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Olshausen and Field (1996) applied the principle of independence max-
imization by sparse coding to extract features from natural images. This
leads to the emergence of oriented linear filters that have simultaneous
localization in space and in frequency, thus resembling Gabor functions
and simple cell receptive fields. In this article, we show that the same
principle of independence maximization can explain the emergence of
phase- and shift-invariant features, similar to those found in complex
cells. This new kind of emergence is obtained by maximizing the inde-
pendence between norms of projections on linear subspaces (instead of
the independence of simple linear filter outputs). The norms of the projec-
tions on such “independent feature subspaces” then indicate the values
of invariant features.

1 Introduction

A fundamental approach in signal processing is to design a statistical gen-
erative model of the observed signals. Such an approach is also useful for
modeling the properties of neurons in primary sensory areas. Modeling vi-
sual data by a simple linear generative model, Olshausen and Field (1996)
showed that the principle of maximizing the sparseness (or nongaussianity)
of the underlying image components is enough to explain the emergence of
Gabor-like filters that resemble the receptive fields of simple cells in mam-
malian primary visual cortex (V1). Maximizing sparseness is in this con-
text equivalent to maximizing the independence of the image components
(Comon, 1994; Bell & Sejnowski, 1997; Olshausen & Field, 1996). We show in
this article that this same principle can also explain the emergence of phase-
and shift-invariant features: the principal properties of complex cells in V1.
Using the method of feature subspaces (Kohonen, 1995, 1996), we model the
response of a complex cell as the norm of the projection of the input vector
(image patch) onto a linear subspace, which is equivalent to the classical
energy models. Then we maximize the independence between the norms
of such projections, or energies. Thus we obtain features that are localized
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in space, oriented, and bandpass (selective to scale/frequency), like those
given by simple cells, or Gabor analysis. In contrast to simple linear filters,
however, the obtained features also show the emergence of phase invari-
ance and (limited) shift or translation invariance. Phase invariance means
that the response does not depend on the Fourier phase of the stimulus; the
response is the same for a white bar and a black bar, as well as for a bar and
an edge. Limited shift invariance means that a near-maximum response can
be elicited by identical bars or edges at slightly different locations. These
two latter properties closely parallel the properties that distinguish complex
cells from simple cells in V1. Maximizing the independence, or equivalently,
the sparseness of the norms of the projections to feature subspaces thus al-
lows for the emergence of exactly those invariances that are encountered in
complex cells, indicating their fundamental importance in image data.

2 Independent Component Analysis of Image Data

The basic models that we consider here express a static monochrome image
I(x, y) as a linear superposition of some features or basis functions bi(x, y),

I(x, y) =
m∑

i=1

bi(x, y)si, (2.1)

where the si are stochastic coefficients, different for each image I(x, y). The
crucial assumption here is that the si are nongaussian and mutually in-
dependent. This type of decomposition is called independent component
analysis (ICA) (Comon, 1994; Bell & Sejnowski, 1997; Hyvärinen & Oja,
1997), or, from an alternative viewpoint, sparse coding (Olshausen & Field,
1996, 1997).

Estimation of the model in equation 2.1 consists of determining the values
of si and bi(x, y) for all i and (x, y), given a sufficient number of observations
of images, or in practice, image patches I(x, y). We restrict ourselves here to
the basic case where the bi(x, y) form an invertible linear system. Then we
can invert the system as

si = 〈wi, I〉, (2.2)

where the wi denote the inverse filters, and 〈wi, I〉 =∑x,y wi(x, y)I(x, y) de-
notes the dot product. The wi(x, y) can then be identified as the receptive
fields of the model simple cells, and the si are their activities when pre-
sented with a given image patch I(x, y). Olshausen and Field (1996) showed
that when this model is estimated with input data consisting of patches of
natural scenes, the obtained filters wi(x, y) have the three principal proper-
ties of simple cells in V1: they are localized, oriented, and bandpass. van
Hateren and van der Schaaf (1998) compared quantitatively the obtained
filters wi(x, y)with those measured by single-cell recordings of the macaque
cortex and found a good match for most of the parameters.
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3 Decomposition into Independent Feature Subspaces

In addition to the essentially linear simple cells, another important class of
cells in V1 is complex cells. Complex cells share the above-mentioned prop-
erties of simple cells but have the two principal distinguishing properties
of phase invariance and (limited) shift invariance (Hubel & Wiesel, 1962;
Pollen & Ronner, 1983), at least for the preferred orientation and frequency.
Note that although invariance with respect to shift and global Fourier phase
are equivalent, they are different properties when phase is computed from
a local Fourier transform. Another distinguishing property of complex cells
is that the receptive fields are larger than in simple cells, but this differ-
ence is only quantitative and of less consequence here. (For more details,
see Heeger, 1992; Pollen & Ronner, 1983; Mel, Ruderman, & Archie, 1998.)
To this date, very few attempts have been made to formulate a statistical
model that would explain the emergence of the properties of visual complex
cells. It is simple to see why ICA as in equation 2.1 cannot be directly used
for modeling complex cells. This is due to the fact that in that model, the
activations of the neurons si can be used linearly to reconstruct the image
I(x, y), which is not true for complex cells due to their two principal prop-
erties of phase invariance and shift invariance. The responses of complex
cells do not give the phase or the exact position of the stimulus, at least not
as a linear function, as in equation 2.1. (See von der Malsburg, Shams, &
Eysel, 1998, for a nonlinear reconstruction of the image from complex cell
responses.)

The purpose of this article is to explain the emergence of phase- and shift-
invariant features using a modification of the ICA model. The modification
is based on combining the technique of multidimensional independent com-
ponent analysis (Cardoso, 1998) and the principle of invariant-feature sub-
spaces (Kohonen, 1995, 1996). We first describe these two recently developed
techniques.

3.1 Invariant Feature Subspaces. The classical approach for feature ex-
traction is to use linear transformations, or filters. The presence of a given
feature is detected by computing the dot product of input data with a given
feature vector. For example, wavelet, Gabor, and Fourier transforms, as well
as most models of V1 simple cells, use such linear features. The problem
with linear features, however, is that they necessarily lack any invariance
with respect to such transformations as spatial shift or change in (local)
Fourier phase (Pollen & Ronner, 1983; Kohonen, 1996).

Kohonen (1996) developed the principle of invariant-feature subspaces
as an abstract approach to representing features with some invariances.
This principle states that one may consider an invariant feature as a linear
subspace in a feature space. The value of the invariant, higher-order feature
is given by (the square of) the norm of the projection of the given data point
on that subspace, which is typically spanned by lower-order features.
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A feature subspace, like any linear subspace, can always be represented
by a set of orthogonal basis vectors, say, wi(x, y), i = 1, . . . ,n, where n is the
dimension of the subspace. Then the value F(I) of the feature F with input
vector I(x, y) is given by

F(I) =
n∑

i=1

〈wi, I〉2. (3.1)

(For simplicity of notation and terminology, we do not distinguish clearly
the norm and the square of the norm in this article.) In fact, this is equiva-
lent to computing the distance between the input vector I(x, y) and a general
linear combination of the basis vectors (filters) wi(x, y) of the feature sub-
space (Kohonen, 1996). A graphical depiction of feature subspaces is given
in Figure 1.

Kohonen (1996) showed that this principle, when combined with com-
petitive learning techniques, can lead to the emergence of invariant image
features.

3.2 Multidimensional Independent Component Analysis. In multidi-
mensional independent component analysis (Cardoso, 1998), a linear gen-
erative model as in equation 2.1 is assumed. In contrast to ordinary ICA,
however, the components (responses) si are not assumed to be all mutually
independent. Instead, it is assumed that the si can be divided into couples,
triplets, or in general n-tuples, such that the si inside a given n-tuple may
be dependent on each other, but dependencies among different n-tuples are
not allowed.

Every n-tuple of si corresponds to n basis vectors bi(x, y). We call a sub-
space spanned by a set of n such basis vectors an independent (feature) sub-
space. In general, the dimensionality of each independent subspace need
not be equal, but we assume so for simplicity.

The model can be simplified by two additional assumptions. First, al-
though the components si are not all independent, we can always define
them so that they are uncorrelated and of unit variance. In fact, linear
dependencies inside a given n-tuple of dependent components could al-
ways be removed by a linear transformation. Second, we can assume that
the data are whitened (sphered); this can be always accomplished by, for
example, PCA (Comon, 1994). Whitening is a conventional preprocess-
ing step in ordinary ICA, where it makes the basis vectors bi orthogonal
(Comon, 1994; Hyvärinen & Oja, 1997), if we ignore any finite-sample ef-
fects.

These two assumptions imply that the bi are orthonormal and that we
can take bi = wi as in ordinary ICA with whitened data. In particular,
the independent subspaces become orthogonal after whitening. These facts
follow directly from the proof in Comon (1994), which applies here as well,
due to our above assumptions.



Emergence of Phase- and Shift-Invariant Features 1709

Figure 1: Graphical depiction of the feature subspaces. First, dot products of the
input data with a set of basis vectors are taken. Here, we have two subspaces
with four basis vectors in each. The dot products are then squared, and the
sums are taken inside the feature subspaces. Thus we obtain the (squares of the)
norms of the projections on the feature subspaces, which are considered as the
responses of the subspaces. Square roots may be taken for normalization. This
scheme represents features that go beyond simple linear filters, possibly obtain-
ing invariance with respect to some transformations of the input, for example,
shift and phase invariance. The subspaces, or the underlying vectors wi, may
be learned by the principle of maximum sparseness, which coincides here with
maximum likelihood of a generative model.
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Let us denote by J the number of independent feature subspaces and
by Sj, j = 1, . . . , J the set of the indices of the si belonging to the sub-
space of index j. Assume that the data consist of K observed image patches
Ik(x, y), k = 1, . . . ,K. Then we can express the likelihood L of the data given
the model as follows:

L
(
Ik(x, y), k = 1 . . .K;wi(x, y), i = 1 . . .m

)
=

K∏
k=1

|det W|
J∏

j=1

pj(〈wi, Ik〉, i ∈ Sj)

 , (3.2)

where pj(.), which is a function of the n arguments 〈wi, Ik〉, i ∈ Sj, gives the
probability density inside the jth n-tuple of si, and W is a matrix containing
the filters wi(x, y) as its columns. The term |det W| appears here as in any
expression of the probability density of a transformation, giving the change
in volume produced by the linear transformation (see, e.g., Pham, Garrat,
& Jutten, 1992).

The n-dimensional probability density pj(.) is not specified in advance in
the general definition of multidimensional ICA (Cardoso, 1998).

3.3 Combining Invariant Feature Subspaces and Independent Sub-
spaces. Invariant-feature subspaces can be embedded in multidimensional
independent component analysis by considering probability distributions
for the n-tuples of si that are spherically symmetric, that is, depend only on
the norm. In other words, the probability density pj(.) of the n-tuple with
index j ∈ {1, . . . , J}, can be expressed as a function of the sum of the squares
of the si, i ∈ Sj only. For simplicity, we assume further that the pj(.) are equal
for all j, that is, for all subspaces.

This means that the logarithm of the likelihood L of the data, that is, the
K observed image patches Ik(x, y), k = 1, . . . ,K, given the model, can be
expressed as

log L
(
Ik(x, y), k = 1 . . .K;wi(x, y), i = 1 . . .m

)
=

K∑
k=1

J∑
j=1

log p

∑
i∈Sj

〈wi, Ik〉2
+ K log |det W|, (3.3)

where p(
∑

i∈Sj
s2

i ) = pj(si, i ∈ Sj) gives the probability density inside the jth
n-tuple of si.

Recall that prewhitening allows us to consider the wi(x, y) to be orthonor-
mal, which implies that log |det W| is zero. This shows that the likelihood
in equation 3.3 is a function of the norms of the projections of Ik(x, y) on
the subspaces indexed by j, which are spanned by the orthonormal basis
sets given by wi(x, y), i ∈ Sj. Since the norm of the projection of visual data
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on practically any subspace has a supergaussian distribution, we need to
choose the probability density p in the model to be sparse (Olshausen &
Field, 1996), that is, supergaussian (Hyvärinen & Oja, 1997). For example,
we could use the following probability distribution,

log p

∑
i∈Sj

s2
i

 = −α
∑

i∈Sj

s2
i

1/2

+ β, (3.4)

which could be considered a multidimensional version of the exponential
distibution (Field, 1994). The scaling constant α and the normalization con-
stant β are determined so as to give a probability density that is compatible
with the constraint of unit variance of the si, but they are irrelevant in the
following. Thus, we see that the estimation of the model consists of finding
subspaces such that the norms of the projections of the (whitened) data on
those subspaces have maximally sparse distributions.

The introduced independent feature subspace analysis is a natural gen-
eralization of ordinary ICA. In fact, if the projections on the subspaces are
reduced to dot products, that is, projections on one-dimensional subspaces,
the model reduces to ordinary ICA, provided that, in addition, the indepen-
dent components are assumed to have symmetric distributions. It is to be
expected that the norms of the projections on the subspaces represent some
higher-order, invariant features. The exact nature of the invariances has not
been specified in the model but will emerge from the input data, using only
the prior information on their independence.

When independent feature subspace analysis is applied to natural im-
age data, we can identify the norms of the projections (

∑
i∈Sj

s2
i )

1/2 as the
responses of the complex cells. If the individual filter vectors wi(x, y) are
identified with the receptive fields of simple cells, this can be interpreted as
a hierarchical model where the complex cell response is computed from sim-
ple cell responses si, in a manner similar to the classical energy models for
complex cells (Hubel & Wiesel, 1962; Pollen & Ronner, 1983; Heeger, 1992).
It must be noted, however, that our model does not specify the particular
basis of a given invariant-feature subspace.

3.4 Learning Independent Feature Subspaces. Learning the indepen-
dent feature subspace representation can be simply achieved by gradient
ascent of the log-likelihood in equation 3.3. Due to whitening, we can con-
strain the vectors wi to be orthogonal and of unit norm, as in ordinary ICA;
these constraints usually speed up convergence. A stochastic gradient as-
cent of the log-likelihood can be obtained as

1wi(x, y) ∝ I(x, y)〈wi, I〉g
∑

r∈Sj(i)

〈wr, I〉2
 , (3.5)
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where j(i) is the index of the subspace to which wi belongs, and g = p′/p
is a nonlinear function that incorporates our information on the sparseness
of the norms of the projections. For example, if we choose the distribution
in equation 3.4, we have g(u) = − 1

2αu−1/2, where the positive constant 1
2α

can be ignored. After every step of equation 3.5, the vectors wi need to be
orthonormalized; for a variety of methods to perform this, see (Hyvärinen
& Oja, 1997; Karhunen, Oja, Wang, Vigario, & Joutsensalo, 1997).

The learning rule in equation 3.5 can be considered as “modulated” non-
linear Hebbian learning. If the subspace that contains wi were just one-
dimensional, this learning rule would reduce to the learning rules for ordi-
nary ICA given in Hyvärinen and Oja (1998) and closely related to those in
Bell and Sejnowski (1997), Cardoso and Laheld (1996), and Karhunen et al.
(1997). The difference is that in the general case, the Hebbian term is divided
by a function of the output of the complex cell, given by

∑
r∈Sj(i)
〈wr, I〉2, if we

assume the terminology of the energy models. In other words, the Hebbian
term is modulated by a top-down feedback signal. In addition to this mod-
ulation, the neurons interact in the form of the orthogonalizing feedback.

4 Experiments

To test our model, we used patches of natural images as input data Ik(x, y)
and estimated the model of independent feature subspace analysis.

4.1 Data and Methods. The data were obtained by taking 16× 16 pixel
image patches at random locations from monochrome photographs depict-
ing wildlife scenes (animals, meadows, forests, etc.). The images were taken
directly from PhotoCDs and are available on the World Wide Web.1 The
mean gray-scale value of each image patch (i.e., the DC component) was
subtracted. The data were then low-pass filtered by reducing the dimension
of the data vector by principal component analysis, retaining the 160 prin-
cipal components with the largest variances. Next, the data were whitened
by the zero-phase whitening filter, which means multiplying the data by
C−1/2, where C is the covariance of the data (after PCA) (see, e.g., Bell and
Sejnowski, 1997). These preprocessing steps are essentially similar to those
used in Olshausen and Field (1996) and van Hateren and van der Schaaf
(1998). The likelihood in equation 3.3 for 50,000 such observations was max-
imized under the constraint of orthonormality of the filters in the whitened
space, using the averaged version of the learning rule in equation 3.5; that is,
we used the ordinary gradient of the likelihood instead of the stochastic gra-
dient. The fact that the data were contained in a 160-dimensional subspace
meant that the 160 basis vectors wi now formed an orthonormal system for
that subspace and not for the original space, but this did not necessitate any

1 WWW address: http://www.cis.hut.fi/projects/ica/data/images
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Figure 2: Linear filter sets associated with the feature subspaces (model complex
cells), as estimated from natural image data. Every group of four filters spans a
single feature subspace (for whitened data).

changes in the learning rule. The density p was chosen as in equation 3.4.
The algorithm was initialized as in Bell and Sejnowski (1997) by taking as
wi the 160 middle columns of the identity matrix. We also tried random
initial values for W. These yielded qualitatively identical results, but using
a localized filter set as the initial value considerably improves the conver-
gence of the method, especially avoiding some of the filters getting stuck in
local minima. This initialization led, incidentally, to a weak topographical
organization of the filters. The computations took about 10 hours on a single
RISC processor. Experiments were made with different dimensions Sj for
the subspaces: 2, 4, and 8 (in a single run, all the subspaces had the same
dimension). The results we show are for four-dimensional subspaces, but
the results are similar for other dimensions.

4.2 Results. Figure 2 shows the filter sets of the 40 feature subspaces
(complex cells), when subspace dimension was chosen to be 4. The results
are shown in the zero-phase whitened space. Note that due to orthogonal-
ity, the filters are equal to the basis vectors. The filters look qualitatively
similar in the original, not whitened space. The only difference is that in the
original space, the filters are sharper—that is, more concentrated on higher
frequencies.
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Figure 3: Typical stimuli used in the experiments in Figures 4 to 6. The middle
column shows the optimal Gabor stimulus. One of the parameters was varied at
a time. (Top row) Varying phase. (Middle row) Varying location (shift). (Bottom
row) varying orientation.

The linear filters associated with a single complex cell all have approxi-
mately the same orientation and frequency. Their locations are not identical,
but are close to each other. The phases differ considerably. Every feature
subspace can thus be considered a generalization of a quadrature-phase
filter pair as found in the classical energy models (Pollen & Ronner, 1983),
enabling the cell to be selective to given orientation and frequency, but
invariant to phase and somewhat invariant to shifts. Using four filters in-
stead of a pair greatly enhances the shift invariance of the feature subspace.
In fact, when the subspace dimension was 2, we obtained approximately
quadrature-phase filter pairs.

To demonstrate quantitatively the properties of the model, we compared
the responses of a representative feature subspace and the associated linear
filters for different stimulus configurations. First, an optimal stimulus for
the feature subspace was computed in the set of Gabor filters. One of the
stimulus parameters was changed at a time to see how the response changes,
while the other parameters were held constant at the optimal values. Some
typical simuli are depicted in Figure 3. The investigated parameters were
phase, orientation, and location (shift).

Figure 4 shows the results for one typical feature subspace. The four
linear filters spanning the feature subspace are shown in Figure 4a. The op-
timal stimulus values (for the feature subspace) are represented by 0 in these
results; that is, the values given here are departures from the optimal val-
ues. The responses are in arbitrary units. For different phases, ranging from
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Figure 4: Responses elicited from a feature subspace and the underlying linear
filters by different stimuli, for stimuli as in Figure 3. (a) The four (arbitrarily
chosen) filters spanning the feature subspace. (b) Effect of varying phase. Upper
four rows: absolute responses of linear filters (simple cells) to stimuli of different
phases. Bottom row: response of feature subspace (complex cell). (c) Effect of
varying location (shift), as in b. (d) Effect of varying orientation, as in b.

−π/2 toπ/2, we thus obtained Figure 4b. On the bottom row, we have the re-
sponse curve of the feature subspace; for comparison, the absolute values of
the responses of the associated linear filters are also shown in the four plots
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above it. Similarly, we obtained Figure 4c for different locations (location
was moved along the direction perpendicular to the preferred orientation;
the shift units are arbitrary) and Figure 4d for different orientations (ranging
from −π/2 to π/2). The response curve of the feature subspace shows clear
invariance with respect to phase and location; note that the response curve
for location consists of an approximately gaussian envelope, as observed in
complex cells (von der Heydt, 1995). In contrast, no invariance for orien-
tation was observed. The responses of the linear filters, on the other hand,
show no invariances with respect to any of these parameters, which is in fact
a necessary consequence of the linearity of the filters (Pollen & Ronner, 1983;
von der Heydt, 1995). Thus, this feature subspace shows the desired proper-
ties of phase invariance and limited shift invariance, contrasting them with
the properties of the underlying linear filters.

To see how the above results hold for the whole population of feature sub-
spaces we computed the same response curves for all the feature subspaces
and, for comparison, all the underlying linear filters. Optimal stimuli were
separately computed for all the feature subspaces. In contrast to the above
results, we computed the optimal stimuli separately for each linear filter as
well; this facilitates the quantitative comparison. The response values were
normalized so that the maximum response for each subspace or linear filter
was equal to 1. Figure 5 shows the responses for 10 typical feature subspaces
and 10 typical linear filters, whereas Figure 6 shows the median responses of
the whole population of 40 feature subspaces and 160 linear filters, together
with the 10% and 90% percentiles.

In Figures 5a and 6a, the responses are given for varying phases. The top
row shows the absolute responses of the linear filters; in the bottom row,
the corresponding results for the feature subspaces are depicted. The figures
show that phase invariance is a strong property of the feature subspaces;
the minimum response was usually at least two-thirds of the maximum re-
sponse. Figures 5b and 6b show the results for location shift. Clearly, the
receptive field of a typical feature subspace is larger and more invariant
than that of a typical linear filter. As for orientation, Figures 5c and 6c de-
pict the corresponding results, showing that the orientation selectivity was
approximately equivalent in linear filters and feature subspaces. Thus, we
see that invariances with respect to translation and especially phase, as well
as orientation selectivity, hold for the population of feature subspaces in
general.

5 Discussion

An approach closely related to ours is given by the adaptive subspace self-
organizing map (Kohonen, 1996), which is based on competitive learning
of a invariant-feature subspace representation similar to ours. Using two-
dimensional subspaces, an emergence of filter pairs with phase invariance
and limited shift invariance was shown in Kohonen (1996).However, the
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Figure 5: Some typical response curves of the feature subspaces and the un-
derlying linear filters when one parameter of the optimal stimulus is varied, as
in Figure 3. Top row: responses (in absolute values) of 10 linear filters (simple
cells). Bottom row: responses of 10 feature subspaces (complex cells). (a) Ef-
fect of varying phase. (b) Effect of varying location (shift). (c) Effect of varying
orientation.

emergence of shift invariance in Kohonen (1996) was conditional to restrict-
ing consecutive patches to come from nearby locations in the image, giving
the input data a temporal structure, as in a smoothly changing image se-
quence. Similar developments were given by Földiák (1991). In contrast to
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Figure 6: Statistical analysis of the properties of the whole population of feature
subspaces, with the corresponding results for linear filters given for comparison.
In all plots, the solid line gives the median response in the population of all cells
(filters or subspaces), and the dashed lines give the 90 percent and 10 percent
percentiles of the responses. Stimuli were as in Figure 3. Top row: responses (in
absolute values) of linear filters (simple cells). Bottom row: responses of fea-
ture subspaces (complex cells). (a) Effect of varying phase. (b) Effect of varying
location (shift). (c) Effect of varying orientation.

these two theories, we formulated an explicit image model, showing that
emergence is possible using patches at random, independently selected lo-
cations, which proves that there is enough information in static images to
explain the properties of complex cells.

In conclusion, we have provided a model of the emergence of phase- and
shift-invariant features—the principal properties of visual complex cells—
using the same principle of maximization of independence (Comon, 1994;
Barlow, 1994; Field, 1994) that has been used to explain simple cell properties
(Olshausen & Field, 1996). Maximizing the independence or, equivalently,
the sparseness of linear filter outputs, the model gives simple cell proper-
ties. Maximizing the independence of the norms of the projections on linear
subspaces, complex cell properties emerge. This provides further evidence
for the fundamental importance of dependence reduction as a strategy for
sensory information processing. It is, in fact, closely related to such fun-
damental objectives as minimizing code length and reducing redundancy
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(Barlow, 1989, 1994; Field, 1994; Olshausen & Field, 1996). It remains to be
seen if our framework could also account for the movement-related, binoc-
ular, and chromatic properties of complex cells; the simple cell model has
had some success in this respect (van Hateren & Ruderman, 1998). Extend-
ing the model to include overcomplete bases (Olshausen & Field, 1997) may
be useful for such purposes.
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