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We perform a detailed �xed-point analysis of two-unit recurrent neural
networks with sigmoid-shaped transfer functions. Using geometrical ar-
guments in the space of transfer function derivatives, we partition the
network state-space into distinct regions corresponding to stability types
of the �xed points. Unlike in the previous studies, we do not assume any
special form of connectivity pattern between the neurons, and all free
parameters are allowed to vary. We also prove that when both neurons
have excitatory self-connections and the mutual interaction pattern is the
same (i.e., the neurons mutually inhibit or excite themselves), new attrac-
tive �xed points are created through the saddle-node bifurcation. Finally,
for an N-neuron recurrent network, we give lower bounds on the rate
of convergence of attractive periodic points toward the saturation val-
ues of neuron activations, as the absolute values of connection weights
grow.

1 Introduction

Discrete-time recurrent neural networks offer a wide range of dynamical be-
havior. They can generate steady-state, periodic, quasi-periodic, and chaotic
orbits.

Attractive �xed points have been proposed as robust representations of
prototype vectors in associative memories (Amit, 1989; Hop�eld, 1984; Hui
& Zak, 1992). Indeed, a great deal of work has focused on the question of
how to constrain the weights in the recurrent network so that it exhibits only
attractive steady states (Casey, 1995; Jin, Nikiforuk, & Gupta, 1994; Sevrani
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& Abe, 2000). Jin et al. (1994) give the conditions on the weight matrix under
which all �xed points of the network are attractive.

Saddle �xed points were suggested to play an important role in working
memories operating in nonstationary environments where both long-term
maintenance and quick transitions are desirable (McAuley & Stamp�i, 1994;
Nakahara & Doya, 1998). Moreover, saddle points often mimicstack-like be-
havior in recurrent networks trained on context-free languages (Rodriguez,
Wiles, & Elman, 1999). Also, they were found to be part of a mechanism by
which recurrent networks induce nonstable representations of large cycles
in �nite state machines (Ti Ïno, Horne, Giles, & Collingwood, 1998).

There are many applications where oscillatory dynamics of recurrent
networks is desirable. For example, when trained to act as a �nite state
machine (Cleeremans, Servan-Schreiber, & McClelland, 1989; Giles et al.,
1992; Ti Ïno & Sajda, 1995; Watrous & Kuhn, 1992), the network has to induce
a stable representation of state transitions associated with each input symbol
s of the machine. Of special importance are period-n cycles driven by s:
given the current state S, when repeatedly presenting the input s , we return
after n steps to S.Cycles in the machine often induce in the recurrentnetwork
state-space stable periodic orbits corresponding to the input s (Casey, 1996;
Manolios & Fanelli, 1994; Ti Ïno et al., 1998). In particular, loops, that is,
period 1 cycles, often induce attractive �xed points (see, e.g., Casey, 1996;
Ti Ïno et al., 1998).

Finally, chaotic behavior of recurrent networks has been a focus of a vivid
research activity (Botelho, 1999; Klotz & Brauer, 1999; Pasemann, 1995a),
especially after Wang (1991) rigorously showed that a simple two-neuron
recurrent network is capable of producing chaos.

There is a considerable amount of literature on two-unit recurrent net-
works (Beer, 1995; Borisyuk & Kirillov, 1992; Botelho, 1999; Klotz & Brauer,
1999;Pakdamann, Grotta-Ragazzo, Malta, Arino, & Vibert, 1998;Pasemann,
1993; Wang, 1991; Zhou, 1996). This is partly due to the lack of mathematical
tools for a detailed analysis of higher-dimensional dynamical systems and
partly due to the high expressive power of such simple networks, in which
many generic properties of larger networks are already present (Botelho,
1999). Moreover, two-neuron networks are sometimes thought of as sys-
tems of two modules, where each module represents the mean activity of a
spatially localized neural population (Borisyuk & Kirillov, 1992; Pasemann,
1995a; Tonnelier, Meignen, Bosh, & Demongeot, 1999).

Typically, studies of the asymptotic behavior of two-unit or larger net-
works assume some form of structure in the weight matrix describing the
connectivity pattern among recurrent neurons. We mention a few exam-
ples:

� Symmetric connectivity and absence of self-interactions enabled Hop�eld
(1984) to interpret the network as a physical system having energy
minima in the attractive �xed points. These rather strict conditions
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were weakened in Casey (1995). Blum and Wang (1992) globally ana-
lyzed networks with nonsymmetrical connectivity patterns of special
types. In particular, they formulated results for two-neuron networks
with the logistic sigmoid transfer function g( )̀ D 1/ (1 C e¡`), in the
absence of neuron self-connections.

� Deep mathematical studies were presented for severely restricted top-
ologies, such as the “ring network” (Pasemann, 1995b) or the chain
oscillators (Wang, 1996).

� Often rather detailed bifurcation studies are performed with respect
to only one or two network parameters; the remaining parameters are
kept �xed to “appropriate” values (Borisyuk & Kirillov, 1992; Naka-
hara & Doya, 1998).

Also, the assumption of saturated sigmoidal or linear transfer functions
(as in the Brain-State-in-a-Box model; Anderson, 1993) makes the study of
asymptotically stable equilibrium points more feasible (Botelho, 1999; Hui
& Zak, 1992; Sevrani & Abe, 2000).

In this article we impose no conditions on connection weights or external
inputs, apart from the fact that the weights are assumed to be nonzero. To
our knowledge, a thorough �xed-pointanalysis of two-unit neural networks
with sigmoid transfer functions is still missing.1 We offer such an analysis in
sections 4 and 5. In section 6 we rigorously explain the mechanism by which
new attractive �xed points are created—the saddle-node bifurcation. This
con�rms the empirical �ndings of Tonnelier et al. (1999). When studying
such networks, they empirically observed that a new �xed point appears
through the saddle-node bifurcation.

Hirsch (1994) proved that when all the weights in an N-neuron recur-
rent network with exclusively self-exciting (or exclusively self-inhibiting)
neurons are multiplied by an increasing neural gain, attractive �xed points
tend toward the saturated activation values. In section 7, we give a lower
bound on the rate of convergence of attractive periodic points2 toward the
saturation values. The results hold for “sigmoid-shaped” neuron transfer
functions. This investigation was motivated by the observation of many in
the recurrent network grammar/automata induction community that the
activations of recurrent neurons often cluster away from the center of the
network state-space and close to the saturated activation values (e.g., Mano-
lios & Fanelli, 1994; Ti Ïno et al., 1998). In fact, this was exploited by Zeng,
Goodman, and Smyth (1993) in a heuristic to stabilize the induced automata
representations in the recurrent network.

1 The most complete �xed-point analysis of continuous-time two-neuron networks can
be found in Beer (1995).We determine the �xed-point positions using a similar “null-cline”
technique.

2 Fixed points can be considered periodic points of period 1.
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In the next two sections we recall some basic concepts from the theory of
dynamical systems and introduce the recurrent network model.

2 Basic De�nitions

A discrete-time dynamical system can be represented as the iteration of a
(differentiable) map f : X ! X, X µ<d:

xnC1 D f (xn), n 2 N. (2.1)

Here, N denotes the set of all natural numbers. For each x D x0 2 X, the
iteration 2.1 generates a sequence of points de�ning the orbit, or trajectory
of x, under the map f . In other words, the orbit of x under f is the sequence
f f n(x)gn¸0. For n ¸ 1, f n is the composition of the map f with itself n times.
f 0 is de�ned to be the identity map on X.

A point x 2 X is called a �xed point of the map f if f (x) D x. It is called
a periodic point of period P if it is a �xed point of f P.

Fixed points can be classi�ed according to the orbit behavior of points
in their vicinity. A �xed point x is said to be asymptotically stable (or an
attractive point of f ), if there exists a neighborhood O(x) of x such that
limn!1 f n(y) D x, for all y 2 O(x). As n increases, trajectories of points near
an asymptotically stable �xed point tend toward it.

A �xed point x of f is asymptotically stable only if for each eigenvalue l
of J (x), the Jacobian of f at x, |l| < 1 holds. The eigenvalues of the Jacobian
J (x) govern the contracting and expanding directions of the map f in a
vicinity of x. Eigenvalues larger in absolute value than 1 lead to expansions,
whereas eigenvalues smaller than 1 correspond to contractions. If all the
eigenvalues of J (x) are outside the unit circle, x is a repulsive point. As the
time index n increases, the trajectories of points from a neighborhood of a
repulsive point move away from it. If some eigenvalues of J (x) are inside
and some are outside the unit circle, x is said to be a saddle point.

3 The Model

In this article we study recurrent neural networks with transfer functions
from a general class of “sigmoid-shaped” maps,

gA,B,m ( )̀ D
A

1 C e¡m `
C B, (3.1)

transforming < into the interval (B, B C A), B 2 <, A 2 (0, 1). The so-called
neural gain, m > 0, controls the “steepness” of the transfer function. As
m ! 1, gA,B,m tends to the step function gA,B,m ( )̀ D B, for ` < 0, and
gA,B,m ( )̀ D B C A, for ` ¸ 0. The commonly used unipolar and bipolar lo-
gistic transfer functions can be expressed as g1,0,1 and g2,¡1,1, respectively.
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Figure 1: A two-dimensional recurrent neural network.

Another commonly used transfer function, the hyperbolic tangent, corre-
sponds to g2,¡1,2.

For recurrent networks consisting of two neurons (see Figure 1), the it-
erative map, equation 2.1, can be written as follows:

µ
xnC1
ynC1

¶
D

µ
gA,B,m (w11xn C w12yn C T1)
gA,B,m (w21xn C w22yn C T2)

¶
. (3.2)

The neuron outputs (activations) (xn, yn) 2 (B, B C A)2 form the state of the
networkat time step n. The connection weights wij 2 <nf0g and bias/external
input terms Ti 2 < are the adjustable parameters of the network and deter-
mine the dynamical behavior of the system 3.2.

For the purpose of �xed-point analysis of equation 3.2, it is convenient
to include the neural gain m into the adjustable parameters. We rewrite
equation 3.2 as

µ
xnC1
ynC1

¶
D

µ
g(axn C byn C t1)
g(cxn C dyn C t2)

¶
, (3.3)

where g D gA,B,1, a D m w11, b D m w12, c D m w21, d D m w22, t1 D m T1, and
t2 D m T2.

4 Analysis in the Space of Transfer Function Derivatives

In this section, we work with the derivatives

G1(x, y) D g0 ( )̀| D̀axCbyCt1 D g0 (ax C by C t1) (4.1)

G2(x, y) D g0 ( )̀|`DcxCdyCt2 D g0 (cx C dy C t2) (4.2)

of transfer functions corresponding to the two neurons in the network de-
scribed by equation 3.3. The derivatives G1 and G2 are always positive. Our
aim is to partition the space of derivatives (G1, G2) 2 (0, A

4 )2 into regions
corresponding to stability types of the neural network �xed points.
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First, we introduce two auxiliary maps y : (B, B C A) ! (0, A/4],

y (u) D
1
A

(u ¡ B)(B C A ¡ u), (4.3)

and w : (B, B C A)2 ! (0, A/4]2,

w (x, y) D (y (x), y (y)). (4.4)

It is easy to show that

g0 ( )̀ D
1
A

(g( )̀ ¡ B)(B C A ¡ g( )̀) D y (g( )̀). (4.5)

For each �xed point (x, y) of equation 3.3,

µ
x
y

¶
D

µ
g(ax C by C t1)
g(cx C dy C t2)

¶
, (4.6)

and so by equations 4.1, 4.2, 4.5, and 4.6,

G1(x, y) D y (g(ax C by C t1)) D y (x), (4.7)

G2(x, y) D y (g(cx C dy C t2)) D y (y), (4.8)

which implies (see equation 4.4)

(G1(x, y), G2(x, y)) D w (x, y). (4.9)

Consider a function F(u, v), F: A µ <2 ! <. The function F induces a
partition of the set A into three regions:

F¡ D f(u, v) 2 A|F(u, v) < 0g, (4.10)

FC D f(u, v) 2 A|F(u, v) > 0g, (4.11)

F0 D f(u, v) 2 A|F(u, v) D 0g. (4.12)

Now we are ready to formulate and prove three lemmas that de�ne the
correspondence between the derivatives G1 and G2 of the neuron transfer
functions (see equations 4.1 and 4.2) and the �xed-point stability of the
network, equation 3.3.

Lemma 1. If bc > 0, then all attractive �xed points (x, y) of equation 3.3 satisfy

w (x, y) 2
³

0,
1
|a|

´
£

³
0,

1
|d|

´
.
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Proof. Consider a �xed point (x, y) of equation 3.3. By equations 4.1 and 4.2,
the Jacobian J (x, y) of equation 3.3 in (x, y) is given by3

J D
³

aG1(x, y) bG1(x, y)
cG2(x, y) dG2(x, y)

´
.

The eigenvalues of J are

l1,2 D
aG1 C dG2 §

p
D(G1, G2)

2
, (4.13)

where

D(G1, G2) D (aG1 ¡ dG2)2 C 4G1G2bc. (4.14)

The proof continues with an analysis of three separate cases, correspond-
ing to sign patterns of weights associated with the neuron self-connections.

In the �rst case, assume a, d > 0, that is, the weights of self-connections
on both neurons are positive. De�ne

a(G1, G2) D aG1 C dG2. (4.15)

Since the derivatives G1, G2 can only take on values from (0, A/4), and
a, d > 0, we have D(G1, G2) > 0 and a(G1, G2) > 0, for all (G1, G2) 2
(0, A/4)2. Inour terminology(see equations 4.10–4.12), DC , aC D (0, A/4)2 µ
(0, 1)2. To identify possible values of G1 and G2 so that |l1,2 | < 1, it is suf-
�cient to solve the inequality aG1 C dG2 C

p
D(G1, G2) < 2, or equivalently,

2 ¡ aG1 ¡ dG2 >
p

D(G1, G2). (4.16)

Consider only (G1, G2) such that

r1(G1, G2) D aG1 C dG2 ¡ 2 < 0, (4.17)

that is, (G1, G2) lying under the line r 0
1 : aG1 C dG2 D 2. All (G1, G2) such

that aG1 C dG2 ¡ 2 > 0, that is, (G1, G2) 2 r C
1 (above r 0

1 ), lead to at least
one eigenvalue of J greater in absolute value than 1. Squaring both sides
of equation 4.16, we arrive at

k1(G1, G2) D (ad ¡ bc)G1G2 ¡ aG1 ¡ dG2 C 1 > 0. (4.18)

3 To simplify the notation, the identi�cation (x, y) of the �xed point in which equa-
tion 3.3 is linearized is omitted.
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Figure 2: Illustration for the proof of lemma 1. The network parameters satisfy
a, d > 0 and bc > 0. All (G1, G2 ) 2 (0, A/4]2 below the left branch of k 0

1 (if
ad ¸ bc) or between the branches ofk 0

1 (if ad < bc) correspond to the attractive
�xed points. Different line styles for k 0

1 are associated with the cases ad > bc,
ad D bc, and ad < bc—the solid, dashed-dotted, and dashed lines, respectively.

If ad 6D bc, the set k 0
1 is a hyperbola,

G2 D
1
Qd

C
C

G1 ¡ 1
Qa

, (4.19)

with

Qa D a ¡ bc
d

, (4.20)

Qd D d ¡ bc
a

, (4.21)

C D
bc

(ad ¡ bc)2 . (4.22)

It is easy to check that the points (1/a, 0) and (0, 1/d) lie on the curvek 0
1 .

If ad D bc, the set k 0
1 is a line passing through the points (0, 1/d) and

(1/a, 0) (see Figure 2). To summarize, when a, d > 0, by equations 4.9, 4.17,
and 4.18, the �xed point (x, y) of equation 3.3 is attractive only if

(G1, G2) D w (x, y) 2 k C
1 \ r¡

1 ,

where the map w is de�ned by equation 4.4.
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A necessary (not suf�cient) condition for (x, y) to be attractive reads4

w (x, y) 2
³

0,
1
a

´
£

³
0,

1
d

´
.

Consider now the case of negative weights on neuron self-connections:
a, d < 0. Since in this case a(G1, G2) (see equation 4.15) is negative for all
values of the transfer function derivatives G1, G2, we have a¡ D (0, A/4)2 µ
(0, 1)2. In order to identify possible values of (G1, G2) such that |l1,2 | < 1,
it is suf�cient to solve the inequality aG1 C dG2 ¡

p
D(G1, G2) > ¡2, or

equivalently,

2 C aG1 C dG2 >
p

D(G1, G2). (4.23)

As in the previous case, we shall consider only (G1, G2) such that

r2(G1, G2) D aG1 C dG2 C 2 > 0, (4.24)

since all (G1, G2) 2 r¡
2 lead to at least one eigenvalue of J greater in absolute

value than 1.
Squaring both sides of equation 4.23, we arrive at

k2(G1, G2) D (ad ¡ bc)G1G2 C aG1 C dG2 C 1 > 0, (4.25)

which is equivalent to

((¡a)(¡d) ¡ bc)G1G2 ¡ (¡a)G1 ¡ (¡d)G2 C 1 > 0. (4.26)

Further analysis is exactly the same as the analysis from the previous case
(a, d > 0) with a, Qa, d, and Qd replaced by |a|, |a| ¡ bc/ |d|, |d| , and |d| ¡ bc/ |a|,
respectively.

If ad 6D bc, the set k 0
2 is a hyperbola,

G2 D
¡1

Qd
C

C

G1 C 1
Qa

, (4.27)

passing through the points (¡1/a, 0) and (0, ¡1/d).

4 If ad > bc, then 0 < Qa < a and 0 < Qd < d (see equations 4.20 and 4.21). The
derivatives (G1 , G2 ) 2 k C

1 lie under the “left branch” and above the “right branch” of
k 0

1 (see Figure 2). It is easy to see that since we are con�ned to the half-plane r¡
1 (below

the line r 0
1 ), only (G1 , G2 ) under the “left branch” of k 0

1 will be considered. Indeed, r 0
1 is

a decreasing line going through the point (1/a, 1/d), and so it never intersects the right
branch of k 0

1 . If ad < bc, then Qa, Qd < 0 and (G1, G2) 2 k C
1 lie between the two branches

of k 0
1 .
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If ad D bc,k 0
2 is the line de�ned by the points (0, ¡1/d) and (¡1/a, 0).

By equations 4.9, 4.24, and 4.25, the �xed point (x, y) of equation 3.3 is
attractive only if

(G1, G2) D w (x, y) 2 k C
2 \ r C

2 .

In this case, the derivatives (G1, G2) D w (x, y) must satisfy

w (x, y) 2
³

0,
1
|a|

´
£

³
0,

1
|d|

´
.

Finally, consider the case when the weights on neuron self-connections
differ in sign. Without loss of generality assume a > 0 and d < 0. Assume
further that aG1 C dG2 ¸ 0, that is, (G1, G2) 2 aC [ a0 (see equation 4.15) lie
under or on the line

a0: G2 D
a

|d|
G1.

It is suf�cient to solve inequality 4.16. Using equations 4.17 and 4.18 and
arguments developed earlier in this proof, we conclude that the derivatives
(G1, G2) lying in

k C
1 \ r¡

1 \ (aC [ a0).

correspond to attractive �xed points of equation 3.3 (see Figure 3). Since
a > 0 and d < 0, the term ad ¡ bc is negative, and so 0 < a < Qa, Qd < d < 0.
The “transformed” parameters Qa, Qd are de�ned in equations 4.20 and 4.21.
For (G1, G2) 2 a¡, by equations 4.24 and 4.25 and earlier arguments in this
proof, the derivatives (G1, G2) lying in

k C
2 \ r C

2 \ a¡

correspond to attractive �xed points of equation 3.3.
It can be easily shown that the sets k 0

1 and k 0
2 intersect on the line a0 in

the open interval (see Figure 3),

³
1
Qa
,

1
a

´
£

³
1

| Qd|
,

1
|d|

´
.

We conclude that the �xed point (x, y) of equation 3.3 is attractive only if

w (x, y) 2 [k C
1 \ r¡

1 \ (aC [ a0)] [ [k C
2 \ r C

2 \ a¡].

In particular, if (x, y) is attractive, then the derivatives (G1, G2) D w (x, y)
must lie in

³
0,

1
a

´
£

³
0,

1
|d|

´
.
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Figure 3: Illustration for the proof of lemma 1. The network parameters are
constrained as follows: a > 0, d < 0, and bc > 0. All (G1, G2) 2 (0, A/4]2 below
and on the line a0 and between the two branches ofk 0

1 (solid line) correspond to
the attractive �xed points. So do all (G1, G2 ) 2 (0, A/4]2 above a0 and between
the two branches ofk 0

2 (dashed line).

Examination of the case a < 0, d > 0 in the same way leads to a conclu-
sion that all attractive �xed points of equation 3.3 have their corresponding
derivatives (G1, G2) in

³
0,

1
|a|

´
£

³
0,

1
d

´
.

We remind the reader that the “transformed” parameters Qa and Qd are
de�ned in equations 4.20 and 4.21.

Lemma 2. Assume bc < 0. Suppose ad > 0 or ad < 0 with |ad| · |bc| /2.
Then each �xed point (x, y) of equation 3.3 such that

w (x, y) 2
³

0,
1
|a|

´
£

³
0,

1

| Qd|

´
[

³
0,

1
| Qa|

´
£

³
0,

1
|d|

´

is attractive. In particular, all �xed points (x, y) for which

w (x, y) 2
³

0,
1
| Qa|

´
£

³
0,

1

| Qd|

´

are attractive.
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Proof. The discriminant D(G1, G2) in equation 4.14 is no longer exclusively
positive. It follows from analytic geometry (see, e.g., Anton, 1980) that
D(G1, G2) D 0 de�nes either a single point or two increasing lines (that
can collide into one or disappear). Furthermore, D(0, 0) D 0. Hence, the set
D0 is either a single point—the origin—or a pair of increasing lines (that
may be the same) passing through the origin.

As in the proof of the �rst lemma, we proceed in three steps.
First, assume a, d > 0. Since

D
³

1
a

,
1
d

´
D

4bc
ad

< 0

and

D
³

1
a

, 0
´

D D
³

0,
1
d

´
D 1 > 0,

the point (1/a, 1/d) is always in the set D¡, while (1/a, 0), (0, 1/d) 2 DC . We
shall examine the case when D(G1, G2) is negative. From

|l1,2 |2 D
(aG1 C dG2)2 C |D |

4
D G1G2(ad ¡ bc)

it follows that (G1, G2) 2 D¡, for which |l1,2 | < 1, lie in (see Figure 4)

D¡ \ g¡,

where

g(G1, G2) D (ad ¡ bc)G1G2 ¡ 1. (4.28)

It is easy to show that

³
1
a

,
1
Qd

´
,

³
1
Qa
,

1
d

´
2 g0,

1
Qa

<
1
a

,
1
Qd

<
1
d

, and
³

1
a

,
1
Qd

´
,

³
1
Qa
,

1
d

´
2 D¡.

Turn now to the case D(G1, G2) > 0. Using the technique from the pre-
vious proof, we conclude that the derivatives (G1, G2) corresponding to
attractive �xed points of equation 3.3 lie in

DC \ r¡
1 \k C

1 ,

that is, under the line r 0
1 and between the two branches of k 0

1 (see equa-
tions 4.14, 4.17, and 4.18). The sets D0, r 0

1 ,k 0
1 , and g0 intersect in two points,

as suggested in Figure 4. To see this, note that for points on g0, it holds

G1G2 D
1

ad ¡ bc
,
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1/a~

1/d
~

G1

G
2

1
0r

k1
0

k1
0

0h

1/a 2/a

D

D

1/d

2/d

(0,0)

D

D

D

0

0

Figure 4: Illustration for the proof of lemma 2. The parameters satisfy a, d >
0 and bc < 0. All (G1, G2) 2 D¡ and below the right branch of g0 (dashed
line) correspond to the attractive �xed points. So do (G1, G2) 2 (0, A/4]2 in DC

between the two branches ofk 0
1 .

and for all (G1, G2) 2 D0 \ g0 we have

(aG1 C dG2)2 D 4. (4.29)

For G1, G2 > 0, equation 4.29 de�nes the line r 0
1 . Similarly, for (G1, G2) in

the sets k 0
1 and g0, it holds

aG1 C dG2 D 2,

which is the de�nition of the line r 0
1 . The curvesk 0

1 andg0 are monotonically
increasing and decreasing, respectively, and there is exactly one intersection
point of the right branch of g0 with each of the two branches ofk 0

1 .
For (G1, G2) 2 D0,

|l1,2 | D
aG1 C dG2

2
,

and (G1, G2) corresponding to attractive �xed points of equation 3.3 are
from

D0 \ r¡
1 .
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In summary, when a, d > 0, each �xed point (x, y) of equation 3.3 such that

(G1, G2) D w (x, y) 2
³

0,
1
a

´
£

³
0,

1
Qd

´
[

³
0,

1
Qa

´
£

³
0,

1
d

´

is attractive.
Second, assume a, d < 0. This case is identical to the case a, d > 0

examined above, with a, Qa, d, Qd, r¡
1 , and k C

1 replaced by |a| , | Qa|, |d| , | Qd|, r C
2 ,

and k C
2 , respectively. First, note that the set D0 is the same as before, since

(aG1 ¡ dG2)2 D (|a|G1 ¡ |d|G2)2.

Furthermore, ad¡bc D |a| |d|¡bc, and so (G1, G2) 2 D¡, for which |l1,2 | < 1,
lie in

D¡ \ g¡.

Again, it directly follows that
³

1
|a|

,
1

| Qd|

´
,

³
1
| Qa|

,
1
|d|

´
2 g0,

1
| Qa|

<
1
|a|

,
1

| Qd|
<

1
|d|

and ³
1
|a|

,
1

| Qd|

´
,

³
1
| Qa|

,
1
|d|

´
2 D¡.

For DC the derivatives (G1, G2) corresponding to attractive �xed points
of equation 3.3 lie in

DC \ r C
2 \k C

2 .

All (G1, G2) 2 D0 \ r C
2 lead to |l1,2 | < 1. Hence, when a, d < 0, every �xed

point (x, y) of equation 3.3 such that

w (x, y) 2
³

0,
1
|a|

´
£

³
0,

1

| Qd|

´
[

³
0,

1
| Qa|

´
£

³
0,

1
|d|

´

is attractive.
Finally, consider the case a > 0, d < 0. (The case a < 0, d > 0 would be

treated in exactly the same way.) Assume that D¡ is a nonempty region.
Then ad > bc must hold and

³
1
a

,
1
|d|

´
2 D¡.

This can be easily seen, since for ad < bc we would have for all (G1, G2),

D(G1G2) D (aG1 ¡ dG2)2 C 4G1G2bc D (aG1 C dG2)2 C 4G1G2(bc ¡ ad) ¸ 0.
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The sign of

D
³

1
a

,
1
|d|

´
D 4

³
1 C

bc
a|d|

´

is equal to the sign of a|d| C bc D bc ¡ ad < 0. The derivatives (G1, G2) 2 D¡,
for which |l1,2 | < 1, lie in

D¡ \ g¡.

Also,
³

1
a

,
1
Qd

´
,

³
1
| Qa|

,
1
|d|

´
2 g0.

Note that Qd ¸ |d| and | Qa| ¸ a only if 2a|d| · |bc| .
Only those (G1, G2) 2 D0 are taken into account forwhich |aG1 CdG2 | < 2.

This is true for all (G1, G2) in

D0 \ r¡
1 \ r C

2 .

If D(G1, G2) > 0, the inequalities to be solved depend on the sign of
aG1 C dG2. Following the same reasoning as in the proof of lemma 1, we con-
clude that the derivatives (G1, G2) corresponding to attractive �xed points
of equation 3.3 lie in

DC [
±
[k C

1 \ r¡
1 \ (aC [ a0)] [ [k C

2 \ r C
2 \ a¡]

²
.

We saw in the proof of lemma 1 that if a > 0, d < 0, and bc > 0, then
all (G1, G2) 2 (0, 1/ Qa) £ (0, 1/ | Qd|) potentially correspond to attractive �xed
points of equation 3.3 (see Figure 3). In the proof of lemma 2, it was shown
that when a > 0, d < 0, bc < 0, if 2a|d| ¸ |bc|, then (1/a, 1/ |d| ) is on or under
the right branch of g0 and each (G1, G2) 2 (0, 1/a) £ (0, 1/ |d| ) potentially
corresponds to an attractive �xed point of equation 3.3. Hence, the following
lemma can be formulated:

Lemma 3. If ad < 0 and bc > 0, then every �xed point (x, y) of equation 3.3
such that

w (x, y) 2
³

0,
1
| Qa|

´
£

³
0,

1

| Qd|

´

is attractive.
If ad < 0 and bc < 0 with |ad| ¸ |bc| /2, then each �xed point (x, y) of

equation 3.3 satisfying

w (x, y) 2
³

0,
1
|a|

´
£

³
0,

1
|d|

´

is attractive.
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5 Transforming the Results to the Network State-Space

Lemmas 1, 2, and 3 introduce a structure re�ecting stability types of �xed
points of equation 3.3 into the space of transfer function derivatives (G1, G2).
In this section, we transform our results from the (G1, G2)-space into the
space of neural activations (x, y).

For u > 4
A , de�ne

D (u) D
A
2

r
1 ¡

4
A

1
u

. (5.1)

The interval (0, A/4]2 of all transfer function derivatives in the (G1, G2)-
plane corresponds to four intervals partitioning the (x, y)-space, namely,

³
B, B C

A
2

¶2

, (5.2)
³

B, B C
A
2

¶
£

µ
B C

A
2

, B C A
´

, (5.3)
µ

B C
A
2

, B C A
´

£
³

B, B C
A
2

¶
, (5.4)

µ
B C

A
2

, B C A
´2

. (5.5)

Recall that according to equation 4.9 the transfer function derivatives
(G1(x, y), G2(x, y)) 2 (0, A/4]2 in a �xed point (x, y) 2 (B, B C A)2 of equa-
tion 3.3 are equal to w (x, y), where the map w is de�ned in equations 4.3 and
4.4. Now, for each couple (G1, G2), there are four preimages (x, y) under the
map w ,

w ¡1(G1, G2) D
»³

B C
A
2

§ D

³
1

G1

´
, B C

A
2

§ D

³
1

G2

´´¼
, (5.6)

where D (¢) is de�ned in equation 5.1.
Before stating the main results, we introduce three types of regions in

the neuron activation space that are of special importance. The regions are
parameterized by a, d > A/4, and correspond to stability types of �xed
points5 of equation 3.3 (see Figure 5):

RA
00(a, d) D

³
B, B C

A
2

¡ D (a)
´

£
³

B, B C
A
2

¡ D (d)
´

, (5.7)

RS
00(a, d) D

¡
B C A

2 ¡ D (a), B C A
2

¤
£

¡
B, B C A

2 ¡ D (d)
¢

[¡
B, B C A

2 ¡ D (a)
¢

£
¡
B C A

2 ¡ D (d), B C A
2

¤
,

(5.8)

5 Superscripts A, S, and R indicate attractive, saddle, andrepulsive points, respectively.
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B

B+A/2

B+A

B+A

B+A/2

B+A/2+D(d)

B+A/2-D(d)

B+A/2-D(a) B+A/2+D(a)

y

x

R01

A
R01

S
R11

S
R11

A

R11

S
R11

R
R01

R01

R00

S

R00

A
R00

S
R10

S R10

A

R10

SR10

R
R00

R

S R

Figure 5: Partitioning of the network state-space according to stability types of
the �xed points.

RR
00(a, d) D

³
B C

A
2

¡ D (a), B C
A
2

¶
£

³
B C

A
2

¡ D (d), B C
A
2

¶
. (5.9)

Having partitioned the interval (B, B C A/2]2 (see equation 5.2) of the
(x, y)-space into the sets RA

00(a, d), RS
00(a, d), and RR

00(a, d), we partition the
remaining intervals (see equations 5.3, 5.4, and 5.5) in the same manner.
The resulting partition of the network state-space, (B, B C A)2, can be seen
in Figure 5. Regions symmetrical to RA

00(a, d), RS
00(a, d), and RR

00(a, d) with
respect to the line x D B C A/2 are denoted by RA

10(a, d), RS
10(a, d), and

RR
10(a, d), respectively. Similarly, RA

01(a, d), RS
01(a, d), and RR

01(a, d) denote the
regions symmetrical to RA

00(a, d), RS
00(a, d), and RR

00(a, d), respectively, with
respect to the line y D B C A/2. Finally, we denote by RA

11(a, d), RS
11(a, d),

and RR
11(a, d) the regions that are symmetrical to RA

01(a, d), RS
01(a, d), and

RR
01(a, d) with respect to the line x D B C A/2.

We are now ready to translate the results formulated in lemmas 1, 2, and
3 into the (x, y)-space of neural activations.

Theorem 1. If bc > 0, |a| > 4/A and |d| > 4/A, then all attractive �xed points
of equation 5.3 lie in

[

i2I
RA

i (|a| , |d| ),

where I is the index set I D f00, 10, 01, 11g.
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Theorem 2. If bc < 0, ad < 0, |a| > 4/A, |d| > 4/A, and |ad| ¸ |bc| /2, then
all �xed points of equation 3.3 lying in

[

i2I
RA

i (|a|, |d|), I D f00, 10, 01, 11g

are attractive.

Theorem 3. If | Qa|, | Qd| > 4/A (see equations 4.20 and 4.21) and one of the
following conditions is satis�ed,

� bc > 0 and ad < 0

� bc < 0 and ad > 0

� bc < 0, ad < 0 and |ad| · |bc| /2,

then all �xed points of equation 3.3 lying in

[

i2I
RA

i (| Qa|, | Qd|), I D f00, 10, 01, 11g

are attractive.

For an insight into the bifurcation mechanism (explored in the next sec-
tion) by which attractive �xed points of equation 3.3 are created (or dis-
missed), it is useful to have an idea where other types of �xed points can lie.
When the signs of weights on neuron self-connections are equal (ab > 0), as
are the signs of weights on the interneuron connections (bc > 0), we have
the following theorem:

Theorem 4. Suppose ad > 0, bc > 0, |a| > 4/A, and |d| > 4/A. Then the
following can be said about the �xed points of equation 3.3:

� Attractive points can lie only in

[

i2I
RA

i (|a|, |d|), I D f00, 10, 01, 11g.

� If ad ¸ bc/2, then all �xed points in

[

i2I
RS

i (|a|, |d|)

are saddle points; repulsive points can lie only in

[

i2I
RR

i (|a| , |d|).
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� The system (see equation 3.3) has repulsive points only when

|ad ¡ bc| ¸
4
A

minf|a|, |d|g.

Proof. Regions for attractive �xed points follow from theorem 1.
Consider �rst the case a, d > 0. A �xed point (x, y) of equation 3.3 is a

saddle if |l2 | < 1 and |l1 | D l1 > 1 (see equations 4.13 and 4.14).
Assume ad > bc. Then

0 <
p

(aG1 C dG2)2 ¡ 4G1G2(ad ¡ bc) D
p

D(G1, G2) < aG1 C dG2.

It follows that if aG1 C dG2 < 2 (i.e. if (G1, G2) 2 r¡
1 ; see equation 4.17),

then

0 < aG1 C dG2 ¡
p

D(G1, G2) < 2,

and so 0 < l2 < 1.
For (G1, G2) 2 r 0

1 [ r C
1 , we solve the inequality

aG1 C dG2 ¡
p

D(G1, G2) < 2,

which is satis�ed by (G1, G2) fromk ¡
1 \ (r 0

1 [ r C
1 ). For a de�nition ofk1, see

equation 4.18.
It can be seen (see Figure 2) that in all �xed points (x, y) of equation 3.3

with

w (x, y) 2
³

0,
A
4

¶
£

³
0, min

»
1
Qd
,

A
4

¼ ¶
[

³
0, min

»
1
Qa

,
A
4

¼ ¶
£

³
0,

A
4

¶
,

the eigenvalue l2 > 0 is less than 1. This is certainly true for all (x, y) such
that

w (x, y) 2 (0, A/4] £ (0, 1/d) [ (0, 1/a) £ (0, A/4].

In particular, the preimages under the map w of

(G1, G2) 2 (1/a, A/4] £ (0, 1/d) [ (0, 1/a) £ (1/d, A/4]

de�ne the region
[

i2I
RS

i (a, d), I D f00, 10, 01, 11g,

where only saddle �xed points of equation 3.3 can lie.
Fixed points (x, y) whose images under w lie ink C

1 \r C
1 are repellers. No

(G1, G2) can lie in that region if Qa, Qd · 4/A, that is, if d(a ¡ 4/A) · bc and
a(d ¡ 4/A) · bc, which is equivalent to

maxfa(d ¡ 4/A), d(a ¡ 4/A)g · bc.
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When ad D bc, we have (see equation 4.14)

p
D(G1, G2) D aG1 C dG2,

and so l2 D 0. Hence, there are no repelling points if ad D bc.
Assume ad < bc. Then

p
D(G1, G2) > aG1 C dG2,

which implies that l2 is negative. It follows that the inequality to be solved
is

aG1 C dG2 ¡
p

D(G1, G2) > ¡2.

It is satis�ed by (G1, G2) fromk C
2 (see equation 4.25). If 2ad ¸ bc, then | Qa| · a

and | Qd| · d.
Fixed points (x, y) with

w (x, y) 2
³

0,
A
4

¶
£

³
0, min

(
1

| Qd|
,

A
4

)#
[

³
0, min

»
1
| Qa|

,
A
4

¼ ¶
£

³
0,

A
4

¶
,

have |l2 | less than 1. If 2ad ¸ bc, this is true for all (x, y) such that

w (x, y) 2 (0, A/4] £ (0, 1/d) [ (0, 1/a) £ (0, A/4]

and the preimages under w of

(G1, G2) 2 (1/a, A/4] £ (0, 1/d) [ (0, 1/a) £ (1/d, A/4]

de�ne the region
S

i2I RS
i (a, d) where onlysaddle �xed points of equation 3.3

can lie.
There are no repelling points if | Qa|, | Qd| · 4/A, that is, if

minfa(d C 4/A), d(a C 4/A)g ¸ bc.

The case a, d < 0 is analogous to the case a, d > 0. We conclude that if
ad > bc, in all �xed points (x, y) of equation 3.3 with

w (x, y) 2
³

0,
A
4

¶
£

³
0, min

(
1

| Qd|
,

A
4

)#
[

³
0, min

»
1
| Qa|

,
A
4

¼ ¶
£

³
0,

A
4

¶
,

|l1 | < 1. Surely this is true for all (x, y) such that

w (x, y) 2 (0, A/4] £ (0, 1/ |d|) [ (0, 1/ |a|) £ (0, A/4].
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The preimages under w of

(G1, G2) 2 (1/ |a|, A/4] £ (0, 1/ |d|) [ (0, 1/ |a|) £ (1/ |d|, A/4]

de�ne the region
S

i2I RS
i (|a| , |d|) where only saddle �xed points of equa-

tion 3.3 can lie.
There are no repelling points if | Qa| , | Qd| · 4/A, that is, if |d|(|a| ¡4/A) · bc

and |a| (|d| ¡ 4/A) · bc, which is equivalent to

maxf|a|(|d| ¡ 4/A), |d| (|a| ¡ 4/A)g · bc.

In the case ad D bc, we have

p
D(G1, G2) D |aG1 C dG2 |,

and so l1 D 0. Hence, there are no repelling points.
If ad < bc, in all �xed points (x, y) with

w (x, y) 2
³

0,
A
4

¶
£

³
0, min

»
1
Qd
,

A
4

¼ ¶
[

³
0, min

»
1
Qa

,
A
4

¼ ¶
£

³
0,

A
4

¶
,

l1 > 0 is less than 1. If 2ad ¸ bc, this is true for all (x, y) such that

w (x, y) 2 (0, A/4] £ (0, 1/ |d|) [ (0, 1/ |a|) £ (0, A/4],

and the preimages under w of

(G1, G2) 2 (1/ |a|, A/4] £ (0, 1/ |d|) [ (0, 1/ |a|) £ (1/ |d|, A/4]

de�ne the region
S

i2I RS
i (|a| , |d|) where only saddle �xed points of equa-

tion 3.3 can lie.
There are no repelling points if Qa, Qd · 4/A, that is, if

minf|a| (|d| C 4/A), |d|(|a| C 4/A)g ¸ bc.

In general, we have shown that if ad < bc and ad C 4 minf|a|, |d|g/A ¸ bc,
or ad D bc, or ad > bc and ad ¡ 4 minf|a| , |d|g/A · bc, then there are no
repelling points.

6 Creation of a New Attractive Fixed Point Through Saddle-Node
Bifurcation

In this section we are concerned with the actual position of �xed points of
equation 3.3. We study how the coef�cients a, b, t1, c, d, and t2 affect the
number and position of the �xed points. It is illustrative �rst to concentrate
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on only a single neuron N from the pair of neurons forming the neural
network.

Denote the values of the weights associated with the self-loop on the
neuron N and with the interconnection link from the other neuron to the
neuron N by s and r, respectively. The constant input to the neuron N is
denoted by t. If the activations of the neuron N and the other neuron are
u and v, respectively, then the activation of the neuron N at the next time
step is g(su C rv C t).

If the activation of the neuron N is not to change, (u, v) should lie on the
curve fs,r,t:

v D fs,r,t(u) D
1
r

³
¡t ¡ su C ln

u ¡ B
B C A ¡ u

´
. (6.1)

The function

ln((u ¡ B)/ (B C A ¡ u)): (B, B C A) ! <

is monotonically increasing with

lim
u!BC

ln
u ¡ B

B C A ¡ u
D ¡1 and lim

u!(BCA)¡
ln

u ¡ B
B C A ¡ u

D 1.

Although the linear function ¡su ¡ t cannot in�uence the asymptotic
properties of fs,r,t, it can locally in�uence its “shape.” In particular, while the
effect of the constant term ¡t is just a vertical shift of the whole function,
¡su (if decreasing, that is, if s > 0 and “suf�ciently large”) has the power
to overcome for a while the increasing tendencies of ln((u ¡B)/(B C A ¡u)).
More precisely, if s > 4/A, then the term ¡su causes the function ¡su ¡
t C ln((u ¡ B)/(B C A ¡ u)) to “bend” so that on

µ
B C

A
2

¡ D (s), B C
A
2

C D (s)
¶

,

it is decreasing, while it still increases on

³
B, B C

A
2

¡ D (s)
´

[
³

B C
A
2

C D (s), B C A
´

.

The function

¡su ¡ t C ln((u ¡ B)/(B C A ¡ u))

is always concave and convex on (B, B C A/2) and (B C A/2, B C A), respec-
tively.

Finally, the coef�cient r scales the whole function and �ips it around the
u–axis, if r < 0. A graph of fs,r,t(u) is presented in Figure 6.
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B+A/2-D(s)

B+A/2 B+A/2+D(s) u

v

(u)

0

B+AB

s,r,t
f

Figure 6: Graph of fs,r, t(u). The solid line represents the case t, s D 0, r > 0. The
dashed line shows the graph when t < 0, s > 4/A, and r > 0. The negative
external input t shifts the bent part into v > 0.

Each �xed point of equation 3.3 lies on the intersection of two curves,
y D fa,b,t1 (x) and x D fd,c,t2

(y) (see equation 6.1).
There are (4

2)C 4 D 10 possible cases of coexistence of the two neurons in
the network. Based on the results from the previous section, in some cases
we are able to predict stability types of the �xed points of equation 3.3 ac-
cording to their position in the neuron activation space. More interestingly,
we have structured the network state-space (B, B C A)2 into areas corre-
sponding to stability types of the �xed points, and in some cases, these
areas directly correspond to monotonicity intervals of the functions fa,b,t1

and fd,c,t2 de�ning the position of the �xed points.
The results of the last section will be particularly useful when the weights

a, b, c, d and external inputs t1, t2 are such that the functions fa,b,t1
and fd,c,t2

“bend,” thus possibly creating a complex intersection pattern in (B, B C A)2.
For a > 4/A, the set

f #0
a,b,t1 D

»
(x, fa,b,t1

(x))| x2
³

B, B C
A
2

¡ D (a)
¼́

(6.2)

contains the points lying onthe “�rst outer branch” of fa,b,t1
(x). Analogously,

the set

f #1
a,b,t1 D

»
(x, fa,b,t1

(x))| x2
³

B C
A
2

C D (a), B C A
¼́

(6.3)
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contains the points in the “second outer branch” of fa,b,t1
(x). Finally,

f ¤
a,b,t1

D
»

(x, fa,b,t1 (x))| x2
³

B C
A
2

¡ D (a), B C
A
2

C D (a)
´¼

(6.4)

is the set of points on the “middle branch” of fa,b,t1
(x).

Similarly, for d > 4/A, we de�ne the sets

f #0
d,c,t2

D
»

( fd,c,t2
(y), y)| y2

³
B, B C

A
2

¡ D (d)
¼́

, (6.5)

f #1
d,c,t2

D
»

( fd,c,t2
(y), y)| y2

³
B C

A
2

C D (d), B C A
¼́

, (6.6)

and

f ¤
d,c,t2

D
»

( fd,c,t2
(y), y)| y2

³
B C

A
2

¡ D (d), B C
A
2

C D (d)
¼́

. (6.7)

containing the points on the “�rst outer branch,” the “second outer branch,”
and the “middle branch,” respectively, of fd,c,t2 (y).

Using theorem 4 we state the following corollary:

Corollary 1. Assume a > 4/A, d > 4/A, bc > 0, and ad ¸ bc/2. Then
attractive �xed points of equation 3.3 can lie only on the intersection of the outer
branches of fa,b,t1 and fd,c,t2 . Whenever the middle branch of fa,b,t1 intersects with an
outer branch of fd,c,t2 (or vice versa), it corresponds to a saddle point of equation 3.3.
In other words, all attractive �xed points of equation 3.3 are from

[

i, jD0,1

f #i
a,b,t1

\ f
#j
d,c,t2

.

Every point from

f ¤
a,b,t1

\
[

iD0,1

f #i
d,c,t2

or

f ¤
d,c,t2

\
[

iD0,1

f #i
a,b,t1

is a saddle point of equation 3.3.

Corollary 1 suggests the saddle-node bifurcation as the usual scenario of
creation of a new attractive �xed point. In the saddle-node bifurcation, a
pair of new �xed points, of which one is attractive and the other one is a
saddle, is created. Attractive �xed points disappear in a reverse manner:
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d,c,t
f (y)

2

B+A

B+AB+A/2

B+A/2

B

a,b,tf (x)
1

x

y

Figure 7: Geometrical illustration of the saddle-node bifurcation in a neural net-
work with two recurrent neurons. fd,c, t2 (y), shown as the dashed curve, intersects
with fa,b, t1 (x) in three points. By increasing d, fd,c,t2 bends further (solid curve)
and intersects with fa,b,t1 in �ve points. Saddle and attractive points are marked
with squares and stars, respectively. The parameter settings are a, d > 0, b, c < 0.

an attractive point coalesces with a saddle and they are annihilated. This is
illustrated in Figure 7.

The curve fd,c,t2 (y) (the dashed line in Figure 7) intersects with fa,b,t1
(x)

in three points. By increasing d, fd,c,t2
continues to bend (the solid curve

in Figure 7) and intersects with fa,b,t1 in �ve points.6 Saddle and attractive
points are marked with squares and stars, respectively in Figure 7. Note that
as d increases, attractive �xed points move closer to vertices fB, B C Ag2 of
the network state-space. The next section rigorously analyzes this tendency
in the context of recurrent networks with an arbitrary, �nite number of
neurons.

7 Attractive Periodic Sets in Recurrent Neural Networks with N
Neurons

From now on, we study fully connected recurrent neural networks with N
neurons. As usual, the weight on a connection from neuron j to neuron i is

6 At the same time, |c| has to be appropriately increased so as to compensate for the
increase in d so that the “bent” part of fd, c,t2 does not move radically to higher values of x.
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denoted by wij. The output of the ith neuron at time step m is denoted by x(m)
i .

The external input to neuron i is Ti. Each neuron has a “sigmoid-shaped”
transfer function (see equation 3.1).

The network evolves in the N-dimensional state-space O D (B, B C A)N

according to

x(mC1)
i D gA,B,m i

³
NX

nD1

winx(m)
n C Ti

´
i D 1, 2, . . . , N. (7.1)

Note that we allow different neural gains across the neuron population.
In vector notation, we represent the state x(m) at time step m as7

x(m) D
±

x(m)
1 , x(m)

2 , . . . , x(m)
N

²T
,

and equation 7.1 becomes

x(mC1) D F
±
x(m)

²
. (7.2)

It is convenient to represent the weights wij as a weight matrix W D (wij).
We assume that W is nonsingular, that is, det(W ) 6D 0.

Assuming an external input T D (T1, T2, . . . , TN)T , the Jacobian matrix
J (x) of the map F in x 2 O can be written as

J (x) D MG (x)W , (7.3)

where M and G (x) are N-dimensional diagonal matrices,

M D diag(m 1, m 2, . . . , m N ) (7.4)

and

G (x) D diag(G1(x), G2(x), . . . , GN (x)), (7.5)

respectively, with8

Gi(x) D g0

³
m i

NX

nD1

winxn C m iTi

´
, i D 1, 2, . . . , N. (7.6)

We denote absolute value of the determinant of the weight matrix W by
W, that is,

W D |det(W )|. (7.7)

7 Superscript T means the transpose operator.
8 Remember that for the sake of simplicity, we denote gA,B,1 by g.
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Then

|det(J (x))| D W
NY

nD1

m nGn(x). (7.8)

Lemma 4 formulates a useful relation between the value of the transfer
function and its derivative. It is formulated in a more general setting than
that used in sections 4 and 5.

Lemma 4. Let u 2 (0, A/4]. Then the set

fg( )̀| g0( )̀ ¸ ug

is a closed interval of length 2D (1/u) centered at B C A/2, where D (¢) is de�ned
in equation 5.1.

Proof. For a particular value u of g0 ( )̀ D y (g( )̀), the corresponding values9

y¡1(u) of g( )̀ are

B C
A
2

§ D

³
1
u

´
.

The transfer function g( )̀ is monotonically increasing with increasing
and decreasing derivative on (¡1, 0) and (0, 1), respectively. The maximal
derivative g0 (0) D A/4 occurs at ` D 0 with g(0) D B C A/2.

Denote the geometrical mean of neural gains in the neuron population
by Qm :

Qm D

"
NY

nD1

m n

# 1
N

. (7.9)

For W1/N ¸ 4/ (A Qm ), de�ne

c¡ D B C
A
2

¡ D
±

Qm W
1
N

²
, (7.10)

cC D B C
A
2

C D
±

Qm W
1
N

²
. (7.11)

Denote the hypercube [c¡, cC ]N by H. The next theorem states that in-
creasing neural gains m i push the attractive sets away from the center
fB C A/2gN of the network state-space toward the faces of the activation
hypercube O D (B, B C A)N .

9 y ¡1 is the set theoretic inverse of y .
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Theorem 5. Assume

W ¸
³

4
A Qm

´N

.

Then attractive periodic sets of equation 7.2 cannot lie in the hypercube H with
sides of length

2D
±

Qm W
1
N

²
,

centered at fB C A/2gN , the center of the state-space.

Proof. Suppose there is an attractive periodic orbit X D fx(1), . . . , x(Q)g ½
H D [c¡, cC]N , with F(x(1)) D x(2), F(x(2)) D x(3), . . . , F(x(Q)) D x(QC1) D x(1).

The determinant of the Jacobian matrix of the map FQ in x(j), j D 1, . . . , Q,
is

det(JFQ (x(j))) D
QY

kD1

det(J (x(k)))

and, by equation 7.8,

|det(JFQ (x(j)))| D WQ
QY

kD1

NY

nD1

m nGn(x(k)).

From

Gn(x(k)) D y (x(kC1)
n ), n D 1, . . . , N, k D 1, . . . , Q,

where y is de�ned in equation 4.3, it follows that if all x(k) are from the
hypercube H D [c¡, cC ]N (see equations 7.10 and 7.11), then by lemma 4,
we have

WQ
QY

kD1

NY

nD1

m nGn(x(k)) ¸ WQ
QY

kD1

NY

nD1

m n

Qm W
1
N

D 1.

But

det(JFQ (x(1))) D det(JFQ (x(2))) D . . . D det(JFQ (x(Q)))

is the product of eigenvalues of FQ in x(j), j D 1, . . . , Q, and so the absolute
value of at least one of them has to be equal to or greater than 1. This
contradicts the assumption that X is attractive.

The plots in Figure 8 illustrate the growth of the hypercube H with grow-
ing v D Qm W1/N in the case of B D 0 and A D 1. The lower and upper curves
correspond to functions 1

2 ¡D (v) and 1
2 C D (v), respectively. For a particular

value of v, H is the hypercube with each side centered at 1
2 and spanned

between the two curves.
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v

Figure 8: Illustration of the growth of the hypercube H with increasing v D
Qm W1/N . Parameters of the transfer function are set to B D 0, A D 1. The lower
and uppercurves correspond to functions1/2¡D (v) and 1/2CD (v), respectively.
For a particular value of v, the hypercube H has each side centered at 1/2 and
spanned between the two curves.

7.1 Effect of Growing Neural Gain. Hirsch (1994) studies recurrent net-
works with nondecreasing transfer functions f from a broader class than the
“sigmoid-shaped” class (see equation 3.1) considered here. Transfer func-
tions can differ from neuron to neuron. He shows that attractive �xed-point
coordinates corresponding to neurons with a steadily increasing neural gain
tend to saturation values10 as the gain grows without a bound. It is as-
sumed that all the neurons with increasing gain are either self-exciting or
self-inhibiting.11

To investigate the effect of growing neural gain in our setting, we assume
that the neurons are split into two groups. Initially, all the neurons have the
same transfer function gA,B,m ¤ . The neural gain on neurons from the �rst
group does not change, while the gain on neurons from the second group

10 In fact, it is shown that each of such coordinates tends to either a saturation value
f (§1), which is assumed to be �nite, or a critical value f (v), with f 0 (v) D 0. The critical
values are assumed to be �nite in number. There are no critical values in the class of
transfer functions considered in this article.

11 Self-exciting and self-inhibiting neurons have positive and negative weights, respec-
tively, on the feedback self-loops.
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is allowed to grow. We investigate how the growth of neural gain in the
second subset of neurons affects regions for periodic attractive sets of the
network. In particular, we answer the following question: Given the weight
matrix W and a “small neighborhood factor” 2 > 0, for how big a neural
gain m on neurons from the second group, all the attractive �xed points and
at least some attractive periodic points must lie within 2 -neighborhood of
the faces of the activation hypercube O D (B, B C A)N?

Theorem 6. Let 2 > 0 be a “small”positive constant. Assume M (1 · M · N)
and N ¡ M neurons have the neural gain equal to m and m ¤, respectively. Then, for

m > m (2 ) D
m

1¡ N
M

¤

W
1
M

1
£
2

¡
1 ¡ 2

A

¢¤ N
M

,

all attractive �xed points and at least some points from each attractive periodic
orbit of the network lie in the 2 -neighborhood of the faces of the hypercube O D
(B, B C A)N.

Proof. By theorem 5,

2 D
A
2

¡ D

³
m

N¡M
N

¤ m (2 )
M
N W

1
N

´

D
A
2

2

41 ¡

vuut1 ¡
4
A

1

m
N¡M

N
¤ m (2 )

M
N W

1
N

3

5 . (7.12)

Solving equation 7.12 for m (2 ), we arrive at the expression presented in the
theorem.

Note that for very close 2 -neighborhoods of the faces of O, the growth of
m obeys

m /
1

2
N
M

, (7.13)

and if the gain is allowed to grow on each neuron,

m /
1
2

. (7.14)

Equation 7.12 constitutes a lower bound on the rate of convergence of
the attractive �xed points toward the faces of O as the neural gain m on M
neurons grows.
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7.2 Using Alternative Bounds on Spectral Radius of Jacobian Matrix.
Results in the previous subsection are based on the bound

if |det(J (x))| ¸ 1, then r (J (x)) ¸ 1,

where r (J (x)) is the spectral radius12 of the Jacobian J (x). Although one
can think of other bounds on spectral radius of J (x), usually the expression
describing the conditionson termsGn(x), n D 1, . . . , N, such thatr (J (x)) ¸
1, is very complex (if it exists in a closed form at all). This prevents us from
obtaining a relatively simple analytical approximation of the set

U D fx 2 O | r (J (x)) ¸ 1g, (7.15)

where no attractive �xed points of equation 7.2 can lie. Furthermore, in
general, if two matrices have their spectral radii equal to or greater than
one, the same does not necessarily hold for their product. As a consequence,
one cannot directly reason about regions with no periodic attractive sets.

In this subsection, we shall use a simple bound on the spectral radius of
a square matrix stated in the following lemma.

Lemma 5. For an M-dimensional square matrix A,

r (A) ¸
|trace(A)|

M
.

Proof. Let li, i D 1, 2, . . . , M, be the eigenvalues of A. From

trace(A) D
X

i
li,

it follows that

r (A) ¸
1
M

X

i
|li | ¸

1
M

­­­­­
X

i
li

­­­­­D
|trace(A)|

M
.

Theorems 7 and 8 are analogous to theorems 5 and 6. We assume the
same transfer function on all neurons. Generalization to transfer functions
differing in neural gains is straightforward.

Theorem 7. Assume all the neurons have the same transfer function (see equa-
tion 3.1), and the weights on neural self-loops are exclusively positive or exclusively

12 The maximal absolute value of eigenvalues of J (x).
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negative, that is, either wnn > 0, n D 1, 2, . . . , N or wnn < 0, n D 1, 2, . . . , N.
If attractive �xed points of equation 7.2 lie in the hypercube with sides of length

2D

³
m |trace(W )|

N

´
,

centered at fB C A/2gN , the center of the state-space, then

|trace(W )| <
4N
m A

.

Proof. By lemma 5,

K D
»

x 2 O
­­­­

|trace(J (x))|
N

¸ 1
¼

½ U.

The set K contains all states x such that the corresponding N-tuple

G(x) D (G1(x), G2(x), . . . , GN (x))

lies in the half-space J not containing the point f0gN , with border de�ned
by the hyperplane

s:
NX

nD1

|wnn |Gn D
N
m

.

Since all the coef�cients |wnn | are positive, the intersection of the line

G1 D G2 D . . . D GN

with s exists and is equal to

G¤ D
N

m
PN

nD1 |wnn |
D

N
m |trace(W )|

.

Moreover, since |wnn | > 0, if

|trace(W )| ¸ 4N/ (m A),

then [G¤, A/4]N ½ J .
The hypercube [G¤, A/4]N in the space of transfer function derivatives

corresponds to the hypercube

µ
B C

A
2

¡ D

³
1

G¤

´
, B C

A
2

C D

³
1

G¤

´¶N

in the network state-space O.



Attractive Periodic Sets 1411

Theorem 8. Let 2 > 0 be a “small” positive constant. Assume all the neurons
have the same transfer function (see equation 3.1). If wnn > 0, n D 1, 2, . . . , N,
or wnn < 0, n D 1, 2, . . . , N, then for

m > m (2 ) D
N

m |trace(W )|
1£

2
¡
1 ¡ 2

A

¢¤ ,

all attractive �xed points of equation 7.2 lie in the 2 -neighborhood of the faces of the
hypercube O.

Proof. By theorem 7,

2 D
A
2

¡ D

³
m (2 )

|trace(W )|
N

´
. (7.16)

Solving equation 7.16 for m (2 ), we arrive at the expression in the theorem.

8 Relation to Continuous-Time Networks

There is a large amount of literature devoted to dynamical analysis of
continuous-time networks. While discrete-time networks are more appro-
priate for dealing with discrete and symbolic data, continuous-time net-
works seem more natural in many “physical” models and applications.

Relations between the dynamics of discrete-time and continuous-time
networks are considered, for example, in Blum and Wang (1992) and Ton-
nelier et al. (1999). Hirsch (1994) gives a simple example illustrating that
there is no �xed step size for discretizing continuous-time dynamics that
would yield a discrete-time dynamics accurately re�ecting its continuous-
time origin.

Hirsch (1994) has pointed out that while there is a saturation result for
stable limit cycles of continuous-time networks—for suf�ciently high gain,
the output along a stable limit cycle is saturated almost all the time—there is
no known analog of this for stable periodicorbits of discrete-time networks.
Theorems 5 and 6 offer such an analog for discrete-time networks with
sigmoid-shaped transfer functions studied in this article.

Vidyasagar (1993) studied the number, location,and stability of high-gain
equilibria in continuous-time networks with sigmoidal transfer functions.
He concludes that all equilibria in the corners of the activation hypercube
are stable. Theorems 6 and 7 formulate analogous results for discrete-time
networks.

9 Conclusion

By performing a detailed �xed-point analysis of two-neuron recurrent net-
works, we partitioned the network state-space into regions corresponding
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to the �xed-point stability types. The results are intuitive and hold for a
large class of sigmoid-shaped neuron transfer functions. Attractive �xed
points cluster around the vertices of the activation square [L, H]2, where
L and H are the low- and high-transfer function saturation levels, respec-
tively. Repelling �xed points are concentrated close to the center f LCH

2 g2 of
the activation square. Saddle �xed points appear in the neighborhood of
the four sides of the activation square. Unlike in the previous studies (e.g.,
Blum & Wang, 1992; Borisyuk & Kirillov, 1992; Pasemann, 1993; Tonnelier
et al., 1999), we allowed all free parameters of the network to vary.

We have rigorously shown that when the neurons self-excite themselves
and have the same mutual-interaction pattern, a new attractive �xed point
is created through the saddle-node bifurcation. This is in accordance with
recent empirical �ndings (Tonnelier et al., 1999).

Next, we studied recurrent networks of arbitrary �nite number of neu-
ronswith sigmoid-shaped transfer functions. Inspiredby the result of Hirsch
(1994) concerning equilibrium points in high-neural-gain networks, we ana-
lyzed the tendency of attractive periodic points to approach saturation faces
of the activation hypercube as the neural gain increases. Their distance from
the saturation faces is approximately reciprocal to the neural gain.
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