (Ex0 , t) : dS Ex ), but
we will also get an additional drift term from differentiating the dEv0 (Ex0 , t)
argument. In addition, we will get other terms from the denominator of
equation A.1. (These are required to normalize the distributions and are
nonstandard. They are needed because we have a differential equation for a
set of interacting probability distributions while the standard Kolmogorov’s
equation is for a single probability distribution.) We collect all these zeroth-
and �rst-order terms in the expansion and substitute into equation A.3. We
can then evaluate the integrals using known properties of the delta func-
tions. After some algebra, these integrals yield our variant of Kolmogorov’s
equation:

@

@t
P(Ev(Ex, t)) D

1
2

»
@T

@Ev
S Ev

@

@Ev

¼
P(Ev(Ex, t)) C

1
2

»
@T

@Ex
S Ex

@

@Ex

¼
P(Ev(Ex, t))

¡Ev ¢
@

@Ex
P(Ev(Ex, t)) C

1
|V |

@

@Ex

Z
EvP(Ev(Ex, t))dEv, (A.3)
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where f @T

@Ex S Ex
@
@Ex g and f @T

@Ev S Ev
@
@Ev g are scalar differential operators, and |V | is

the volume of velocity space
R

dEv.
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