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Abstract

We demonstrate that the information contained in the spike occurrence

times of a population of neurons can be broken up into a series of terms,

each of which reflect something about potential coding mechanisms. This

is possible in the coding régime in which few spikes are emitted in the

relevant time window.

This approach allows us to study the additional information contributed

by spike timing beyond that present in the spike counts; to examine the

contributions to the whole information of different statistical properties

of spike trains, such as firing rates and correlation functions; and forms

the basis for a new quantitative procedure for the analysis of simultane-

ous multiple neuron recordings. It also provides theoretical constraints

upon neural coding strategies. We find a transition between two coding

régimes, depending upon the size of the relevant observation timescale.

For time windows shorter than the timescale of the stimulus-induced re-

sponse fluctuations, there exists a spike count coding phase, where the

purely temporal information is of third order in time. For time windows

much longer than the characteristic timescale, there can be additional tim-

ing information of first order, leading to a temporal coding phase in which

timing information may affect the instantaneous information rate.

In this new framework we study the relative contributions of the dy-

namic firing rate and correlation variables to the full temporal information;

the interaction of signal and noise correlations in temporal coding; synergy

between spikes and between cells; and the effect of refractoriness. We il-

lustrate the utility of the technique by analysis of a few cells from the rat

barrel cortex.
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1 Introduction

Information about sensory stimulation is, at the most fundamental level, repre-
sented in the central nervous system by the spike emission times of populations
of neurons. In principle, the temporal pattern of spikes across the neuronal pop-
ulation provides a large capacity for fast information transmission (MacKay and
McCulloch, 1952). It is still unclear how much of this theoretical capacity is
actually exploited by the brain.

It has long been known that a substantial amount of sensory information
is carried by the discharge rate of individual neurons (Adrian, 1926). In some
circumstances, however, if the stimulus is modulated on a very short time scale,
precisely replicable sequences of spikes can be obtained (Bair and Koch, 1996;
Buracas et al., 1998). Does this represent temporal coding, or is the relevant
time window for counting spikes merely very short? Recent analyses have also
suggested that temporally coded information is present in the spike trains of
individual neurons in the monkey visual cortex under more general stimulation
conditions (Victor and Purpura, 1996; Victor and Purpura, 1998; Mechler et al.,
1998). Evidence has also accrued that some information appears to be encoded
by stimulus (or behaviour) related changes in the coordination of timing of firing
between small populations of cortical cells (Vaadia et al., 1995; deCharms and
Merzenich, 1996; Riehle et al., 1997). Given that our understanding of how
spike trains are decoded biophysically is far from complete, the rigorous study
of the information properties of nerve cells requires that we can quantify spike
train information in full generality. Understanding neural coding then means
understanding how the different features of the population of spike trains (such as
spike counts, correlations or patterns) contribute to the full temporal information.
This provides a powerful constraint upon the biophysical decoding that occurs:
for instance, if no significant information about a stimulus is present in feature
X of the spike trains, then none can be decoded by recipient neuronal pools by
using ‘X detection’.

To study these questions, it is of interest to quantify information using a
rigorous measure such as the mutual information (Shannon, 1948; Cover and
Thomas, 1991). In this context, the Shannon mutual information measures the
extent to which observing a spike train (or a number of spike trains from sev-
eral cells) reduces the uncertainty as to which external stimulus was present –
it provides a bound upon well the stimuli can be discriminated. Equivalently,
it measures the fidelity of coding on a trial by trial basis – how reproducibly
the responses on individual trials represent the stimulus. If the spike times are
observed with finite temporal precision ∆t, and if ∆t is small enough such that
all timing fluctuations below that timescale are not influenced by stimulation,
then a binary string can be formed (with binwidth ∆t) which contains all of the
information present in the spike train. Direct estimation of the full temporal
information is in principle possible by measuring the frequency of occurrence of
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all possible patterns of ones and zeros (‘words’) that the string can take from the
experimental data (Strong et al., 1998; de Ruyter van Steveninck et al., 1997). A
direct approach is particularly useful because it does not make any assumptions
about what are the important aspects of the spike train, and is thus completely
general. However, direct estimation by ‘brute-force’ estimation of frequencies is
problematic, because of the large data sizes required (growing up to exponen-
tially with wordlength). Despite this limitation, a recent study has succeeded
in directly quantifying full temporal information from an alert animal, in part
because of the low spiking rates obtained under the stimulation conditions used
(Buracas et al., 1998).

Another approach to direct calculation of the information is to expand the
mutual information as a Taylor series in the experimental time window (Bialek
et al., 1991; Skaggs et al., 1993; Panzeri et al., 1996a; Panzeri et al., 1999). This
is the approach taken here. In this paper we extend previous work based on
the spike count response for a small population of cells (Panzeri et al., 1999) to
present for the first time an analytical expression for the full temporal information
in a population of spike trains to second order in the time window. This enables
a natural separation of the contributions of both instantaneous firing rates and
temporal correlations between spikes to the complete information. It also allows
comparison with the information carried just by the number of spikes fired by
each cell, which can be expressed in an equivalent form. This provides theoretical
insight into the individual factors which determine the coding capabilities of
neural spike trains. It also provides a procedure for neurophysiological data
analysis which is superior with respect to data size requirements compared to
‘brute force’ frequency estimation of the information.

The use of such a Taylor series approach requires that the experimental time
window (which should not be confused with the smaller binwidth used to dis-
cretise the spike train) be short enough that only a few spikes are emitted in
its duration. This short time window limit, although a restriction, is relevant to
the transmission of sensory information in the mammalian cortex. Single unit
recording studies in primates have demonstrated that the majority of information
about static visual stimuli is often transmitted in windows as short as 20-50ms
(Tovée et al., 1993; Heller et al., 1995; Rolls et al., 1999). Information about
time-dependent signals is often conveyed by single sensory cells by producing
about one spike per characteristic time of stimulus variation (Rieke et al., 1996).
Event related potential studies of the human visual system (Thorpe et al., 1996)
provide further evidence that the processing of information in a multiple stage
neural system can be extremely rapid. The periods during which transcranial
magnetic stimulation disrupts processing in early visual cortex have been found
to be as short as 40 ms (Corthout et al., 1999). Finally, the assessment of the
information content of interacting assemblies which may last for only a few tens
of milliseconds (Singer et al., 1997) requires the use of such short windows.

The paper is organised as follows: in section 2, the problem will be defined,
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and the series expansion of the information explained. In section 3, the necessary
rate and correlation parameters will be introduced, and the probabilities of each
possible response expressed in terms of these parameters. Section 4 gives the
main result of the paper, the analytical expression obtained by substituting these
probabilities back into the equation for mutual information. In section 5, we
examine the conditions under which this approach is valid. Section 6 uses these
results to study the role of response timescales in neural coding; two distinct
coding régimes are found, depending upon the relative stimulus and response
characteristic timescales. Temporal encoding may contribute significantly when
the mean instantaneous firing rates of the cells fluctuate on a timescale shorter
than the time window in which most of the information about the stimulus is
transmitted. Section 7 examines the precision with which spike times may code
information. In section 8, we study the conditions under which one finds synergis-
tic relationships between spikes and between cells in an assembly. This includes
an analysis of the effect of a refractory period on the spike train information.
In section 9, we illustrate the method by applying it to spike trains recorded in
the rat barrel cortex. Finally, in section 10, we discuss the consequences of the
results and their relationship to other work.

2 The information carried by neural spike trains

Consider a time period of duration T , associated with a dynamic or static sen-
sory stimulus, during which we observe the activity of C cells. This period of
physiological observation has associated with it a period (which might be ear-
lier by some ‘lag’ time, but which we will consider to have the same length) in
which we also observe the characteristics of an external correlate, such as a sen-
sory stimulus, which might be influencing the cells’ behaviour. Let us denote
each different stimulus history (time course of characteristics within T ) as s(τ),
a function of time from stimulus onset chosen from the set S of experimentally
presented stimulus histories. We shall describe the neuronal population response
to the stimulus by the collection of spike arrival times {tai }, each tai being the
time of occurrence of the i-th spike emitted by the a-th neuron.

Although the spike arrival time is a continuous variable, it can be experimen-
tally measured only with finite precision ∆t. Let us divide the time window T
into small bins of width ∆t (in which at most one spike per cell is observed).
With complete generality, we can represent the spike sequence {tai } as a sequence
of binary digits, one for each time bin and cell, with the response “1” in the bins
corresponding to the spike times, and “0” in all other bins. We denote the prob-
ability of observing a spike sequence {tai } when a particular stimulus history s(τ)
was present as P ({tai }|s(τ))

1. P ({tai }) = 〈P ({tai }|s(τ))〉s is its average across all

1We use P (·) to indicate a probability, and p(·) a probability density.
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stimulus histories. We determine P ({tai }|s(τ)) by repeating each stimulus history
in exactly the same way on many trials, and observing the responses.

Following Shannon (1948), we can write down the mutual information pro-
vided by the spike trains about the whole set of stimuli as

I({tai };S) =
∫

Ds p[s(τ)]
∫

Dtai p [{t
a
i }|s(τ)] log2

p [{tai }|s(τ)]

p({tai })

≡
∑

s(τ)∈S

P [s(τ)]
∑

ta
i

P [{tai }|s(τ)] log2
P [{tai }|s(τ)]

P ({tai })
. (1)

This notation can be read as follows. In the first, more general form of the equa-
tion, we use the functional integral notation

∫

Ds to indicate that in principal,
a continuous set of stimulus histories can be created. In practice, a discrete and
often very limited set of stimuli is usually used to test the cell – hence we re-
place the functional integral with a summation over a discrete set of stimuli. For
brevity, the τ will henceforth be dropped unless there is a particular need to
stress the dynamic nature of the stimulus function. The notation

∫

Dtai indicates
integration over all spike times tai , i = 1..na, a = 1..C, and summation over all
total spike counts from the population. na is the number of spikes emitted by cell
a. This notation is very similar to that utilised in (Rieke et al., 1996, p. 158). In
the limit of infinite precision,

∫

Dtai may be interpreted as a simple Riemannian
integral; the results we present in this paper are valid in this continuous limit.
More usually we will invoke finite precision ∆t and interpret the integral as a
summation over all time bins.

In addition to studying the information contained in the sequence of spike
times, we can also quantify the information contained in the response space de-
fined by only the number of spikes emitted by each cell in the time window. We
can form a C-dimensional vector n, each component of which is na, the number
of spikes fired by the respective neuron in the experimental time window. The
spike count information can be written

I(n;S) =
∑

s∈S

P (s)
∑

n

P (n|s) log2
P (n|s)

P (n)
. (2)

This information quantity is exactly that calculated in (Panzeri et al., 1999).
Invoking the data processing inequality, it is relatively obvious that I(n;S) ≤
I({tai };S).

Now, the spike train information can be approximated by a power series

I({tai };S) = It({t
a
i };S) T + Itt({t

a
i };S)

T 2

2
+ . . . (3)

where It(·) and Itt(·) refer to the first and second time derivatives of the infor-
mation respectively. As we shall see later, this becomes effectively an expansion
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in a dimensionless quantity, the number of spikes fired in the time window. For
this approximation to be valid, the information function must be analytic in T ,
and the series must converge within a few terms. Both of these issues will be
addressed in section 5. The time derivatives of the information can be calculated
by taking advantage of the narrowness of the time windows, as will be explained.

3 Correlation functions and response probabil-

ity

Before specifying the expressions for the response probabilities, it is necessary to
define some response parameters. Consider first the discrete time resolution case
(finite ∆t). For each individual trial with stimulus s, the spike train density of
each cell can be represented as a sum of pulses,

ra(t; s) =
∑

i

δt,ta
i

∆t
, (4)

where δt1,t2 is the Kroenecker delta function (1 if t1 and t2 label the same time
bin, and zero otherwise). i in the above indexes the spike number. The time-
dependent firing rate is measured as the average of this quantity over all exper-
imental trials with the same stimulus s. We denote this trial average by a bar,
and the firing rate is thus ra(t; s). Note that this mean rate function is sometimes
called the post-stimulus time histogram, or PSTH.

It is also necessary to introduce parameters describing correlations among
spikes. (Note that we use the word “correlation” to include both autocorrelation
and crosscorrelation). Now, it is apparent that, for physically plausible processes,
r will remain constant as ∆t → 0: if the mean firing rate is a differentiable
function of time, then for sufficiently short bin widths, reducing ∆t will just
reduce the probability of observing a spike accordingly. We would like to retain
this property for our correlation measure as well, so that when we write out the
series expansion of the information equation, there will not be any dependence
upon time hidden inside the response parameters. Such hidden dependence would
prevent a simple intuition of the dependence of the relative magnitudes of the
information terms upon the timescale, and would, the authors, feel, be inelegant.
The Pearson product moment, for instance, can be shown to approach zero for
short time windows (Panzeri et al., 1999). The measure we choose is the scaled
correlation density. We can write the scaled noise correlation density, which
measures correlations in the response variability upon repeated trials of the same
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stimulus2 as

γab(t
a
i , t

b
j; s) =

ra(t
a
i ; s)rb(t

b
j ; s)

ra(tai ; s)rb(t
b
j; s)

− 1, if a 6= b or tai 6= tbj

γaa(t
a
i , t

a
i ; s) = −1. (5)

The numerator of the first term indicates the average, over trials in which the
same stimulus s is presented, of the product of the spike densities of cell a at time
tai and cell b at time tbj. Note that the scaled correlation density is simply a joint
post-stimulus time histogram (JPSTH) from which the number of coincidences
purely due to rate modulation has been subtracted (implemented by the “-1” in
equation 5).

Now, we can introduce the above correlation parameters in terms of the con-
ditional firing probabilities of observing one spike from cell a in the time bin
centered at tai , given that cell b emitted a spike in the time bin centered at tbj ,
when stimulus s was presented:

P (tai |t
b
j ; s) ≡ ra(t

a
i ; s) ∆t[1 + γab(t

a
i , t

b
j ; s)] +O(∆t2). (6)

This assumes that the conditional probabilities (6) scale proportionally to ∆t. It
is a natural assumption, as it merely implies that the probability of observing a
spike in a time bin is proportional to the resolution ∆t of the measurement. It
is violated only in the implausible and non-physical case of spikes locked to one
another with infinite time precision. It can of course be checked for any given
dataset; this will be carried out in section 5. Note that quadratic (and higher)
order terms in ∆t were neglected from the above relationship as they affect only
third and higher order terms of the information.

We will find it convenient to measure another type of correlation also: signal
correlation, that is correlation in the mean responses of the neurons across the
set of stimuli. These correlations can also be thought of as correlations in the
tuning curves of the neurons. For homogeneity, we will also quantify these by a
scaled correlation density:

νab(t
a
i , t

b
j) =

〈

ra(t
a
i ; s)rb(t

b
j; s)

〉

s

〈ra(tai ; s)〉s

〈

rb(tbj ; s)
〉

s

− 1. (7)

In the above, the brackets 〈·〉s can be taken to indicate the average across stimuli,
∫

Ds p(s)· or
∑

s P (s)·. Both γ and ν may range from -1 to∞, with zero indicating
lack of correlation.

2We adopt the convention, utilised by a number of authors, of using the term
‘noise correlation’ to mean correlation at fixed signal, thus distinguishing it from
correlation across different signals, which concept we will also require.
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When passing to the high resolution limit (∆t → 0), the same definitions
outlined above apply, provided that we replace the Kronecker delta function with
that of Dirac in the definition of spike density:

ra(t; s) =
∑

i

δ(t− tai ), (8)

and use probability densities instead of probabilities in equation 6.
Let us now consider the case of the spike count response parameters. The

correlational parameters that influence the spike count information are the scaled
correlation coefficients of the spike counts in each trial (Panzeri et al., 1999).
These are obtained by summation over time bins (or integration in the high
resolution limit) of the above expressions. The spike count scaled noise correlation
coefficient can be written

γab(s) =

∫

dtai
∫

dtbj ra(t
a
i ; s)rb(t

b
j ; s)[1 + γab(t

a
i , t

b
j , s)]

[
∫

dtai ra(t
a
i ; s)][

∫

dtbj rb(t
b
j; s)]

− 1. (9)

Similarly, signal correlation is quantified as:

νab =

〈

∫

dtai ra(t
a
i ; s)

∫

dtbj rb(t
b
j ; s)

〉

s

〈
∫

dtai ra(tai ; s)〉s

〈

∫

dtbj rb(t
b
j; s)

〉

s

− 1. (10)

Equations 9,10 are a simple renotation of the definitions in (Panzeri et al., 1999)
to fit with the requirements of the full temporal notation in the current paper.
The finite resolution expressions for the above are of course obtained by replacing
the integrals with summations:

lim
∆t→0

∑

n

f(tn)∆t =
∫

dtf(t) (11)

If the conditional instantaneous firing rates are non-divergent, as assumed in
equation 6, then the short time scale expansion of response probabilities becomes
essentially an expansion in the total number of spikes emitted by the population
in response to a stimulus. The only responses which contribute to the trans-
mitted information up to order k are the responses with up to k spikes from
the population. This is proved in Appendix A. The only relevant events for the
second order analysis are therefore those with no more than two spikes emitted
in total, and they can be truncated at second order without affecting the first
two information derivatives. This is valid for any time-resolution. For brevity,
we report the results only for the infinite time resolution case. The resulting
expression (see Appendix A) is

P (0|s) = 1−
C
∑

a=1

∫

dta1ra(t
a
1; s) +

9



+
1

2

C
∑

a=1

C
∑

b=1

∫

dta1

∫

dtb2ra(t
a
1; s)rb(t

b
2; s)

[

1 + γab(t
a
1, t

b
2; s)

]

p(ta1|s)dt
a
1 = ra(t

a
1; s)dt

a
1

(

1−
C
∑

b=1

∫

dtb2rb(t
b
2; s)

[

1 + γab(t
a
1, t

b
2; s)

]

)

a = 1, · · · , C

p(ta1t
b
2|s)dt

a
1dt

b
2 =

1

2
ra(t

a
1; s)rb(t

b
2; s)

[

1 + γab(t
a
1, t

b
2; s)

]

dta1dt
b
2 a, b = 1, · · · , C; (12)

where P (0|s) is the probability of zero response (no cells fire), p(ta1|s) is the
probability density of observing just one spike from cell a at the specified time
location, and p(ta1t

b
2|s) is the probability density of observing just a pair of spikes

at the given times.

4 Analytical results

We now insert the second order response probabilities (equation 12) into the
expressions for the information contained in the sequence of spike times (equa-
tion 1) and the spike counts (equation 2). Then, for each term in the sum over
responses, we utilise the power expansion of the logarithm as a function of T ,

log2(1− T x) = −
1

ln 2

∞
∑

j=1

(Tx)j

j
, (13)

and, after integrating over spike times, group together all terms in the sum which
have the same power of T . Equating these with equation 3 yields expressions
for the information derivatives. These expressions depend only upon the time-
dependent firing rates r, the noise correlations γ, and the signal correlations ν. As
shown in Appendix A, the power expansion in the short time window length T is
related to the expansion in the total number of spikes emitted by the population.
Therefore, although the formalism is for simplicity developed as an expansion in
T , the expansion parameter is in fact the adimensional quantity representing the
average number of spikes emitted by the population in the window T .

The first order contribution (i.e. T times the instantaneous information rate)
to the full temporal information from a population of spike trains is (Bialek
et al., 1991)

It({t
a
i };S) T =

C
∑

a=1

∫

dta
〈

ra(t
a; s) log2

ra(t
a; s)

〈ra(ta; s′)〉s′

〉

s

. (14)

This is simply a sum of single cell contributions. It is insensitive to both signal
and noise correlation.

The expression for the second order contribution (i.e. the second temporal
derivative multiplied by T 2/2) breaks up into three terms:

Itt({t
a
i };S)

T 2

2
=

1

2 ln 2

C
∑

a=1

C
∑

b=1

∫

dta1

∫

dtb2 〈ra(t
a
1; s)〉s

〈

rb(t
b
2; s)

〉

s

10



×
{

νab(t
a
1, t

b
2) +

[

1 + νab(t
a
1, t

b
2)
]

ln
1

1 + νab(ta1, t
b
2)

}

+
1

2

C
∑

a=1

C
∑

b=1

∫

dta1

∫

dtb2
〈

ra(t
a
1; s)rb(t

b
2; s)γab(t

a
1, t

b
2; s)

〉

s
log2

1

1 + νab(ta1, t
b
2)

+
1

2

C
∑

a=1

C
∑

b=1

∫

dta1

∫

dtb2

〈

ra(t
a
1; s)rb(t

b
2; s)

[

1 + γab(t
a
1, t

b
2; s)

]

× log2

{

〈

ra(t
a
1; s

′)rb(t
b
2; s

′)
〉

s′

[

1 + γab(t
a
1, t

b
2; s)

]

〈

ra(ta1; s
′)rb(tb2; s

′)
[

1 + γab(ta1, t
b
2; s

′)
]〉

s′

}〉

s
. (15)

We will refer to these terms as components 2a, 2b and 2c of the information
respectively.

When each spike is completely independent, as in a Poisson process, it is
apparent that only the first term of equation 15 survives. It is easy to see that
this term is always less than or equal to zero, since f(x) = x−(1+x) ln(1+x) has
a global maximum at f(0) = 0: the first term is equal to zero only if the signal
correlation is precisely zero. This means that the information accumulation from
a Poisson process with |ν| > 0 always slows down after the first spike.

If there is any deviation from independence in the timing of successive spikes,
then the other terms can contribute to the information through non-zero au-
tocorrelation density γaa(t

a
1, t

b
2). If there is any relationship between the times

of spike emission of different cells, then they can contribute through non-zero
cross-correlation γab(t

a
1, t

b
2). As with the spike count information terms detailed

in (Panzeri et al., 1999), the second of these terms (the “stimulus-independent
correlational component”) reflects contributions from a level of correlation which
is not stimulus dependent. The third term is non-negative, and is non-zero only
in the presence of stimulus dependence of the correlation between spikes, and is
called the “stimulus-dependent correlational component”. The natural separa-
tion of the second order information into three components is important because
each component reflects the contribution of a different relevant encoding mech-
anism. When applying this analysis to real neuronal data, a significant amount
of information found in the third component of Itt, relative to the total infor-
mation, would clearly signal that cells are transmitting information mainly by
participating in a stimulus (or context) dependent correlational assembly (Singer
et al., 1997). A specific example will be given in Figure 5.

In the same way, the short time scale expansion can be carried out for the
spike count information. This was performed in detail in Panzeri et al. (1999),
and here we report briefly the main results to cast them into identical notation to
that above for comparison. The spike count information derivatives are similar
to equation 15, but they depend only on the mean rate across time and on the
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spike count correlation coefficients (9,10). The first order contribution is:

It(n;S) T =
C
∑

a=1

〈

∫

dtara(t
a; s) log2

∫

dtara(t
a; s)

〈
∫

dtara(ta; s′)〉s′

〉

s

(16)

As before, the second order contribution is broken into three components:

Itt(n;S)
T 2

2
=

1

2 ln 2

C
∑

a=1

C
∑

b=1

〈∫

dta1ra(t
a
1; s)

〉

s

〈∫

dtb2rb(t
b
2; s)

〉

s

×
[

νab + (1 + νab) ln
1

1 + νab

]

+
1

2

C
∑

a=1

C
∑

b=1

〈(∫

dta1ra(t
a
1; s)

)(∫

dtb2rb(t
b
2; s)

)

γab(s)
〉

s
log2

1

1 + νab

+
1

2

C
∑

a=1

C
∑

b=1

〈(∫

dta1ra(t
a
1; s)

)(∫

dtb2rb(t
b
2; s)

)

[1 + γab(s)]

× log2

{

〈

∫

dta1ra(t
a
1; s

′)
∫

dtb2rb(t
b
2; s

′)
〉

s′
[1 + γab(s)]

〈

∫

dta1ra(t
a
1; s

′)
∫

dtb2rb(t
b
2; s

′) [1 + γab(s′)]
〉

s′

}〉

s
. (17)

5 Limitations

In this section we address the potential limitations of the technique presented
here as a procedure for the analysis of real data. There are four assumptions
which must be satisfied for the series approximation to be guaranteed to be a
good estimate of the true information. These are: that the experimental time
window is small; that the conditional firing probability scales with ∆t; that the
information is an analytic function of time; and that experimental trials are
statistically indistinguishable.

Assumption 1. The short time scale limit utilized here formally requires that
the mean number of spikes in the time window be small. The actual range of va-
lidity of the order T 2 approximation will depend on how well the time dependence
of the information from the neuronal population fits a quadratic approximation.
The range of validity for the spike count series information was checked by sim-
ulation in (Panzeri et al., 1999). The same range of validity must hold for the
temporal information as well when the firing rates and correlations of the neurons
vary slowly with respect to the time window considered, since in this limit the
additional temporal information is small (see next section). The additional nu-
merical test required here is therefore on the range of applicability of the second
order approximation for the full spike timing information when the parameters
describing the neuronal firing probabilities fluctuate quite rapidly within the time
window T .
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For this purpose we simulated neurons driven by two stimuli. The response of
each neuron to each stimulus was modeled as a 1 ms resolution Poisson process
with a time dependent firing rate (the response in each 1 ms time bin is generated
with a time dependent firing rate independently of the response in the other time
bins). The first stimulus gave a constant (flat) mean response r0 = 30 spikes/sec.
across time, whereas the second stimulus was chosen to produce a response of
mean r0 and sinusoidally modulated with amplitude r0, at a frequency 1/τc.
After a full period, the two stimuli are indistinguishable on the basis of spike
count alone, and therefore this is a good model for examining temporal coding.

The analytical approximations to the information were tested against the true
information computed directly from the model response probabilities. Figure 1
shows the accuracy of the first and second order approximations to the infor-
mation in the spike times for a single cell with responses to the second stimulus
oscillating very fast (at a frequency of 500 Hz). The second order approximation
is nearly exact up to 200 ms, even in the extreme case of such fast fluctuations.
The range of validity seems not to be significantly affected by changing the fre-
quency of oscillations. We have also carried out simulations with a set of two cells
with either Poisson or cross-correlated firing. When simulating two cells, we could
not systematically test time windows as long as 200 ms because the number of
spike trains over which we have to sum to compute the full information increases
exponentially both with the length of the window and with the population size.
However, we found that the scaling expectation that the range of validity shrinks
as 1/C with population size is confirmed up to the time window lengths that we
could test.

The simulations presented here therefore show that the series expansion can
useful for time scales relevant to neuronal coding, for the small ensembles of cells
typically recorded during in vivo experimental sessions. In particular, when corre-
lations between spikes are weak the series expansion is very precise up to hundreds
of ms. However, one should be aware that the presence of very strong correlations
between the spikes can potentially reduce this range of validity. Therefore the
actual range of validity for the data under analysis should be further assessed
by looking e.g. at the agreement between the series expansion result for spike
counts and the brute force evaluation of the spike count information from response
probabilities (equation 2). (The latter, unlike the brute force full temporal in-
formation, can usually be computed with an experimentally feasible number of
trials). An example of this check is given in section 9.

Assumption 2. The second assumption required is that the probability of
observing a spike in the time bin centered upon tai from cell a given that one has
been observed in the time bin centred upon tbj from cell b scales with ∆t. This
is captured by equation 6. This assumption would be expected to break down
only if there were a significant number of spikes synchronised with near-infinite
precision.

To illustrate how this scaling assumption can be validated experimentally, we
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examined the scaling relation between the average value of P (tai |t
b
j; s) and ∆t

for two neurons recorded from the rat barrel cortex. The stimuli were upward
deflections of one of 9 whiskers. This data was provided by M.E. Diamond and
colleagues. For further reference to the data see (Lebedev et al., 2000) and
section 9, were the information properties of the same two cells are analyzed with
our method. The result can be seen in Figure 2. We found that the averaged
conditional firing rate, computed as the average across all bin pairs and stimuli
of P (tai |t

b
j; s)/∆t, remained approximately constant as ∆t was decreased, and

no divergence of the conditional firing rate was observed for all the resolutions
considered. This provides evidence that Assumption 2 holds for this dataset.

Assumption 3. This method expands the mutual information as a Taylor
series in T . Therefore the third required assumption is that the information is
an analytic function of the time window size T . This requirement ensures that
the Taylor series expansion of the mutual information exists, and that the series
converges to the mutual information.

The validity of this assumption can be tested, at least to some extent, on
the dataset under analysis. For example, one can check that there are no dis-
continuities in time of the firing parameters. Also, if there are enough data, the
mutual information can be computed by brute force from the Shannon formula,
equation 1, although it can be usually computed only for a more limited time
range than when using the series expansion (see section 9). Hence the informa-
tion computed by brute force from the Shannon formula can be compared, in
some time windows, to the series expansion estimation. This provides a strong
check of the validity of this particular assumption and of the convergence of the
series expansion method, as fully illustrated in section 9. It is apparent that
the assumption is valid for the data we examined here (see section 9). This as-
sumption is more likely to cause problems with artificially constructed models
implementing instantaneous correlations between neurons. One could argue that
such models are non-physical in any case.

Assumption 4. The final assumption required is that experimental trials are
statistically indistinguishable. This assumption is of course inherent to any neu-
rophysiological data analysis, and is taken to be the definition of an experimental
trial. Satisfaction of this assumption is the domain of experimental design.

6 Response timescales and pure temporal cod-

ing

Having quantified the information I({tai };S) in the spike times and I(n;S) in
the spike counts as a function of the rates and correlations, we are in a position
to study the conditions under which information is not dominated by the spike
counts. In other words, we ask: how much extra information, not contained in

14



the spike counts, is conveyed by the temporal relations between spikes. This
extra information is precisely I({tai };S)− I(n;S).

We find that the crucial parameter is the typical timescale of variation of the
firing rate and correlation functions, relative to the time window T of interest.
We will label this typical or characteristic stimulus-induced response timescale
τc.

Case 1, large τc. If the scale of time variation of any time dependent func-
tion f(t) is large compared to the time window considered, then f(t) can be
approximated by its power expansion and the following quasi-static approxima-
tion holds:

∫ t0+T/2

t0−T/2
f(t)dt = f(t0) T +

∂2

∂t2
f(t)|t=t0

T 3

24
+O(T 5) (18)

As a consequence, if both rate and correlation functions vary slowly in the time
domain of interest, only the rate and correlation values near the centre of the
interval (t0) are important, and the extra amount of information in the spike
times is sub-leading (only of order T 3). The expression for the T 3 term in the
extra information in spike timing can be computed by applying equation 18) to
the integrals over time involved in computing information rates (equations 14
and 16). The result depends only on the firing rate variations near t0, and not
on correlations between the spikes.

I({tai };S)− I(n;S) =

T 3

24 ln 2

∑

s

P (s)
∂

∂t
r(t; s)|t=t0

(

(∂/∂t)r(t; s)|t=t0

r(t0; s)
−

< (∂/∂t)r(t; s′)|t=t0 >s′

< r(t0; s′) >s′

)

. (19)

(19) can be shown to be non-negative for any rate function, as required by infor-
mation theoretical consistency.

Being of order T 3, in this régime pure temporal coding affects neither the
rate nor acceleration of information transmission. Pure temporal information
would accumulate very slowly with time. Therefore under these circumstances
information is dominated by the spike counts.

Case 2, small τc. If either firing rates or correlation functions fluctuate with a
characteristic timescale smaller than T , then the quasi-static approximation (18)
breaks down, and there is a transition to a different coding régime. A possible
case may be the presence of a sinusoidal component of period shorter than T in
the rate fluctuations. If in particular τc is much shorter than T , the integral of
the function over the time window does not depend on the value of the function
at the center of the interval as in equation 18, or on the frequency of response
variations, but only on the average value of the function over the period τc:

∫ t0+T/2

t0−T/2
f(t)dt =

[

1

τc

∫

τc
f(t)dt

]

T +O(T 2) (20)
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As a consequence, in this limit the additional purely temporal information is
proportional to T (and not to T 3 as in the quasistatic phase):

I({tai };S)− I(n;S) =
C
∑

a=1

∫

dta
〈

ra(t
a; s) log2

ra(t
a; s)

〈ra(ta; s′)〉s′

〉

s

−
C
∑

a=1

〈

∫

dtara(t
a; s) log2

∫

dtara(t
a; s)

〈
∫

dtara(ta; s′)〉s′

〉

s

+ O(T 2) (21)

This means that when rates fluctuate rapidly the actual rate of information trans-
mission (measured in bits/sec) can be considerably faster than that with spike
counts only. Thus in this phase there can be substantial pure temporal informa-
tion, and it may even be dominant with respect to the spike count information.

We studied particular cases by simulating mean firing rate and correlation
parameters for each timestep as described in section 5. Two stimuli were again
used, once inducing a flat rate response function, and the second a sinusoidally
modulated function of time. The following results were obtained with 1 ms time
resolution, but have also been confirmed by numerical integration in the infinite
time-resolution limit. The effect of timing precision is considered separately.
Figure 3 illustrates a situation in which the spike count of a single cell responding
according to a Poisson process is unable to discriminate between the stimuli after
a full period, but such information is available from spike timing. The time
window is increased, beginning at the onset of stimulus-related responses. In this
case, after 60 ms (a full cycle of oscillation), the spike count information drops to
zero, whereas the full temporal information accumulates cycle after cycle. After
one cycle the information is purely temporal.

The effect of stimulus modulation frequency on the full temporal information
is shown in Figure 4a. Figure 4b shows the purely temporal information for the
same situation (i.e. the full information minus the spike count information). The
difference between the fast and slow régimes can be seen by comparing these
two figures. Slow fluctuations lead to negligible (of order T 3) pure temporal
information. In the fast regime, pure temporal information increases roughly
proportionally to the window length. Note also that, if fluctuations are very fast
(τc ≪ T ) and the spike incidence is measured with high temporal precision, the
amount of information is roughly independent of the frequency of oscillation, as
predicted by (20).

If the rates vary slowly with respect to T , but the correlations vary on a
faster time scale, then the pure timing information can be only of second order
in T . This means that in this situation the instantaneous rate of information
transmission is unaffected by the temporal structure of the spike train. How-
ever, the temporal information can still be appreciable. An example is shown
in Figure 5. This Figure plots the information in the responses of a pair of
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cells, each of which has the same characteristics as those in Figures 3 and 4.
Both of the cells’ firing rates are slowly (1 Hz) modulated by one stimulus
only. However, the correlation between them is modulated more rapidly, with
a frequency of 100 Hz, and it is stimulus dependent. The correlation for one
stimulus is equal in magnitude but opposite in sign to that of the other stimu-
lus: the correlation between the cells is modulated at f = 100 Hz according to
γab(t

a, tb; s) = ± exp(−|ta − tb|/λ) sin(2πfta) sin(2πftb). The decay constant λ
was chosen to be 25 ms. This particular cross-correlation function was chosen
to match the one used in Figure 7, but the result is indicative of the behaviour
of any fast-oscillating cross-correlation. There is, as can be seen, a substantial
contribution to information component 2c, the third, stimulus dependent, com-
ponent of the second order information. This contribution has no counterpart in
the spike count information, which remains much smaller.

7 Precision of spike timing

The total information contained in the spike times, equation 1, is also a function
of the precision ∆t with which the spikes are measured (or equivalently, of the
precision in the spike timing itself). Experimental measures of the information
with different values of ∆t can address the question of to what temporal pre-
cision information is transmitted in the cerebral cortex. The whole question of
whether spike timing is important is really the question of whether the use of time
resolution as short as a few milliseconds significantly increases the information
extracted (Strong et al., 1998). Measuring information at high resolutions with a
brute force direct evaluation from equation 1 is made difficult by the exponential
increase of the number of trials needed as ∆t is decreased (see Strong et al. (1998)
and Appendix B). Our formalism gives a simple expression for the information
in spike timing as a function of the timing precision ∆t (the discrete version of
equations 14 and 15), and requires only a quadratically increasing number of tri-
als as ∆t → 0. Thus it can be used to measure the information with resolutions
that would be impractical with brute force methods using data sets of the size of
typical cortical recording sessions (Panzeri and Treves, 1996).

As an example, Figure 6 illustrates the impact of sampling precision on the
full temporal information contained in 32 ms from a single model cell responding
to two stimuli according to a Poisson process. The first stimulus elicits a constant
response firing rate, the second stimulus elicits a response firing rate oscillating
sinusoidally in time, exactly as in Figure 3. In Figure 6, the oscillation frequencies
for the responses to the second stimulus were varied in the range 5-250 Hz. The
result is that the timing precision has no effect on the information only if it is
much smaller than the typical time scale of response parameter variations τc. If
∆t ≃ τc, then information is strongly underestimated with respect to the infinite
resolution limit.
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The issue of the efficiency of information transmission for different timing
precisions (i.e. how much of the total entropy is actually exploited for information
transmission) is addressed in Schultz and Panzeri (2000).

8 Synergy and redundancy in temporal infor-

mation

How is information combined from a group of coding elements? Is the amount
of information obtained from the whole pool of elements greater than the sum of
that from each individual element (synergistic) or less than the sum (redundant)?
Between these two cases, there can exist a situation where the information from
each element is independent, and the total information thus increases linearly as
the number of elements is increased. Two notions of “synergy” are of immediate
relevance. The first is synergy/redundancy between assemblies of cells; the second
is synergy between spikes (whether they are from the same cell or another).

Synergy between cells. We define the amount of synergy between cells as
the total information from the ensemble of spike trains minus the sum of that
from the individual cells (Rieke et al., 1996, p. 268). The redundancy is simply
the negative of this quantity. This means that, to second order, the synergy
is simply the sum of the off-diagonal (a 6= b) elements of equation 15. This is
because the first order terms (equation 14) of the information and the a = b
terms in the summation are identical for both the ensemble information and the
sum of the individual cell informations, thus eliminating in the subtraction.

The amount of synergy between cells depends critically upon correlation. For
synergistic coding, non-zero cross-correlation is needed. This can be seen from
equation 15: in the absence of correlation γ only the first term of Itt would
survive, and we have shown this term to be less than or equal to zero, meaning
that synergy cannot occur.

It is quite obvious that synergy may occur when the degree of correlation
between cells is modulated by the stimulus. However, even when noise correlation
is not stimulus dependent, it is possible to achieve synergistic coding. This is
done by using the second, stimulus-independent, correlational component of Itt
to increase the total information. This happens, for each pair of cells, when the
noise correlation γab(t

a
i , t

b
j ; s) is opposite in sign to the signal correlation νab(t

a
i , t

b
j)

for times tai , t
b
j. This basic mechanism of synergy for the temporal information is

identical in principle to that considered for spikes counts in (Oram et al., 1998;
Abbott and Dayan, 1999; Panzeri et al., 1999); it extends naturally to noise and
signal correlations between time pairs tai and tbj .

Correlations between cortical neurons often oscillate and vary rapidly in sign
with time (König et al., 1995). Our analysis shows that in this case, to obtain
a maximally synergistic effect, the signal correlation should oscillate in counter-
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phase with respect to the cross-correlogram and with similar frequency. This
produces opposite signs of signal and noise correlation. If the signal was of lower
frequency, the effect of cross-correlation would be washed away by its rapid change
of sign with respect to the signal. The effect of the relative frequencies and phase
of signal and noise variations with time is illustrated in Figure 7. We simulated
two Poisson cells, responding to two stimuli as in Figure 3a, but with firing rate
in response to the second stimulus being modulated at f1 = 10 and f2 = 20 Hz
respectively. The signal correlation between the cells is in this simple case

ν(ta, tb) ∝ sin(2πf1t
a) sin(2πf2t

b). (22)

To generate a cross-correlation model that could be tuned to match the signal
correlation frequency, the cross-correlation was chosen for both stimuli to be of
the form

γab(t
a, tb; s) = γexp(−|ta − tb|/λ) sin(2πkf1t

a) sin(2πkf2t
b). (23)

The cross-correlation function decayed exponentially, with time constant 25 ms,
as a function of the time between spikes (König et al., 1995). The constant γ in
front of the correlation function was set either to 0 (no cross-correlation), to -1
(signal and noise in counter-phase), or to 1 (signal in phase with the noise). k
determined the relative timescales of signal and noise correlation oscillation, and
was set to 1 for Figure 7 part A and 10 for part B. The information from the
pair of cells observed simultaneously is compared with the summed single cell
information in the Figure.

When the noise correlation between the cells is chosen to oscillate with the
same frequency as the signal correlation does, synergy is obtained when signal and
noise correlation are in counter-phase. Conversely high redundancy is obtained
when they are in phase. When instead, signal and noise oscillate on very different
time scales, correlations play a much less significant role. When response pro-
files of different neurons are independent, and little signal correlation is present,
weakly stimulus modulated correlations do not affect information transmission
at all (Oram et al., 1998; Panzeri et al., 1999). This is important as signal
correlation between cortical neurons was reported to be very small for stimulus
sets of increasing complexity (Gawne et al., 1996; Rolls et al., 1997; DeAngelis
et al., 1999), and therefore correlations might be less important under natural
conditions than when using artificial and limited laboratory stimuli.

The neuronal model used in this simulation is certainly far from realistic;
however, the result discussed here is valid beyond the simple models used for
the Figures. We note that when cross-correlations are stimulus dependent, then
the third term of equation 15 also becomes non-zero, and additional interactions
between response parameters can arise. They can be studied by specifying the
stimulus dependence of correlations and taking into account also this information
component.
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In conclusion, this section shows that the contribution of cross-correlations to
the representation of the external world can be more complex than what might
be expected from naive visual inspection of cross-correlograms. This reinforces
the need for a rigorous information theoretic analysis of the role of trial-by-trial
correlations in solving complex encoding problems, like feature binding (Singer
et al., 1997).

Synergy between spikes

Another notion of synergy, defined for single cells (as well as populations) and
for the full temporal information, is synergy between spikes. Motivated by the
notion that particular sequences of spikes may have a special role in encoding
stimuli, Brenner et al. (1999) recently introduced a synergy measure of this type.
In that work, “events” (e.g. single spikes, or pairs of spikes occurring with a
given time delay irrespective of whether there are other spikes in-between) are
singled out from the whole spike train; the information carried by occurrence of
single events was computed3. Brenner et al. considered the synergy to be the
information from a complex event (e.g. a pair of spikes occurring at specified
times) minus the information from each of those individual spikes constituting
that pair.

Another way to measure the synergy between spikes that is suggested by the
present analysis is to take into account their contribution to the information con-
veyed by the whole spike train. The contribution of single spikes to the whole
spike train information is given by equation 14, and correspondingly the contri-
bution of pairs of spikes is given by the sum of equations 14 and 15. Therefore
the extent of synergy between pairs of spikes is simply the quantity given in
equation 15 alone. The concept generalises to higher order interactions; ‘spike’
synergy is something which falls naturally out of the series expansion approach.

It is interesting to note that the introduction of a refractory period has an
accompanying effect on the synergy between spikes, as measured by the fractional
second order contribution to the overall temporal information. Figure 8a shows
the effect of the refractory period on the synergy between spikes. This is shown
for the example of a cell whose firing rate is modulated by a 40 Hz sinusoid for one
stimulus as in the earlier Figures. The Figure compares a Poisson process with
processes augmented with an absolute refractory period of between 1 and 16 ms,
and also with another process which has a 2ms absolute refractory period, and
an exponentially decaying autocorrelation with time constant 20 ms, reflecting a

3The definition of information carried by the occurrence of a single event is a
generalization of equation 14. However, the Brenner et al. (1999) definition of
information carried by, for example, single spikes in isolation is different from the
contribution of the occurrence of a single spike in a given trial to the information
from the full spike train. The latter quantity also has terms of higher order.
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relative refractory period. It is apparent that for the Poisson process (in which
spikes are not entirely independent because of the rate modulation) the second
order contribution is small or negative. For longer refractory periods there is an
increasing peak in the early period of the response. This effect appears to involve
an interaction between the absolute refractory period and the time-constant of
stimulus modulation of the rates; the stimulus modulation timescale determines
the width of the spike-synergy peak (see Figure 8b), whereas the refractory period
length determines its height.

It has been noted previously that the temporal correlations introduced into
the spike train by refractoriness can have a beneficial effect on coding. This occurs
by regularization of the higher firing rate parts of the response, producing a more
deterministic relation between stimulus and response (de Ruyter van Steveninck
et al., 1997; Berry II and Meister, 1998). The present analysis confirms this
effect, and adds several new facts: that the effect is second order in time, and
that it involves interaction between the refractory and dominant stimulus-induced
modulation timescales, such that the width of the period of increased information
is determined by the stimulus frequency characteristics, whereas the amount of
extra information is determined by the effective duration of refraction.

9 Analysis of neurophysiological data

In order to illustrate the specific advantages and the type of neurophysiological
results that can be obtained with our series expansion method, we present here
an example analysis of two cells recorded from the barrel cortex of adult normal
anaesthetised Wistar rats. The two neurons presented were located in the D2
and C2 barrel column respectively. Each of the stimulation consisted of a 100 ms
lasting upward deflection of one of the whiskers. For each neuron, the stimulus
set was composed of its principal whisker and its eight surrounding whiskers, so
that each of the whiskers that were likely to activate the cells were included in
the stimulus set. 50 to 56 trials per whisker were available. The time onset of
stimulation, as well as spike times, were recorded with 0.1 ms precision. (See
Lebedev et al. (2000) for a complete description of the experimental methods).
The information about which of the nine whiskers was stimulated was computed,
both with the series expansion approach and using brute force estimation from
response frequencies. Information from spike counts and spike times were both
computed. For the latter, a resolution ∆t = 10 ms was used. Corrections for
the upward bias originating from limited sampling were applied (see Appendix
B). The range over which unbiased information measures could be obtained is
discussed below and in Appendix B. Note that the probability scaling assumption
was shown to be satisfied by both neurons in Figure 2.

Figure 9a shows the spike count information analysis for the first neuron.
Since the overall mean rate of the neuron across the 100 ms stimulation is 10 Hz,
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the series expansion is expected to be very good. Indeed, a comparison of the
brute force and series spike count information shows that the two are essentially
identical for the whole stimulation time range. As the two quantities are (after
finite sampling corrections) unbiased in this time range, this is a very compelling
verification of the validity of the series expansion method. In Figure 9b we re-
port the spike times information analysis for the first neuron. It is evident that
the brute force estimation of the full temporal information diverges rapidly after
the first four to five time bins (i.e. after to 40-50 ms). This is due to failure
of corrections for finite sampling, as expected by the rule of thumb for sampling
corrections (see Appendix B). The spike times series expansion is a close match
to the brute force estimator up to 40-50 ms, and no appreciable divergence due
to finite sampling is visible, again as expected. This illustrates the clear supe-
riority, in terms of sampling requirements, of the series expansion with respect
to brute force evaluations. The separation of information into components, ob-
tained using the series expansion, shows that most of the information is carried
by the rate component. However, for this cell spike correlations contribute up
to approximately 15% of the information in the spike times case. Note that this
information in spike correlations is all contributed by the stimulus-independent
component. This means that this little correlational information does not arise
from modulation of the autocorrelogram with stimulus, but from the interplay of
signal and noise correlations. The peak across time for the spike count informa-
tion was 0.31 bits; the full temporal information obtained with 10 ms resolution
was of 0.41 bits at time T = 50 ms. This shows that a neuron can transmit ap-
preciable temporal information within a fraction of one mean interspike interval.
This possibility was predicted by our mathematical analysis of coding regimes.
Finally, it is interesting to note that this neuron in the first 10 ms of response
carried on average more than 3 bits per each spike emitted.

Figure 10 reports the information time course for the second neuron. Its mean
rate across 100 ms was 16 Hz. Also in this second case the information for the
spike counts obtained with the series expansion coincided with that obtained by
the brute force method, thus confirming the reliability of the series expansion.
When considering spike times, series expansion and brute force evaluation are
very close up to 40-50 ms. After 50 ms, the brute force evaluation cannot be
corrected effectively for finite sampling, and thus it starts to diverge. The peak
spike count information was 0.13 bits; the peak spike timing information was
0.20 bits. As before, significant temporal information is transmitted within one
typical interspike interval. The component analysis indicates that, unlike the first
cell, this second cell transmits information by mean firing rate modulations only,
and correlations between spikes do not transmit any information.

The above two cells were shown only for illustrative purposes, rather than to
make any general point about the information properties of barrel cortex neu-
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rons4. This illustration shows that i) the series expansion method can give reliable
and testable results, ii) when used to compute information in spike times, it has
considerable advantages in terms of data size requirements; and iii) it can effec-
tively quantify the contributions of different encoding mechanisms to neuronal
information transmission.

10 Discussion

We have demonstrated that the (MacKay and McCulloch, 1952) information
contained in the specification of the times of spike emission of a population of
cells can be broken up into a series of terms each quantifying the contribution of
a different encoding mechanism, just as the information contained in the spike
counts from a population can (Panzeri et al., 1999). Although it can be applied
only to a limited range of time windows, the use of this series approach has a
number of advantages over brute force computation for both the understanding of
the theory of coding with spike trains, and for the analysis of neurophysiological
data.

A first advantage of this approach is that it necessarily compares the contri-
butions of different information-bearing parameters on correct and equal terms,
and shows how they combine to yield the full information available from the
spike train. A second advantage of the series expansion method is that it re-
quires much less data sampling than a brute force approach, in order to obtain
unbiased and reliable information measures. This is because the information is
computed by using only the subset of the possible variables characterising the
spike train which carry the most information in the short time limit. Therefore
the complexity of the response space is reduced in the way that preserves the most
information. A third interesting feature of the method present here is that it does
not assume that the neuronal response space is a vector space, as e.g. Principal
Component Analysis (Optican and Richmond, 1987) does. Since sensory sys-
tems are non-linear, this is a property that has to be satisfied by any method for
studying neuronal information encoding (Victor and Purpura, 1996; Victor and
Purpura, 1997). Fourth, the series expansion approach is a method to quantify
the full temporal information that can be extracted from the spike train by an
ideal observer, and does not depend on the validity of a stimulus-response model,
and is not specific to a particular stimulus decoder. Therefore it provides infor-
mation values against which the performance of encoding/decoding models can
be assessed (Rieke et al., 1996; Borst and Theunissen, 1999).

The observation timescales with which spike trains are studied depend upon
the questions which are being asked. Many authors, particularly those with

4A complete study of the informational properties of a large set of barrel cor-
tical neurons will be the subject of a separate publication (Panzeri, Petersen,
Schultz, Lebedev and Diamond; in preparation)
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a perspective from the field of psychophysics, have examined windows of data
up to several seconds long. The justification is that, in certain tasks (Britten
et al., 1992), psychophysical performance increases up to these timescales, as does
the ability to discriminate stimuli based upon counting the spikes of a single cell
(as counting for longer allows noise to be averaged out). The techniques discussed
in the current paper are inapplicable to such long time windows (although other
techniques such as direct calculation of the spike count information for a single
cell do apply). The authors would like to comment that the study of neural coding
is often considered as a precursor to, or partner of, the study of computation or
information processing in the nervous system. To understand the computational
architecture of the brain, it is necessary to understand the nature of the symbols
which are processed. Accepting that single neurons are the primary information
processing units of the brain, these symbols must exist on timescales which are
“seen” by single cells, which may be as low as a membrane time-constant, or
longer if additional integrative processes are enacted. It is neural coding on
single cell timescales which determines computation, and which motivates the
current work. Since perceptual processes are unlikely to be uniform in time, such
a strategy might also elucidate some of the computations underlying perception
at longer timescales.

The work presented here is not only relevant as a tool for neurophysiologi-
cal data analysis. It allows also analytical studies of the statistical properties
of population spike trains, such as refractoriness, autocorrelation, and timing re-
lationships between cells, to be conducted with regard to understanding which
parts of the full temporal information they contribute to and which they do not.
Here we have used this formalism to relate precisely the time scale of response
parameter variations to transitions between spike count and temporal encoding
regimes; to show that the impact on information representations of stimulus-
independent trial-by-trial correlations depends crucially on their interplay with
the signal correlation; and to show that the neuronal refractory period can lead
to synergy between spikes. A further understanding of how other parameters
of biophysical relevance can be adjusted to maximise encoding capacity can be
reached by the use of the formalism presented here.

One most interesting finding often reported in experimental studies of neu-
ronal information transmission is that sensory neurons transmit most of the in-
formation within one mean interspike interval, and single spikes carry a lot of
information (Rieke et al., 1996). Thus high spike timing precision and rate cod-
ing may coexist in sensory neuron, as the rate code has to be evaluated in a short
window. This has led some authors to conclude that under these conditions the
distinction between rate and temporal encoding may become blurred (see Rieke
et al. (1996), p. 119). However, differences between temporal and rate encod-
ing and rate coding can be defined and be present even under conditions of such
rapid processing (Theunissen and Miller, 1995; Borst and Theunissen, 1999). Our
study advances the understanding of the distinction between temporal and rate
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encoding when the relevant window for information transmission is short. In fact,
our work explicitly relates response variations time scales to transitions between
coding regimes, and shows that under some conditions a substantial amount of
information can be encoded purely temporally within a fraction of one interspike
interval (see section 6). Indeed, the example analysis of two neurons in the rat
barrel cortex shows that this is not only a theoretical possibility, but that it can
be realised by sensory neurons.

Shadlen and Newsome (1998) argue that because the interspike interval in
the responses of cortical neurons is highly variable, the rapid information trans-
mission achieved by the cerebral cortex (i.e. substantial information being trans-
mitted in one ISI or less) must imply redundancy of signal. Their argument is
based on the idea that to obtain reliability in short timescales it is necessary
to average away the large observed variability of individual ISIs by replicating
the signal through many similar neurons. In other words, the need for rapid in-
formation transmission should strongly constrain the cortical architecture. Our
study demonstrates precisely the opposite. The fact that the first order temporal
information transmitted by a population is simply the sum of all single-cell con-
tributions (equation 14) demonstrates that it is not necessary to transmit many
copies of the same signal to ensure rapid and reliable transmission. If each cell
contributes some non-identical information about the stimuli, this will sum up in
less than one ISI, and high population information rates can be achieved.

We finally note that an earlier work by DeWeese (DeWeese, 1995; DeWeese,
1996) has previously reported an elegant analytical study of the impact of interac-
tion between spikes of information transmission in single cells. This study made
use of a cluster-expansion formalism derived from statistical mechanics. The re-
sults obtained by DeWeese in this way are close to what we obtained in the single
cell case. The only difference is that in DeWeese’s equations the summation over
time in the quadratic term of second derivative of the information is restricted to
pairs of time bins different from each other. However, this work reports several
advances with respect to the earlier work of DeWeese. In fact, we computed
the information carried by an ensemble of cells, instead of by single cells only.
We separated the information into different components, each reflecting different
encoding mechanisms. We also studied the transition between spike count and
temporal encoding regimes. The power series formalism makes the conditions
under which the series converges transparent; this issue is much less clear with a
cluster expansion (see e.g. (DeWeese, 1995) p. 41). Unlike in (DeWeese, 1996),
corrections for finite sampling were introduced here. This last development is
essential when using the method for studying information transmission in real
neurons.

In conclusion, a full understanding of the coding properties of a neural system
cannot be achieved simply by computing the total information about the stimuli
contained in its spike trains; rather, it is necessary to at the very least discover
how this total is comprised from the individual information-bearing parameters.
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The results that we have presented here encourage us to think that this is possible.

Appendix A

In this Appendix we show that, under the assumptions summarized in section 5,
the only responses contributing to the transmitted information up to order k are
the spike patterns with up to k spikes in total. Thus the power expansion in the
short time window length T is related to the expansion in the total number of
spikes emitted by the population. We also compute the only non-zero response
probabilities up to second order, which are the only ones contributing to the first
two information derivatives. We give the proof for finite temporal precision.

Consider the response to stimulus s. The probability of observing one spike
in the bin centered at tai , averaged over all possible patterns of spikes occurring in
other bins, is ra(t

a
i ; s)∆t. Now, note that the assumption specified by equation 6

implies that the probability of a single spike, the observation of any pattern of
other spikes, also scales proportionally to ∆t:

P (tai |t
b
j · · · t

f
k ; s) ∝ ∆t (A.1)

Thirdly, we use the well known theorem on compound probabilities to write down
the following chain rule for the probability of observing a pattern tai t

b
j · · · t

f
k of k

spikes when stimulus s is presented:

P (tai t
b
j · · · t

f
k ; s) = P (tai |t

b
j · · · t

f
k ; s)P (tbj| · · · t

f
k ; s) · · ·P (tfk; s) (A.2)

This means that a probability of k spikes is a product of k conditional proba-
bilities of emission of each of the spikes given the presence of other spikes in the
pattern. Since, as proven above, each of the k terms of this product is propor-
tional to ∆t, probabilities of k-plets of spikes scale as (∆t)k. From this scaling
property, from the definition of information, equation 1, and from the logarithm
series expansion, equation 13, it follows that, for the computation of the first k in-
formation derivatives, only response probabilities with up to k spikes are needed,
and they can be truncated at the k-th order in ∆t. Responses with more than k
spikes do not contribute to the first k information derivatives.

Finally we compute the response probabilities of up to two spikes, truncated
at the second order in ∆t. The probability of observing just two spikes at ta1, t

b
2 is,

up to O(∆t2), given by the product of P (ta1|t
b
2; s) (from equation 6) and rb(t

b
2; s)∆t

(the latter factor quantifying at first order the probability of one spike in tb2):

P (ta1t
b
2; s) =

1

2
ra(t

a
1; s)rb(t

b
2; s)

[

1 + γab(t
a
1, t

b
2; s)

]

(∆t)2 +O(∆t3) (A.3)

The probability of two spikes is divided by two to prevent over-counting due
to equivalent permutations, rather than restrict the sum over events to non-
equivalent permutations, as was done in Panzeri et al. (1999). The probability
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P (ta1; s) of observing just one spike at ta1 is given, up to order ∆t2, by the product
of rb(t

b
2; s)∆t and the probability of not observing any other spike than that at

ta1:

P (ta1; s) = ra(t
a
1; s)∆tP ( no spikes but ta1; s) +O(∆t3)

= ra(t
a
1; s)∆t





1−
C
∑

b=1

∑

tb
2

P (tb2|t
a
1; s)−

∑

b,c

∑

tb
2
tc
3

P (tb2t
c
3|t

a
1)− · · ·







= ra(t
a
1; s)∆t





1−∆t
C
∑

b=1
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tb
2

rb(t
b
2; s)

[

1 + γab(t
a
1, t

b
2; s)

]







+ O(∆t3) (A.4)

The probability of no cells at all firing, up to ∆t2, can be obtained by subtracting
from 1 all the response probabilities which are non-zero at second order.

The probability expansion in the infinite temporal precision limit can be ob-
tained along the same lines, by replacing probabilities with probability densities,
and using equation 11.

Appendix B

When considering neurophysiological data, the information quantities have to be
evaluated from response probabilities obtained from a limited number of trials per
stimulus, Ns. This induces an upward systematic error, or bias, in the information
measures. The systematic error has to be evaluated and subtracted in order to
obtain unbiased information measures. In this appendix we briefly report how
the bias is computed and corrected for in the different information estimation
methods.

The bias correction is a simple formula, which is slightly different when consid-
ering the information is calculated directly from the Shannon formula (equations 1
and 2) by “brute force” estimation of response frequencies, or when consider-
ing the information computed by the series expansion5 (see Panzeri and Treves
(1996),Panzeri et al. (1999)):

δIbruteforce =

∑

s∈S(Rs − 1)− (R − 1)

2N ln 2
; δIseries =

∑

s∈S(Rs)−R

2N ln 2
(B.1)

5Note that the series expansion correction reported below is the leading bias
term in the short time limit only. Note also that the series expansion bias cor-
rection slighlty differes from the one for the brute force computation because in
the series expansion formalism, the response class corresponding to zero response
has always non-zero probability. This response class contribution cancels out the
“-1” in the bias for the brute force infromation.
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where N is the total number of trials (across all stimuli), and R is the number of
relevant response classes across all stimuli (i.e. the number of different responses
with non-zero probability of being observed). Rs is the number of relevant re-
sponse classes to stimulus s (Panzeri and Treves, 1996). It is intuitive that the
number of trials per stimulus Ns should be big when compared to the number
of response classes R in order to get good enough sampling of conditional re-
sponses, and therefore reliable bias correction. When a Bayes procedure (that
takes into account that some response classes may not be observed just because
of local undersampling) is used to estimate the number of relevant bins, reliable
bias corrections can be obtained when Ns is equal or higher than the number of
response classes R. This gives a useful rule of thumb for evaluating the range in
which the bias corrections still work.

For the brute force full temporal information (equation 1), the response space
is that of all the possible temporal spike patterns, and the number of possible
responses is 2Cd, d = T/∆t being the number of time bins in which the window is
digitised. The situation is very different when the information is computed by the
series expansion approach. For the first order spike times information, R is the
number of non-zero bins of the dynamic rate function, which is at most Cd. For
the second order spike times information, R is the number of relevant bins in the
space of pairs of spike firing times, which is at most Cd(d−1)/2 +C(C−1)d(d+
1)/4. Therefore the number of trials needed to effectively correct for the bias
grows only linearly when C or d is increased if the first order term is considered,
and only quadratically when also the second order term is included. Considering
that the growth of the data size required for the brute force evaluation from
the Shannon formula is exponential, there is a clear advantage in terms of data
size when using the series approach developed here. Some simulation examples
of effectiveness of bias removal procedures for the series expansion method were
reported in Schultz and Panzeri (2000).

As an example, when 50-55 trials per stimulus are available for information
analysis of single cells (as in the example reported here), the brute force compu-
tation is unbiased only up to 4-5 time bins, and the series expansion is unbiased
up to 9-10 time bins. The spike count information quantities of course require
much less data than the corresponding spike times quantities. They are thus
well corrected for bias for the whole range in which the full temporal information
measures are reliable.
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Figure Captions
Figure 1: The accuracy of the first and second order approximations to the
full information in the spike times of a single cell with Poisson responses to two
stimuli. The cell responded to stimulus 1 with a constant (in time) rate of 30
spikes/sec., and to stimulus 2 with a spike rate oscillating sinusoidally around 30
spikes/sec. with period 2 ms and amplitude 30 spikes/sec.

Figure 2: The scaling relationship between the average conditional firing rate
(computed as the average probability of observing a spike at one time, given that
a spike has been observed at another time, divided by the bin width ∆t) and the
bin width of observation. The relationship is shown for two cells from the rat
barrel cortex.

Figure 3: Comparison of the full temporal and spike count information. (A) The
modulation of the firing rates of a single non-homogeneous Poisson neuron by two
stimuli. (B) The evolution of the full temporal and the spike count information as
the time window is increased in width from the first instance of stimulus related
responses

Figure 4: The effect of the frequency of stimulus modulation of the rates. a
Full temporal information. b Purely temporal information only. The main re-
quirement for temporal contribution to the information can be seen easily in the
comparison of these two figures – fast fluctuation of the firing rates in comparison
to the timescale of observation.

Figure 5: A situation in which stimulus dependent correlation in spike timing
between cells can make a sizeable (but nevertheless second order) contribution
to the total information, via component 2c of the temporal information. (a)
Correlation function. (b) Resulting components of the full temporal information.
Component 2c dominates. Note that the corresponding spike count component
was more than ten times smaller over the whole time range.

Figure 6: The effect of precision of spike timing on the information available
from 32 ms of the response of a single simulated neuron. We used an absolute
refractory period of 4 ms in this simulation (in order to have at most one spike
per time bin for all the precisions ‘used). The data obtained with the continuous-
time limit (obtained by numerical integration) are included as the y-intercept
information values.

Figure 7: The effect of the relative frequencies and phase of signal and noise
temporal variations in achieving synergistic coding. (A) With signal and noise
correlation oscillating with identical timescales. The line marked with the star
symbol indicates synergistic coding in this case, as it falls above the sum of single
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cells’ information. (B) Noise correlation oscillating ten times faster than signal
correlation.

Figure 8: Synergy between spikes, measured by the fraction of the temporal
information contained in the second order terms. (A) Comparison of a Poisson
process with processes augmented with absolute refractory periods. In one case a
relative refractory period with exponential autocorrelation is also added (circles).
(B) The interaction of a 4 ms refractory period with stimulus-induced modulation
frequency, for three different modulation frequencies.

Figure 9: (a): The time course of the information in the spike counts for a neu-
ron located in the D2 barrel column of the rat cerebral cortex. The information
obtained with the brute force method (equation 2, indicated with ◦) is compared
to that obtained with the series expansion at second order (+). The three com-
ponents of the series expansion information are also presented (rate (⋄); stimulus
independent correlational (box); stimulus dependent correlational (⋆)). (b): The
time course of information carried by spike times of the same neuron, computed
with a 10 ms precision. Notation as in (a). The ‘rate’ component in this case
of course refers to the dynamic firing rate across the time window, rather than
anything to do with a spike count code.

Figure 10: The spike count and spike times information time course for a second
neuron located in the C2 barrel column. Notations as in Figure 9.
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Figure 8: Panzeri, MS 2096
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Figure 9: Panzeri, MS 2096
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Figure 10: Panzeri, MS 2096
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