
LETTER Communicated by David Wolpert

No Free Lunch for Noise Prediction

Malik Magdon-Ismail
California Institute of Technology, Pasadena, CA 91125, U.S.A.

No-free-lunch theorems have shown that learning algorithms cannot be
universally good. We show that no free funch exists for noise prediction
as well. We show that when the noise is additive and the prior over target
functions is uniform, a prior on the noise distribution cannot be updated,
in the Bayesian sense, from any finite data set. We emphasize the im-
portance of a prior over the target function in order to justify superior
performance for learning systems.

1 Introduction

Already established in the learning theory literature are a set of “no-free-
lunch” (NFL) theorems for various types of learning systems (Wolpert,
1996a, 1996b; Zhu, 1996; Cataltepe, Abu-Mostafa, & Magdon-Ismail, 1999)
and for optimization methods (Wolpert & Macready, 1997). The essential
content of these theorems is that no learning algorithm can be universally
good. A learning algorithm that performs exceptionally well in certain situa-
tions will perform comparably poorly in other situations. Thus, in particular,
random algorithms that always yield average performance, cross validation,
bootstrapping, and anti–cross validation are all, in some sense, on an equal
footing. Stopping early at a higher training error than the minimum achiev-
able gains nothing if the hypotheses yielding that training error are chosen
with equal probability. A search technique that performs well on one cost
function will perform poorly on another cost function. These existing results
demonstrate that for certain problems, given a certain criterion of perfor-
mance, it is not possible to do well consistently in the most general setting.
Thus, one needs to make some assumptions about the underlying structure
of the problem to be able to claim any kind of superior performance.

Here we look at the problem of inferring the noise distribution from a data
set. The existing NFL results look at a problem of learning a dependency (not
necessarily deterministic) from a finite data set and making statements about
the out-of-sample performance. The problem we treat here is to deduce
properties of the noise distribution (for example, the noise variance) from a
finite data set that consists of input-output pairs. The outputs have a deter-
ministic dependence on the inputs (the target function) and a noisy compo-
nent. One approaches the problem with some prior belief about the noise dis-
tribution, and one hopes that the data will enable a fine-tuning of that prior
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Figure 1: Two sample noisy data sets. The sets were created by taking two
functions and adding noise to them. The x-values are the same in both cases.

belief to the extent that more precise statements can be made about the prop-
erties of the noise. An accurate estimate of the noise distribution is useful
because the noise sets a fundamental limit on the performance of a learning
system (Cortes, Jackel, & Chiang, 1994). Noise may play other roles as well:
for example, in financial markets, the noise level is itself a tradable quantity.

Our criterion for selection of a noise distribution will be to maximize
its posterior probability. We will show that having a uniform prior on the
possible realizations of the target function leads to no update for a well-
behaved prior on the noise distributions (in the Bayesian sense) from any
finite data set. Thus the posterior over noise distributions will equal the
prior, and we may as well have not even looked at the data. One can compare
this to the analogous NFL result of Wolpert: if the prior over target functions
is uniform, then the out-of-sample error is constant, and thus one need not
have even looked at the data before picking a hypothesis function. Let us
consider the question posed in Figure 1. Which data set has more noise?
Figure 2 shows the same data, but this time with the function that created
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Figure 2: Noisy data and the functions that generated them. The same noisy data
sets that were shown in Figure 1 and the functions that were used to produce
them. In (b), the noise variance is roughly six times larger.

the data. Now which data set has more noise? The task is considerably easier
given this extra information. We will show that some extra information of
this form is essential.

This article is organized as follows. We start with an example in sec-
tion 2, where we attempt to predict a noise variance when learning using
linear models. In this section we show that one method for predicting the
noise variance using a bootstrap technique does not work in the naive form
presented. As a result, one might therefore spend a lot of effort trying to
find a more sophisticated technique that might work. That this would be
fruitless (for this specific case and the more general case) is the purpose of
the remainder of the article. In section 3, we set up the problem of noise
prediction in general; section 4 presents the main results, beginning with
the simple case of boolean functions and continuing to the more general
case. We show that information about the noise distribution cannot be ob-
tained from a finite data set if the target distribution is assumed uniform.
We conclude with section 5, where we also discuss the implications of the
NFL theorems.
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2 An Example Using Linear Models

In this section we illustrate the conclusions of this chapter for the case of
linear learning models on the input space Rd. It is not our goal to be strictly
rigorous, but rather to illustrate the point. Let the hypothesis functions be
of the form

gw(x) = w · x+w0, (2.1)

where w,w0 are called the weights. We are given a data set D = {xα, yα =
f (xα)+nα}Nα=1. f (·) is some deterministic function (we place no other restric-
tions on the function) and nα is noise, drawn independently and identically
distributed with zero mean and varianceσ 2. We use mean squared deviation
as the measure of error. Define the training error as

Etr = 1
N

∑
α

(w · xα + w0 − yα)2. (2.2)

Define w∗,w∗0 as those weights that minimize Etr. It can then be shown that
at this minimum, the expected training error is given by (theorem 4 in the
appendix)1

〈E∗tr〉D,n = E0 + σ 2 − σ
2(d+ 1)+ B

N
+O

(
1

N
3
2

)
. (2.3)

We use 〈·〉 to denote expectations, and the expectation here is over the possi-
ble data sets (the input space and the noise, where we have made explicit the
expectation over the noise).2 E0 is the bias, where the bias is the expected
training error of the best hypothesis function in our learning model. B is
a constant given by theorem 4. For the purposes of this section, the exact
expression for B is not essential. It suffices to know that B is related to the
variance of a sample statistic around its population value.

The goal here is to estimate the noise variance, σ 2. The training error used
as an estimate of the noise variance is asymptotically biased. For large N, it
overpredicts the noise variance by the bias, E0. Since we know the form of
〈E∗tr〉, perhaps we can do better. We can sample N1 data points from the N

1 We use standard order notation:

f (N) = o(g(N))⇒ f (N)/g(N)
N→∞−→ 0

f (N) = O(g(N))⇒ f (N) ≤ Cg(N) for some C > 0.

2 In the language of the NFL theorems (Wolpert, 1996b), 〈E∗tr〉D,n is E(C| f,m) where
the on-training-set likelihood and the quadratic loss function are used.
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data points and estimate the training error. We use bootstrapping (Shao &
Tu, 1996) to estimate 〈E∗tr(N1)〉, and by varying N1, we can fit the resulting
dependence of 〈E∗tr(N1)〉 on 1/N1 using equation 2.3. Let the slope of this
fit be Â. From equation 2.3, we see that Â is an estimate for σ 2(d + 1) + B;
therefore, Â/(d + 1) used as an estimate of σ 2 is off by B/(d + 1). Perhaps
we can estimate B by the bootstrap as well. Given a bootstrapped estimate
for B, we can combine it with Â to obtain an estimate for σ 2. A more careful
analysis presented in the appendix shows that this too leads to failure.

Thus, to get information on σ 2, perhaps a more subtle approach such
as looking at terms with higher order in 1/N would work. Perhaps some
method other than simply using the training error would yield a better
result. Instead of using linear models, why not use a more complex model
for which E0 is zero? Then at least asymptotically, the training error will
approach σ 2 (provided that the model is not too complex). However, for
any finite N, we run the risk of overfitting the data, perhaps even obtaining
an estimate σ 2 = 0. Perhaps there is a systematic way of choosing the model
complexity as a function of N to get an optimal noise variance estimate.

The next few sections show that such an exhaustive search will neces-
sarily be fruitless unless we make some statement about f . In this case it
would suffice to tell us “how good our model is at estimating f ” (i.e., E0).
Rather than explore every other potential method for estimating σ 2 in this
linear scenario, we will set up a more general framework for the estimation
of noise distributions and show that unless some assumptions are made
about the target function, all noise models are just as probable, given the
data. The intuition is that the data points are consistent with any noise level
if we do not restrict the target function. We pursue these issues next.

3 Problem Set-Up

A finite data set D = {xα, yα}lα=1 is given, where xα ∈ Rd, yα = f (xα) + nα ,
f : Rd → R and the data set consists of l data points.3 We concentrate on
the case where the noise distribution is fixed. The results can be modified
to accommodate noise distributions that vary with x. It will always be un-
derstood that α indexes points in the data set.

We concentrate on compact spaces and assume that the input space is
the unit hypercube in d dimensions. Let the output space be the bounded
interval [−C,C]. Discretize the input and output spaces as follows. Let the
input variable, x, take on values in the set

X = {0,1x, 21x, . . . , 1−1x, 1}d, (3.1)

3 We use l rather than the customary N to avoid confusions with Nx,Ny, to be defined
shortly.
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Figure 3: Discretized function space. The space has only a finite number of
functions. An arbitrary precision can be obtained by making the grid finer and
finer.

so there are Nx = 1 + 1
1x

possible values for each input variable. Let the
output variable, y, take a value in the set

Y = {−C,−C+1y, . . . , 0,1y, 21y, . . . ,C−1y,C
}
. (3.2)

There are Ny = 2C
1y
+ 1 possible y values. A function ( f ) will be a mapping,

f : X → Y . There are 0 = Ny
Nx

d
different functions. By making 1x,1y as

small as we choose, we can achieve an arbitrary precision (for example, see
Figure 3). In all applications, only a finite number of functions are available
(computers are finite precision machines). Due to this finiteness, we can
define a probability distribution on the function space—a prior over the
function space. One natural prior is to take this distribution to be uniform.
Therefore to every function we assign a probability of 1

0
.

We assume that C can be made as large as we wish. Further, without loss
of generality, we can scale the outputs by 1

1y
; therefore we can assume that

y ∈ {−C̃,−C̃ + 1,−C̃ + 2, . . . , C̃ − 1, C̃}, Ny = 2C̃ + 1 and C̃ = C/1y. With
this representation, the noise n ∈ {0,±1,±2, . . .} has a distribution given by
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a vector P, where Pi = Pr[n = i] and
∑

i Pi = 1. Assume a prior probability
measure on the possible noise distributions g(P). We are interested in the
Bayesian posterior on these noise distributions,

g(P|D) = Pr[D|P]g(P)
Pr[D]

, (3.3)

where Pr[D] =∑P Pr[D|P]}(P). We can calculate Pr[D|P] as follows:

Pr[D|P, f ] =
l∏

α=1

Pr[nα = yα − f (xα)]. (3.4)

Note that the right-hand side implicitly depends on P through the proba-
bilities for the noise realizations nα . Multiplying by P[ f ] and summing over
f , we have

Pr[D|P] = 1
0

∑
f (x1)

∑
f (x2)

· · ·
∑

f (xNx )

l∏
α=1

Pr[nα|f,D]

(a)= 1

Ny
l

l∏
α=1

C∑
f (xα)=−C

Pr[nα|f,D], (3.5)

where we have used the notation Pr[nα|f,D] to mean Pr[nα = yα − f (xα)];
(a) follows when we sum over all points not in the data set, and we have
used the fact that Pr[ f ] = 1/0 − uniform prior.

4 No Free Lunch for Noise Prediction

4.1 Boolean Functions. We use the following notation:

x ∈ {0, 1}d
f : x→ {0, 1}

(1− p) ∈ [0, 1] = probability of flip.

There are 0 = 22d
possible functions.

Theorem 1. Let g(p) be the prior distribution for the noise parameter, p. If the
prior distribution on the possible functions is uniform then g(p|D) = g(p).

Proof. Let mi be the number of times fi agrees with D where we use i to
index functions. Then Pr[D|p, fi] = pmi(1− p)l−mi , so

Pr[D, fi|p] = Pr[D|p, fi]Pr[ fi|p] = 1
0

pmi(1− p)l−mi . (4.1)
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Let ρ(mi) be the number of functions agreeing exactly mi times with the data
set D. ρ(mi) =

( l
mi

)
22d−l = ( l

mi

)
2−l0. Summing equation 4.1 over fi, we get

Pr[D|p] =
∑

fi

Pr[D, fi|p]

= 1
0

l∑
mi=0

pmi(1− p)l−miρ(mi)

=
( 1

2l

∑l
mi=0 pmi(1− p)l−mi

lmi

)
= 2−l

independent of p. Therefore,

g(p|D) = Pr(D|p)g(p)
Pr(D) = g(p).

4.2 Extension to More General Functions. We would like to extend the
previous analysis to the case where the output is not binary and the input is
the discretized version of [0, 1]d. Figure 4 illustrates the conclusions of this
section on a particular discretized grid. This section is somewhat technical.
Its essential content is contained in theorem 3, which formalizes the intuition
that if every target function value is equally likely, then each noise realization
for every data point is equally likely. Hence nothing can be deduced about
the relative likelihoods of different noise realizations.

4.2.1 Cyclic Noise. When the noise is additive modulo Ny, then P =
[P0,P1, . . . ,PNy−1] fully specifies the noise distribution.

Example. The binary case with probability of flip 1 − p we have Ny = 2,
P0 = p, P1 = 1− p

Lemma 1.
∑

f (xα) Pr[nα|f,D] = 1 for all xα ∈ D.

Proof.

C∑
f (xα)=−C

Pr[nα|f,D] =
yα−C∑

nα=yα+C

Pr[nα|f,D] =
Ny−1∑
nα=0

Pnα = 1.

Combining lemma 1 with equation 3.5, we have the following theorem:

Theorem 2. Let g(P) be the prior distribution for the cyclic noise. If the prior
distribution for the functions is uniform, then g(P|D) = g(P).
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Figure 4: Illustration of no noisy free lunch (NNFL). Suppose that the two func-
tions shown are both equally likely (probability 1/2) to be the function that
created the data. Then the two hypotheses, noise = 0 and noise > 0, are still
equally likely to be true if they were a priori equally likely to be true.

Proof. By lemma 1 and equation 3.5, Pr[D|P] = 1

Ny
l
. Therefore,

g(P|D) = Pr[D|P]g(P)
Pr[D]

= g(P).

Note that the boolean case is a special case of the cyclic noise case. In the
language of information theory (Cover & Thomas, 1991), the noise forms
a symmetric channel between the function value and the output value. A
uniform distribution for the function values induces a uniform distribution
on the output values, independent of the details of the symmetric noisy
channel. Hence, observing the output conveys no information about the
noisy channel. This is essentially the content of theorem 2.

4.2.2 Thresholded Additive Noise. Noise is added to the target, and then
the resultant value is thresholded, so,

yi =
{

min{C, f (xi)+ ni}, f (xi)+ ni ≥ 0
max{−C, f (xi)+ ni}, f (xi)+ ni < 0.
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P = [P0,P±1,P±2, . . .]. Unlike the previous case, edge effects make Pr[D|P]
dependent on P. These effects can be made as small as we please by allowing
C to be as large as we please. The intuition is that the data set is finite (yi
is bounded), and so, because the noise distribution must decay to zero, if C
is large enough, the probability that f (xα) is close to the edge and yα so far
away becomes negligible. This is formalized in the next lemma.

Lemma 2. Given ε > 0, ∃C∗ such that for all C ≥ C∗,

1

Ny
l
(1− ε) ≤ Pr[D|P] ≤ 1

Ny
l
. (4.2)

(Ny = 2C+ 1 and intuitively speaking, ε
C→∞−→ 0).

Proof. Because {Pi} is summable, there exists η such that
∑
|i|>η Pi <

ε
l . Let

ymax = max{yi} and ymin = min{yi}. Choose C∗ > max{|ymax+η|, |ymin−η|}
and let C ≥ C∗. We then have

C∑
f (xα)=−C

Pr[nα|f,D] =
yα+C∑

nα=yα−C

Pr[nα|f,D]

= 1−
∑

nα<yα−C

Pr[nα|f,D]−
∑

nα>yα+C

Pr[nα|f,D]

≥ 1− ε
l
,

where the last inequality follows because by construction ymax − C < −η
and ymin + C > η. Using equation 3.5, we have

1

Ny
l
≥ Pr[D|P] ≥ 1

Ny
l

(
1− ε

l

)l
.

The lemma now follows by using the inequality (1 − x)n ≥ 1 − nx for
0 ≤ x ≤ 1.

Thus, we see that by choosing C, the bound on our function f to be
large enough, the noise distribution has almost no effect on the probability
of obtaining a particular data set. All data sets become equally probable,
in the limit of large C. This tells us that the data should not be telling us
any more about the noise distribution than we already know. The prior
distribution for the noise is unaffected given any finite data set. To formalize
this intuition, we need to impose a technical condition on the prior over the
noise distribution space.
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Definition 1. Let 0 < ε ≤ 1. Define ηP(ε) by

ηP(ε) = min

{
η:
∑
|i|>η

Pi < ε

}
.

For all 0 < ε ≤ 1, ηP(ε) <∞, by the summability of P.

Definition 2. Let 0 < ε ≤ 1. Define η̄(ε) by

η̄(ε) = sup
P
{ηP(ε)}

where the sup is taken over P ∈ support{g(P)}.

Definition 3. We say that a prior on the space in which P is defined, g(P), is
totally bounded if

η̄(ε) <∞

for all ε > 0.

Essentially this means that the support set for the prior on the noise distribu-
tions is not “too large.” For example, a prior over the noise distribution space
that has support over only a finite number of points (i.e., that is nonzero
only for a finite number of noise distributions) is totally bounded. We are
now in a position to make precise the intuition mentioned above.

Theorem 3 (No Noisy Free Lunch (NNFL)). Let the prior over noise distribu-
tions, g(P), be totally bounded. For all 0 < ε < 1, ∃C∗ > 0 such that for all
C ≥ C∗,

(1− ε)g(P) ≤ g(P|D) ≤ g(P)
1− ε (4.3)

Therefore,

lim
C→∞

g(P|D) = g(P)

because ε → 0 can be attained by letting C→∞.

Proof. Following lemma 2, now let C∗ > max{|ymax + η̄(ε)|, |ymin − η̄(ε)|}
and let C ≥ C∗. Then lemma 1 applies uniformly to every P ∈ support{g(P)}.
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Therefore equation 4.2 holds for every P ∈ support{g(P)}.

g(P|D) = Pr[D|P]g(P)
Pr[D]

= Pr[D|P]g(P)∑
P Pr[D|P]g(P)

. (4.4)

Using equation 4.2, an upper bound can be obtained by substituting Pr[D|P]
with 1/Ny

l in the numerator and (1 − ε)/Ny
l in the denominator. To get a

lower bound, we do the opposite. Then, using the fact that
∑

P g(P) = 1, we
get equation 4.3.

Therefore, having no bound on f and allowing all f ’s to be equally likely
does not allow anything new to be deduced about the noise distribution
given any finite data set. It should also be clear how to extend these results
to the case where the noise distribution has x dependence. One looks at each
point independently.

The nonthresholded additive noise model is asymptotically obtained by
letting C become arbitrarily large. Further, the results apply to arbitrary
1x,1y, so by allowing 1x,1y → 0, these results can be applied to the
nondiscretized model in this asymptotic sense.

5 Discussion

The posterior g(P|D) is given by

g(P|D) ∝ g(P)
∑

f

Pr[D|P, f ]P[ f ], (5.1)

where P[ f ] is the prior over target functions. We have demonstrated that
when P[ f ] is “uniform,” it is not possible to update a prior on the noise
distribution from a finite data set, provided that a certain technical condition
is satisfied. A nontrivial P[ f ] is needed for g(P|D) to be different from g(P).
Exactly how P[ f ] will factor into g(P|D) is given by equation 5.1.

The result is more useful than it appears at first sight, for one might argue
that no one ever has a uniform prior. A restatement of the result is: Given
two noise distributions, P1 and P2, there are just as many (nonuniform)
priors that favor P1 over P2 (when one weights by the amount by which P1
is favored) as vice versa.

This result fits into a set of NFL theorems that might be considered a
collection of negative results, offering no hope for learning theory. The sit-
uation is considerably more positive, however. One is never in a situation
with a uniform P[ f ]. Further, it is rare that no information about P[ f ] is
known (excepting that it is nonuniform). Therefore, incorporating P[ f ] into
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the noise prediction or learning algorithm is necessary in order to claim
superior performance. Distribution-independent bounds such as the VC
bounds (Vapnik, 1995) say that with high probability, the training error is
close to the test error given some fixed target function f . But VC results
do not guarantee that the training error will be low with high probability;
therefore they are of little practical use (for a deeper discussion of the sub-
tleties underlying the connection between NFL and VC theory, see Wolpert
(1995, 1996b).4 How could one guarantee that a training error close to zero
is achievable? One has to use the prior information available on the target
function. Along a similar vein, results that exemplify the superiority of algo-
rithm A over algorithm B on a certain benchmark problem are also of little
use, for the reverse will be true on some other “benchmark” problem, and
we never know which “benchmark” problem we will run into. Similarly,
looking at a data set alone, one cannot produce any reliable estimate for
the noise variance. Perhaps we “feel” as though we ought to be able to (for
how often can it be heard: “This data set is clearly noisy”), but only because
we already have a smoothness prior built into our neural network. Why?
Because the types of functions we tend to encounter in practice are smooth.

NFL focuses our attention on the importance of the prior information
available. One should not attempt to find learning systems that are univer-
sally good. Instead, one should study the possibilities that various priors
present. Unfortunately, identifying and justifying the prior for the problem
at hand is already a daunting task, let alone incorporating it into the learn-
ing problem. One way would be through the use of hints (Abu-Mostafa,
1995; Sill, 1998; Sill & Abu-Mostafa, 1997). A possible starting point would
be to identify priors, P[ f ], with learning systems that perform well with re-
spect to them (for example, Barber & Williams, 1997; Zhu & Rohwer, 1996).
One might then be able to relate real problems to these priors and thus
choose an appropriate learning system, or at least it might become possi-
ble to make precise the assumptions behind a belief that a certain learning
system is appropriate for a certain problem. A useful result would be of the
form, “Algorithm A [or learning system A] performs better than average
on problems drawn from the (useful) class B.”

Appendix

A.1 Estimating Noise Variance Using Linear Models. We have Â, an
estimate of σ 2(d + 1) + B, and we would like to estimate B by bootstrap-

4 VC results make statements about Pr[training error|test error] by making the state-
ment that the probability of a low training error given a high test error is extremely
unlikely. In practice, what we would really like to make statements about is the
Pr[test error|training error] for which we really need to make some statement about the
a priori probablity of a certain test error; that is, we need to make some statement about
a prior over target functions.
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ping. Suppose we draw NB data points and estimate B (using the bootstrap
technique) by B̂. It can be shown that (see theorem 5)

〈B̂〉n = B̃+ σ 2(d+ 1)
(

1− NB

N

)
+ σ

2

N
tr〈6−1V6−1V〉︸ ︷︷ ︸

O(d+1)

, (A.1)

where B̃ is an unbiased estimate of B and the expectation in the last term is
with respect to the bootstrapping. The definitions of V and 6 are given in
the next section and are unimportant for our purpose here. Thus, we now
have two quantities: Â, an estimate of B + σ 2(d + 1), and B̂, an estimate of
B+ σ 2((d+ 1)(1−NB/N)+ tr〈6−1V6−1V〉/N). Solving for σ 2, we have

σ 2 = Â− B̂

(d+ 1)NB
N − tr〈6−1V6−1V〉

N

. (A.2)

However, we are bootstrapping a quantity B, which is related to the de-
viation of a statistical quantity of the sample from its population value.
This estimate is good only as long as N represents the population—that is,
NB/N → 0. In this case, B̂ = B + σ 2(d + 1) and thus we cannot combine
this with Â to solve for σ 2 (the expression in equation A.2 becomes inde-
terminate). We are faced with a dilemma. For finite NB/N we can get an
estimate of σ 2, but this estimate is not very good. However, we have no
way to make it better because by making the bootstrap more effective for B,
the final result cannot be solved for σ 2. Technically speaking, we cannot in
this way get a consistent estimate of σ 2, even as N→∞.

A.2 Proof of Theorems. We use the notation

X = [ x1 x2 . . . xN ] , y = f+ n
6 ≡ 〈xxT

〉
x , q = 〈x f (x)〉x.

X is a (d+1)×N matrix where the xi are the data points (we use the convention
that the first component is set to 1 and the remaining d components are the
coordinates of the data point). f is an N × 1 vector of output values at the
data points, and n is a vector of noise realizations. If 〈x〉 = 0, then 6 is
the covariance matrix for the input distribution. The law of large numbers
gives us that XXT/N −→

N→∞
6 and Xf/N −→

N→∞
q, where we assume that the

conditions for this to happen are satisfied. We thus define V and a by

XXT

N
= 6 + V(X)√

N
,

Xf
N
= q+ a(X)√

N
. (A.3)

Note that 〈V〉X = 〈a〉X = 0 and Var(V) and Var(a) are O(1).
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Theorem 4. Let the learning model be the set of linear functions w · x and let
the learning algorithm be minimization of the squared error. Then

〈E∗tr〉D,n = E0 + σ 2 − σ
2(d+ 1)+ B

N
+O

(
1

N
3
2

)
, (A.4)

where E0 and B are constants given by

E0 = 〈 f 2〉 − qT6−1q (A.5)

B = 〈q
T6−1V6−1V6−1q+ aT6−1a− 2aT6−1V6−1q〉

N
. (A.6)

Proof. The least squares estimate of w is given by

ŵ = (XXT)−1Xy, (A.7)

from which we calculate the expected training error as

〈Etr〉 =
〈

1
N
(XTŵ− y)2

〉
=
〈

1
N
((XT(XXT)−1X− 1)y)2

〉
=
〈
fTf
〉− 〈 f TX(XXT)−1Xf

〉+ 〈nTn〉 − 〈nTXT(XXT)−1Xn〉
N

= 〈 f 2〉 − 〈f
TXT(XXT)−1Xf〉

N︸ ︷︷ ︸
T1

+σ 2 − σ
2(d+ 1)

N
.

Using equation A.3 and the identity [1 + λA]−1 = 1 − λA + λ2A2 + O(λ3),
we evaluate T1 as

T1 = 〈 f 2〉 − qT6−1q

− 〈q
T6−1V6−1V6−1q+ aT6−1a− 2aT6−1V6−1q〉

N
+O

(
1

N
3
2

)
.

The theorem now follows.

This result is similar to results obtained by Amari, Murata, Müller, and Yang
(1997) and Moody (1991). From theorem 4, we have that

B = 1
N

〈qT6−1V6−1V6−1q〉︸ ︷︷ ︸
T1

+〈aT6−1a〉︸ ︷︷ ︸
T2

−2 〈aT6−1V6−1q〉︸ ︷︷ ︸
T3

 . (A.8)
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We wish to estimate T1,T2,T3. Suppose that we try to bootstrap them as
follows. For T1, we take q̂ = Xy/N = X(f+n)/N and 6̂ = (XXT/N). We esti-
mate V by sampling NB of the N data points and compute

√
NB((XBXT

B/NB)−
(XXT/N)). We then estimate T1 by T̂1, a bootstrapped expectation of
q̂T ˆ6−1V ˆ6−1V ˆ6−1q̂. This requires NB/N to be small. Doing all this, we find
that

T̂1 = fTXT

N

〈 ˆ6−1V ˆ6−1V ˆ6−1
〉 Xf

N
+ σ

2

N
tr
〈 ˆ6−1V ˆ6−1V

〉
, (A.9)

where we have an expectation with respect to the noise and the remaining
expectation is with respect to the bootstrapping. Notice that the first term
is the unbiased estimator of T1. Denote this term by T̃1.

For T̂2 = 〈aT6−1a〉 we use a = √NB(XByB/NB − q̂). Partitioning the
input matrix and noise vector into the part in the sampled NB points and
the remaining part, write X = [XB X̃B] and n = [nT

B ñT
B]T. Noting that nB and

ñB are independent, we have for T̂2:

T̂2 = T̃2 + 1
N2NB

(NBXn−NXBnB)6
−1(NBXn−NXBnB)

= T̃2 +
N2

B(N −NB)
2

N2NB

[
X̃BñB

N −NB
− X̃BnB

NB

]
6−1

[
X̃BñB

N −NB
− X̃BnB

NB

]

= T̃2 + σ 2(d+ 1)
(

1− NB

N

)
+ o

(
1
N

)
, (A.10)

where we have taken the expectation with respect to the noise and T̃2 is an
unbiased estimate of T2.

Performing the same kind of analysis for T̂3, we find that T̂3 = T̃3, an
unbiased estimate of T3. Now we estimate B̂ by T̂1 + T̂2 − 2T̂3, which is
the unbiased estimate of B plus some correction terms. Therefore we have
proved the following theorem.

Theorem 5. For N → ∞, NB/N → 0, the bootstrapped estimate of B, which
we call B̂, has an expectation given by

〈B̂〉n = B̃+ σ
2(d+ 1)

N

(
1− NB

N

)
+ σ

2

N
tr〈6−1V6−1V〉X, (A.11)

where B̃ is an unbiased estimate of B and the remaining expectation is with respect
to the bootstrapping.
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