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Consider an algorithm whose time to convergence is unknown (because
of some random element in the algorithm, such as arandom initial weight
choice for neural network training). Consider the following strategy. Run
the algorithm for a specific time T.If it has not converged by time T, cut the
run short and rerun it from the start (repeat the same strategy for every
run). This so-called restart mechanism has been proposed by Fahlman
(1988) in the context of backpropagation training. It is advantageous in
problems thatare prone tolocal minima or when there is a large variability
in convergence time from run to run, and may lead to a speed-up in such
cases. In this article, we analyze theoretically the restart mechanism, and
obtain conditions on the probability density of the convergence time for
which restart will improve the expected convergence time. We also derive
the optimal restart time. We apply the derived formulas to several cases,
including steepest-descent algorithms.

1 Introduction

One of the difficulties encountered when training multilayer networks us-
ing the backpropagation method, or any other training method, is the slow
convergence and the uncertainty in the length of the training time. There
is a large variability in the convergence time from run to run, since this
time depends strongly on the initial conditions, which are generated ran-
domly. To avoid such an uncertainty, Fahlman (1988) proposed the restart
mechanism. In this mechanism, a training algorithm is cut short if it has
not converged after a certain number of iterations and is restarted with new
random weights; the hope is that this “fresh start” will find its way faster
to the solution. The restart mechanism has also been applied in a number
of other optimization applications (e.g., Ghannadian & Alford, 1996; Hu,
Shonkwiler, & Spruill, 1997).

The restart algorithm can reduce the overall average and standard devia-
tion of the training time, since it avoids waiting for excessively long runs. In
addition, the restart algorithm will become even more indispensable if there
are local minima. If for such a situation we do not restart, the training al-
gorithm could spend forever approaching an unacceptable local minimum
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and never reach the global minimum. In this article we present a theoretical
analysis of the restart algorithm and derive conditions under which restart
becomes advantageous. The results we develop indicate that whenever an
algorithm displays fat-tailed behavior, multimodality, or potential lack of
convergence, restart can be useful and, in fact, absolutely necessary when
there is a nonzero probability of not converging. Our goal is to gain some
insight into the value of restart by providing such conditions and a general
framework for understanding when restart can be helpful. The analysis
developed applies to any type of algorithm; it is not restricted to training
algorithms in the neural network field.

2 Analysis of the Restart Algorithm

Because the weights are generated randomly, the training time to conver-
gence, t, will obey a certain probability density, p(t). In our case, converging
to a local minimum is not considered convergence; thus, the density p(t)
might have a delta function at oo, which represents the probability that the
algorithm does notconvergeatall. Let 7 = E[t] be the expected convergence
time for the algorithm. Let T be the restart time, and let 7res(T) = Ergslt]
be the expected convergence time for the algorithm when applying restart.
We will denote the probability that we restart by or:

T
ar = probability of restart =1 — / p(Hdt. (2.1)
0

The optimal restart time, T*, can be obtained by finding the value of T that
minimizes Tges(T). The following theorem gives Tres(T) in terms of p(t)
and T.

Theorem 1. The optimal time to restart is the time T* that minimizes the expres-
sion

T
Tres(T) = 1“T T+ / (PO 2.2)
—ar o l—ar

with respect to T.

Proof. The expectation of the convergence time can be derived as follows
(let T be the restart time):

T
Tres(T) = /O Ot + ar (Tres(T) +T). (23)

The first term represents the contribution due to the case that the algorithm
converged before the restart time. The second term represents the case that
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restart occurred. Note that the term in parentheses is due to the fact that if
restart occurs, the expected convergence time equals the time already spent
until restart (= T), plus the expectation of another application of the restart
algorithm (= Trgs(T)). Of course, the term in parentheses is weighted by
the probability that restart occurs (o).

Solving for 7rgs(T) in equation 2.3, we obtain

T
Tres(T) = 7 or T+/ i PO (2.4)
—ar o l—ar

To obtain the optimal restart time, we need to obtain the minimum of equa-

tion 2.4 with respect to T. This completes the proof.

The optimal restart time can be obtained by taking the derivative of
equation 2.2 and equating to zero. We get

l—ap . fy to(bdt
ot T 25
@ 29

as the condition that has to be satisfied by the optimal restart time.

Note. Equation 2.2 for 7ges(T) can also be viewed from a different light,
which will give additional insight. The term % equals the infinite series

1—ar
ar + oc% + - (a% represents restarting 7 times). Hence this series represents
the expected number of restarts (which is evaluated as Y 7°i(ah. — a}”)
and hence equal ar + &2 + - - ). This term is multiplied by the length of the
restart time, to obtain the mean amount of time spent restarting. The second
term represents the mean time until convergence given that no restart will
occur. The division of p(t) by 1 — a7 is a normalization factor, so that the
probability density in the expectation (in the second term) represents the
density for the training time given that no restart will occur.

Note. Several studies have proposed methods for estimating p(t) for back-
propagation networks (e.g., Leen & Moody, 1993; Orr & Leen, 1993; Heskes,
Slijpen & Kappen, 1992). These estimates of p(t) can be used to estimate T
according to equation 2.2.

The real value of restart is when the algorithm in question is prone to
local minima. Then, restarting can be interpreted as repeated attempts to
reach the global minimum. For such a case, p(t) will have a delta function
at co. Let

pt) = po(t) + Pood(t — 00). (2.6)

We obtain the following theorem.
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Theorem 2. For the problem considered above with 0 < Ps, < 1, it is always
advantageous to restart, i.e. 3 T such that Tres(T) < 7.

Proof. Itiseasytoseethat7 = oo, because of the delta function at co. Now
consider Tres(T). It is always possible to choose T such that it is finite and
such that fOTp(t)dt # 0, because of the condition P, # 1. From equation 2.2,
since the numerator is finite and the denominator is nonzero, Tges(T) is
finite and hence strictly less than 7.

Itis interesting to note that P, does not appear explicitly in the expression
for the optimal restart time. However, it affects the restart in an indirect way,
by affecting the integrals of p(t) and tp(t), because the density integrates to 1.

3 Application of the Theory

To illustrate the analysis, we have applied the theory to a number of exam-
ples.

3.1 Steepest-Descent Algorithms. Here, we consider steepest- and gra-
dient-descent algorithms and investigate the effect of restart on their ex-
pected convergence time. We first derive an expression for the density of
the convergence time p(t) for general steepest-descent algorithms. Consider
for simplicity the error function associated with a linear hypothesis function,

E= i (wai - y,-)z, 3.1)

i=1

where x;’s are the input examples, y;’s are the target outputs, and w is the
weight vector. For nonlinear hypothesis functions, the error surface is ap-
proximately quadratic close to the minimum. Thus, the analysis derived
will be approximately valid for the nonlinear case if we assume we start
relatively close to the minimum.

For simplicity consider the case of a three-dimensional weight vector. The
more general N-dimensional case, though algebraically more cumbersome,
can be treated using identical techniques. Suitably normalizing the x;’s, the
probability P[k] of stopping at iteration k can be derived (see the appendix).
For the case where the weight initialization is around the true weight vector,
P[k] is given by equation A.9. Figure 1a shows the probability distribution
P[k] as given in equation A.9, together with the probability distribution as
estimated from a numerical simulation of the steepest-descent algorithm.
The figure shows the accurate agreement between theory and simulation
(in this linear case). Figure 1b shows Zggs(k) as a function of k, calculated
from equation 2.2. For this case, we can see that the optimal restart time is
T=2.



The Early Restart Algorithm 1307

Probabilty Distribution for Stopping Time Expected Stopping Time
T T T 9 T T T
—  Experiment
8.5
025 Theory
28
2
02 5
> 0=0.0000085, 8=0.0000000001, 7,=0.06 37-5
3 :
8015 g7
9 F
¢ 25
01 a
Q
0
b 6
005 0=0,0000085, =0.0000000001, 1,=0.06
' 55
G 1 1 5 1 1 L 1
0 10 20 30 40 0 5 0 15 20 25
Stopping Time (Iterations) Restart Time (Iterations)

(a) (b)

Figure 1: Steepest descent. (a) The experimental and theoretical probability of
stopping at iteration k for the specific choices of the parameters o, §, n as shown.
(b) Tres(k) as a function of k obtained using the theoretical P(k).

Example: XOR problem. We have applied the restart method to the back-
propagation algorithm. We chose the XOR problem using a 2-2-1 network,
a widely studied benchmark. It is well known that the XOR problem with
the 2-2-1 network possesses no local minima (see Sprinkhuizen-Kuyper &
Boers, 1996, 1998; Hamey, 1995, 1998). First, we have estimated the proba-
bility density of the convergence time p(t), by generating the initial weights
according to a gaussian density with £ = o%], and repeatedly training the
network (with learning rate ») until the prespecified tolerance for the er-
ror function (8) is achieved. We have implemented over 150,000 training
runs. The resulting estimated density is as shown in Figure 2a. As is well
known, steepest descent exhibits a large tail, so in spite of the fact that
convergence is expected at 1000 iterations, many training runs did not con-
verge until after 3000 iterations. Applying the restart formula, equation 2.2,
we obtain the expected convergence time as a function of the restart time
T. This relationship is shown in Figure 2b. One can see that restart im-
proves convergence speed. In particular, the optimal restart time is at about
950 iterations.
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Figure 2: Two-dimensional XOR problem. (a) The experimental probability of
stopping at time f for the specific choices of the parameters o, 8,  as shown.
(b) Zres(k) as a function of k obtained using the density in a.

3.2 A Sum of Gamma Functions Density. Asanother example, we con-
sider a more sophisticated density: the sum of two gamma functions (see
Figure 3a). Many algorithms exhibit several peaks in their convergence time
density. In multilayer training, this can happen in particular if the minimum
is between a steep and a flat surface. Also, in other optimization applica-
tions, such as maximization of likelihood functions, this same situation is
frequently encountered because of the nature of the problem (see Magdon-
Ismail & Abu-Mostafa, 1998). Figure 3b shows the expected convergence
time as a function of the restart time. The best restart time is T* = 6 in this
example. We can see the importance of choosing the right restart time for
such a case; choosing T slightly smaller or larger would be detrimental.

4 Conclusion

In this study we have analyzed the restart mechanism. We have shown that
it is often faster on the average to stop a running algorithm and restart it
with new initial conditions. The restart algorithm is essential when there are
local minima, because it reduces the expected convergence time from oo to
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Figure 3: Sum of two gamma functions. (a) The probability of stopping at time .
(b) Zres(T) as a function of T.

a finite number. However, we have shown in the simulations that restart is
also advantageous in some applications where no local minima exist, partly
because of the large tail behavior or the multimodality for the density of
the convergence time. We have also derived the optimal restart time in an
attempt to understand the phenomenon. Although the convergence time
density is often unknown (except for algorithm developers, who can afford
to run the algorithm many times), the formula derived will give guidance
as to how to choose a good estimate of the restart time. As an example, if it
is known that the minimum is between a steep and a flat surface, then the
density is multimodal, and an estimate of the modes will lead to a better
estimate of the restart time.

Appendix A: Distribution of the Number of Iterations for Gradient
Descent on the Squared Error with Linear Models

Suppose the input vectors are {x;}}¥ ;. Corresponding to each input is the
output y;, the ith element in the column vector y. Let the input matrix X be
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given by X = [x1 x2 - - - xy7]. The error E can be put in the following form:

N
E= Z(wa,- —y)? = w'XXTw — 20" Xy + yTy. (A1)
i=1

We use the gradient-descent algorithm:

1 OE
wk+1) =wk) — 25w (A2)

with 9E/dw(k) = 2(XXTw — Xy). Assuming without loss of generality that
XXT = 1, we find that E depends on the iteration number as

E(h) = |w — w*|> = 1 — nZ||w(0) — w*|?. (A3)

We suppose the condition for stopping is that E < §. Letting P[k] denote the
probability of stopping at iteration k, we have that

S I

Thus, we need the distribution of ||w(0) — w*||.

We will restrict ourselves to a three-dimensional weight space. The more
general case, though algebraically more complex, is treated with exactly the
same techniques. Suppose that w(0) has a normal distribution with mean 0
and variance o2. Let F(p) = P[||w(0) — w*|| < p]:

w?

F(p) = Pwe 27, A.5)

_
(2m02)2 f

lw—w*|?<p?

Transforming to spherical coordinates with the orientation such that the
z—axis is aligned with w*, doing the ¢ integration, and making the substi-
tution v = cos 9, we have

27 ) 1 2_w_22
F()O)ZW/(; dW/ildee 20%, (A6)

w2 —2ww*rv<p?—w*2

One needs to consider separately the cases w* > p and w* < p. Then, differ-
entiating the expression for F(p), one obtains the density. After considerable
calculations, one then finds that

w*2+02

*

2 (e
flp) = w*psmh< 2 ) N (A7)
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Let (k) = v/8/(1 — )L fork > 0and Ay = 0 for k = 0. Let Ax(k) =
V8/(1— nk. Then, from equation A.4 we see that

A2 (k)
P = [ d fio) (A8)
A (k)

When w* is close to 0, this expression reduces to
2 2

A A 2 M _2
P =of () ~of (o) |+ T [W e } - (49)

where erf(x) = 2//7 f(f dt exp(—tz). The case where w(0) is distributed
normally about the true weight vector is also equivalent to the case w* — 0.
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