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Abstract

Previous analytical studies of on-line Independent Component Analysis (ICA) learn-
ing rules have focussed on asymptotic stability and efficiency. In practice the tran-
sient stages of learning will often be more significant in determining the success of
an algorithm. This is demonstrated here with an analysis of aHebbian ICA algo-
rithm which can find a small number of non-Gaussian components given data com-
posed of a linear mixture of independent source signals. An idealised data model is
considered in which the sources comprise a number of non-Gaussian and Gaussian
sources and a solution to the dynamics is obtained in the limit where the number of
Gaussian sources is infinite. Previous stability results are confirmed by expanding
around optimal fixed points, where a closed form solution to the learning dynamics
is obtained. However, stochastic effects are shown to stabilise otherwise unstable
sub-optimal fixed points. Conditions required to destabilise one such fixed point
are obtained for the case of a single non-Gaussian component, indicating that the
initial learning rateη required to successfully escape is very low (η = O(N−2)
whereN is the data dimension) resulting in very slow learning typically requiring
O(N3) iterations. Simulations confirm that this picture holds fora finite system.
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1 Introduction

Independent component analysis (ICA) is a statistical modelling technique which
has attracted a significant amount of research interest in recent years (for a review,
see Hyvärinen, 1999). In ICA the goal is to find a representation of data in terms
of a combination of statistically independent variables. This technique has a num-
ber of useful applications, most notably blind source separation, feature extraction
and blind deconvolution. A large number of neural learning algorithms have been
applied to this problem, as detailed in the aforementioned review.

Theoretical studies of on-line ICA algorithms have mainly focussed on asymp-
totic stability and efficiency, using the established results of stochastic approxima-
tion theory. However, in practice the transient stages of learning will often be more
significant in determining the success of an algorithm. In this paper a Hebbian
ICA algorithm is analysed and a solution to the learning dynamics is obtained in
the limit of large data dimension. The analysis highlights the critical importance
of the transient dynamics and in particular an extremely lowinitial learning rate is
found to be essential in order to avoid trapping in a sub-optimal fixed point close
to the initial conditions of the learning dynamics.

This work focuses on the bigradient learning algorithm introduced by Wang
and Karhunen (1996) and studied in the context of ICA by Hyvärinen and Oja
(1998) where it was shown to have nice stability conditions.This algorithm can
be used to extract a small number of independent components from data of high
dimension and is closely related to projection pursuit algorithms which detect “in-
teresting” projections in high-dimensional data. The algorithm can be defined in
on-line mode or can form the basis of a fixed-point batch algorithm which has been
found to improve computational efficiency (Hyvärinen and Oja, 1997). In this work
the dynamics of the on-line algorithm is studied. This may bethe preferred mode
when the model parameters are non-stationary or when the data set is very large.
Although the analysis is restricted to a stationary data model, the results are rele-
vant to the non-stationary case in which learning strategies are often designed to
increase the learning rate when far from the optimum (Müller et al., 1998). The
results obtained here suggest that this strategy can lead tovery poor performance.

In order to gain insight into the learning dynamics an idealised model is consid-
ered in which data is composed of a small number of non-Gaussian source signals
linearly mixed in with a large number of Gaussian signals. A solution to the dy-
namics is obtained in the limiting case where the number of Gaussian signals is
infinite. In this limit one can use techniques from statistical mechanics similar
to those which have previously been applied to other on-linelearning algorithms,
including other unsupervised Hebbian learning algorithmssuch as Sanger’s PCA
algorithm (Biehl and Schlösser, 1998). For the asymptoticdynamics close to an
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optimal solution the stability conditions due to Hyvärinen and Oja (1998) are con-
firmed and the eigensystem is obtained which determines the asymptotic dynamics
and optimal learning rate decay. However, the dynamical equations also have sub-
optimal fixed points which are stable for anyO(N−1) learning rate whereN is
the data dimension. Conditions required to destabilise onesuch fixed point are
obtained in the case of a single non-Gaussian source, indicating that learning must
be very slow initially in order to learn successfully. The analysis requires a care-
ful treatment of fluctuations which prove to be important even in the limit of large
input dimension. Finally, simulation results are presented which indicate that this
phenomenon persists also in finite sized systems.

2 Data model

The linear data model is shown in figure 1. In order to apply theHebbian ICA algo-
rithm one should first sphere the data, ie. linearly transform the data so that it has
an identity covariance matrix. This can be achieved by standard transformations in
a batch setting but for on-line learning an adaptive sphering algorithm, such as the
one introduced by Cardoso and Laheld (1996), could be used. To simplify matters
it is assumed here that the data has already been sphered. Without loss of general-
ity it can also be assumed that the sources each have unit variance. The sources are
decomposed intoM non-Gaussian andN−M Gaussian components respectively,

p(s) =
M
∏

i=1

pi(si) , p(n) =
N
∏

i=M+1

e
−n2

i
2√
2π

. (1)

To conform with the above model assumptions the mixing matrix A must be uni-
tary. The mixing matrix is decomposed into two rectangular matricesAs andAn

associated with the non-Gaussian and Gaussian components respectively,

x = A

[

s

n

]

= [As An]

[

s

n

]

= Ass+Ann . (2)

The unitary nature ofA results in the following constraints,

[As An]

[

AT
s

AT
n

]

= AsA
T
s +AnA

T
n = I , (3)

[

AT
s

AT
n

]

[As An] =

[

AT
s As AT

s An

AT
nAs AT

nAn

]

=

[

I 0

0 I

]

. (4)
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y = WTx

W

x = Ass+ Ann

[As An]

s

n

Figure 1: The linear mixing model generating the data is shown above. There are
M non-Gaussian independent sourcess while the remainingN−M sourcesn are
uncorrelated Gaussian variables. There areN outputsx formed by multiplying the
sources by the square non-singular mixing matrixA ≡ [AsAn]. The outputs are
linearly projected onto theK-dimensional vectory = WTx. It is assumed that
M ≪ N andK ≪ N .

3 Algorithm

The following on-line Hebbian learning rule was introducedby Wang and Karhunen
(1996) and analysed in the context of ICA by Hyvärinen and Oja (1998),

W t+1 −W t = η σxtφ(yt)T + αW t(I − (W t)TW t) , (5)

whereφ(yt)i = φ(yti) is an odd non-linear function which is applied to every
component of theK-dimensional vectory ≡ WTx. The first term on the right
is derived by maximising the non-Gaussianity of the projections in each compo-
nent of the vectory. The second term ensures that the columns ofW are close
to orthogonal so that the projections are uncorrelated and of unit variance. The
learning rateη is a positive scalar parameter which must be chosen with careand
may depend on time. The parameterα is less critical and settingα = 0.5 seems to
provide reasonable performance in general. The diagonal matrix σ has elements
σii ∈ {−1, 1} which ensure the stability of the desired fixed point. The elements
of this matrix can either be chosen adaptively or can be chosen according tóa pri-
ori knowledge about the source statistics. Stability of the optimal fixed point is
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ensured by the condition (Hyvärinen and Oja, 1998),

σii = Sign(〈siφ(si)− φ′(si)〉) , (6)

assuming we order indices such thatyi → ±si for i ≤ min(K,M) asymptotically.
The angled brackets denote an average over the source distribution.

A remarkable feature of the above algorithm is that the same non-linearity can
be used for source signals with very different characteristics. For example, both
sub-Gaussian and super-Gaussian signals can be separated using eitherφ(y) = y3

or φ(y) = tanh(y), two common choices of non-linearity.

4 Dynamics for large input dimension

Define the following two matrices,

R ≡ WTAs , Q ≡ WTW . (7)

Using the constraint in equation (3) one can show that,

y = WT(Ass+Ann)

= Rs+ z where z ∼ N (0,Q−RRT) . (8)

Knowledge of the matricesR andQ is therefore sufficient to describe the relation-
ships between the projectionsy and the sourcess in full. Although the dimension
of the data isN , the dimension of these matrices isK × M andK × K respec-
tively. The system can therefore be described by a small number of macroscopic
quantities in the limit of largeN as long asK andM remain manageable.

In appendix A it is shown that in the limitN → ∞, Q → I while R evolves
deterministically according to the following first order differential equation,

dR

dτ
= µσ

(

〈φ(y)sT〉 − 1

2
〈φ(y)yT + yφ(y)T〉R

)

− 1

2
µ2〈φ(y)φ(y)T〉R (9)

with rescaled variablesτ ≡ t/N andµ ≡ Nη. This deterministic equation is only
valid for R = O(1) and a different scaling is considered in section 4.2, in which
case fluctuations have to be considered even in the limit. Thebrackets denote ex-
pectations with respect to the source distribution andz ∼ N (0, I −RRT). The
bracketed terms therefore only depend onR and statistics of the source distribu-
tions, so that the above equation forms a closed system.
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4.1 Optimal asymptotics

The desired solution is one where as many as possible of theK projections mirror
one of theM sources. IfK < M then not all the sources can be learned and
which ones are learned depends on details of the initial conditions. If K ≥ M
then which projections mirror each source also depends on the initial conditions.
ForK > M there will be projections which do not mirror any sources; these will
be statistically independent of the sources and have a Gaussian distribution with
identity covariance matrix.

Consider the case whereyi → si for i = 1 . . .min(K,M) asymptotically (all
other solutions can be obtained by a trivial permutation of indices and/or changes
in sign). The optimal solution is then given byR∗

ij = δij which is a fixed point
of equation (9) asµ → 0. Asymptotically the learning rate should be annealed in
order to approach this fixed point and the usual inverse law annealing can be shown
to be optimal subject to a good choice of prefactor,

µ ∼ µ0

τ
as τ → ∞

(

or equivalentlyη ∼ µ0

t
as t → ∞

)

. (10)

The asymptotic solution to equation (9) with the above annealing schedule was
given by Leen et al. (1998). Letuij = Rij − R∗

ij be the deviation from the fixed
point. Expanding equation (9) around the fixed point one obtains,

uij(τ) ∼
K
∑

k,n=1

M
∑

l,m=1

Vijkl

{

−1

2
Xkl〈φ2(sn)〉δnm +

(

τ0
τ

)

−µ0λkl

unm(τ0)

}

V −1

klnm ,

(11)
where,

Xij =

(

µ2
0

−µ0λij − 1

)[

1

τ
− 1

τ0

(

τ0
τ

)

−µ0λij

]

. (12)

Here,τ0 is the time at which annealing begins andλij andVijkl are the eigenvalues
and eigenvectors of the Jacobian of the learning equation tofirst order inµ. These
are written as matrices and tensors respectively rather than scalars and vectors be-
cause the system’s variables are in a matrix. One can think ofpairs of indices(i, j)
and(k, l) as each representing a single index in a vectorised system. The explicit
solution to the eigensystem is given in appendix B. From the eigenvalues, defined
in equation (28), it is clear that the fixed point is stable if and only if the condition
in equation (6) is met.

There is a critical learning rate,µcrit
0 = −1/λmax, whereλmax is the largest

eigenvalue (smallest in magnitude, since the eigenvalues are negative), such that
if µ0 < µcrit

0 then the approach to the fixed point will be slower than the optimal
1/τ decay. From the eigenvalues given in (28) we find thatλmax = −ξmin where
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ξi = σii〈siφ(si) − φ′(si)〉, so thatµcrit
0 = 1/ξmin. As long asµ0 > µcrit

0 then the
terms involvingτ0 in equations (11) and (12) will be negligible and the asymptotic
decay will be independent of the initial conditions and transient dynamics.

Assumingµ0 > µcrit
0 and substituting in the explicit expressions for the eigen-

system we find the following simple form for the asymptotic dynamics to leading
order in1/τ ,

uij(τ) ∼ −δij
τ

(

µ2
0〈φ2(si)〉
4µ0ξi − 2

)

. (13)

4.2 Escape from the initial transient

Unfortunately, the optimal fixed points described in the previous section are not the
only stable fixed points of equation (9). In some cases the algorithm will converge
to a sub-optimal solution in which one or more potentially detected signals remain
unlearned and the corresponding entry inR decays to zero. The stability of these
points is due to theO(µ2) term in equation (9) which becomes less significant as
the learning rate is reduced, in which case the corresponding negative eigenvalue
of the Jacobian eventually vanishes. Higher order terms then lead to instability
and escape from this sub-optimal fixed point. One can therefore avoid trapping by
selecting a sufficiently low learning rate during the initial transient.

Consider the simplest case whereK = M = 1 in which case the matrixR
reduces to a scalar:R = R11 andσ = σ11. Expanding equation (9) aroundR = 0,

dR

dτ
= −1

2
〈φ(z)2〉µ2R+ 1

6
κ4〈φ′′′(z)〉σµR3 +O(R5) . (14)

Here,κ4 is the fourth cumulant of the source distribution and the brackets denote
averages overz ∼ N (0, 1). AlthoughR = 0 is a stable fixed point, the range
of attraction is reduced asµ → 0 until eventually instability occurs. The condi-
tion under which one will successfully escape the fixed pointis found by setting
d|R|/dt > 0,

σ = Sign(κ4〈φ′′′(z)〉) , µ <
R2|〈φ′′′(z)〉κ4|

3〈φ2(z)〉 . (15)

Notice that the condition onσ for escaping the initial transient is not generally
the same as the condition in equation (6) which ensures stability of the asymptotic
fixed point. Forφ(y) = y3 the conditions are exactly equivalent. However, in other
cases the conditions may conflict and an adaptive choice ofσ based on equation (6),
as suggested by Hyvärinen and Oja (1998), may give poor results. With φ(y) =
tanh(y) the conditions appear to be equivalent in many cases. This condition is
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equally applicable to gradient based batch algorithms since it is due to theO(µ)
term above, which is not related to fluctuations.

If the entries inA andW are initially of similar order then one would expect
R = O(N−

1

2 ). This is the typical case if we consider a random and uncorrelated
choice forA and the initial entries inW . Larger initial values ofR could only
be obtained with some prior knowledge of the mixing matrix which we will not
assume. WithR = O(N−

1

2 ) the initial value ofµ required to escape isO(N−1),
indicating a very slow initial phase in the dynamics (recallthat the unscaled learn-
ing rateη ≡ µ/N ). Larger learning rates will result in trapping in the sub-optimal
fixed point. However, the above result is not strictly valid unlessR = O(1), since
this was an assumption used in the derivation of equation (9). WhenR = O(N−

1

2 )
then one can no longer assume that fluctuations are negligible asN → ∞. Define
the O(1) quantitiesr ≡ R

√
N and ν ≡ ηN2. The mean and variance of the

change inr at each learning step can be calculated (to leading order inN−1),

E[∆r] ≃
(

−1

2
〈φ2(z)〉ν2r + 1

6
κ4〈φ′′′(z)〉σν r3

)

N−3 , (16)

Var[∆r] ≃ 〈φ2(z)〉ν2N−3 . (17)

This expression is derived by a similar adiabatic elimination of Q11 as carried
out for the deterministic case in appendix A. This requires thatα andη are the
same order before taking the limitN → ∞, followed by the limitα → ∞ and
corresponds to the usual form of “slaving” in Haken’s terminology in which the
eliminated variable only contributes to the change in mean.Other scalings may
result in slightly different expressions (see, for example, Gardiner, 1985, section
6.6) although it is expected that the main conclusions described below will not be
affected.

The equation for the mean is similar to equation (14). However, the variance is
the same order as the mean in the limitN → ∞ and fluctuations cannot be ignored
in this case. The system is better described by a Fokker-Planck equation (see, for
example, Gardiner, 1985) with a characteristic time-scaleof O(N3). The system
is locally equivalent to a diffusion in the following quartic potential,

U(r) = 1

4
〈φ2(z)〉ν2r2 − 1

24
|κ4〈φ′′′(z)〉|ν r4 , (18)

with a diffusion coefficientD = 〈φ2(z)〉ν2 which is independent ofr. The shape
of this potential is shown in figure 2. A potential barrier∆U must be overcome
to escape an unstable state close toR = 0 (assuming that the condition onσ in
equation (15) is satisfied).

For largeν this system corresponds to an Ornstein-Uhlenbeck process with
a Gaussian stationary distribution of fixed unit variance. Thus, if one chooses too

8



U(r)

r

✻
∆U

Figure 2: Forr = R
√
N = O(1) the dynamics can be represented as a diffusion in

a symmetric quartic potentialU(r). The escape time from an unstable fixed point
at r = 0 is mainly determined by the potential barrier∆U .

largeν initially the dynamics will become localised close toR = 0. Asν is reduced
the potential barrier confining the dynamics is reduced. Thetime-scale for escape
for large ν is mainly determined by the effective size of the barrier (Gardiner,
1985),

Tescape ∝ exp

(

∆U

D

)

= exp

(

3〈φ2(z)〉ν
8|κ4〈φ′′′(z)〉|

)

. (19)

As the learning rate is reduced so the time-scale for escape is also reduced. How-
ever, the choice of optimal learning rate is non-trivial andcannot be determined by
considering only the leading order terms inR as above, because although smallν
will result in a quicker escape from the unstable fixed point nearR = 0 this will
then lead to a very slow learning transient after escape.

From the above discussion one can draw two important conclusions. Firstly,
the initial learning rate should beO(N−2) or less initially in order to avoid trapping
close to the initial conditions. Secondly, the time-scale required to escape the initial
transient isO(N3), resulting in an extremely slow initial stage of learning.

4.3 Other sub-optimal fixed points

In studies of other on-line learning algorithms, such as Sanger’s rule and back-
propagation, a class of sub-optimal fixed points have been discovered which are
due to symmetries inherent in the learning machine’s structure (Saad and Solla,
1995a,b; Biehl and Schwarze, 1995; Biehl and Schlösser, 1998). These symmetric
fixed points are unstable for small learning rates, but the eigenvalues determining
escape are typically of very small magnitude so that trapping can occur if the initial
conditions are sufficiently symmetric. In practice this will typically occur only
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for very large input dimensions (N > 106) and will result in learning timescales
of O(N2) for O(N−1) learning rates. Equation (9) does exhibit fixed points of
this type for particular initial conditions. Consider the caseK = M = 2 as an
example. If initiallyR11 ≃ R21 andR12 ≃ R22 then the dynamics will preserve
this symmetry until instabilities due to slight initial differences lead to escape from
an unstable fixed point. This symmetry breaking is necessaryfor good performance
since each projection must specialise to a particular source signal.

As mentioned above, sufficiently small differences in the initial value of the en-
tries inR will typically only occur for very largeN , much larger than the typical
values currently used in ICA. A very small learning rate is then required to avoid
trapping in a fixed point near the initial conditions, as discussed in the previous
section. This initial trapping is far more serious than the symmetric fixed point
since it requires a learning rate ofO(N−2) in order to escape, resulting in a far
greater loss of efficiency. In practice, symmetric fixed points do not appear to be
a serious problem and we have not observed any such fixed points in simulations
of finite systems. This may be due to the highly stochastic nature of the initial
dynamics, in which fluctuations are large compared to the average dynamical tra-
jectory. This is in contrast to the picture for back-propagation, for example, where
fluctuations result in relatively small corrections to the average trajectory (Barber
et al., 1996). The strong fluctuations observed here may helpbreak any symmetries
which might otherwise lead to trapping in a symmetric fixed point, although a full
understanding of this effect requires careful analysis of the multivariate diffusion
equation describing the dynamics near the initial conditions.

5 Simulation results

The theoretical results in the previous section are for the limiting case whereN →
∞. In practice we should verify that the results are relevant in the case of large but
finite N . In this section simulation evidence is presented which demonstrates that
the trapping predicted by the theory occurs in finite systems.

Figures 3(a)–(c) show results produced by an algorithm learning a single pro-
jection from 100-dimensional data with a single non-Gaussian (uniformly dis-
tributed) component (N = 100,M = K = 1). The matricesA andW are
randomly initialised with orthogonal, normalised columns. Similar results are ob-
tained for other random initialisations. A cubic non-linearity is used andσ is set
to−1, although the adaptive scheme for settingσ suggested by Hyvärinen and Oja
(1998) gives similar results. In each example, dashed linesshow the maxima of
the potential in figure 2. Figure 3(a) shows the learning dynamics from a single
run with η = 10−5 (ν = 0.1). The dynamics follows a relatively smooth tra-
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jectory in this case and much of the learning is determined bythe cubic term in
equation (16). With this choice of learning rate there is a strong dependence on
the initial conditions, with larger initial magnitude ofR often resulting in signif-
icantly faster learning. However, recall that a high value for R cannot be chosen
without prior knowledge of the mixing matrix. Figure 3(b) shows the learning dy-
namics with a larger learning rateη = 10−4 (ν = 1) for exactly the same initial
conditions and sequence of data. In this case the learning trajectory is more obvi-
ously stochastic and is initially confined within the unstable sub-optimal state with
R ≃ 0. Eventually the system leaves this unstable state and quickly approaches
R ≃ 1. In this case the dynamics is not particularly sensitive to the initial mag-
nitude ofR although the escape time can vary significantly due to the inherent
randomness of the learning process. In figure 3(c) the learning dynamics is shown
for a larger learning rateη = 4 × 10−4 (ν = 4). In this case the system remains
trapped in the sub-optimal state for the entire simulation time.

The analysis in section 4.2 is only strictly valid for the case of a single non-
Gaussian source and a single projection. However, similar trapping occurs in gen-
eral as demonstrated in figures 3(d)–(f). The components ofR are plotted for
an algorithm learning two projections from 100-dimensional data with two non-
Gaussian (uniformly distributed) components (N = 100,M = K = 2). The dif-
ferent learning regimes identified in the single component case are mirrored closely
in the case of this two component model.

6 Conclusion

An on-line Hebbian ICA algorithm was studied for the case in which data com-
prises a linear mixture of Gaussian and non-Gaussian sources and a solution to
the dynamics was obtained for the idealised scenario in which the number of non-
Gaussian sources is finite while the number of Gaussian sources is infinite. The
analysis confirmed the stability conditions found by Hyvärinen and Oja (1998) and
the eigensystem characterising the asymptotic regime was determined. However, it
was also shown that there exist sub-optimal fixed points of the learning dynamics
which are stabilised by stochastic effects under certain conditions. The simplest
case of a single non-Gaussian component was studied in detail. The analysis re-
vealed that typically a very low learning rate (η = O(N−2) whereN is the data
dimension) is required to escape this sub-optimal fixed point, resulting in a long
learning time ofO(N3) iterations. Simulations of a finite system support these
theoretical conclusions.

The sub-optimal fixed point studied here has some interesting features. In
the limit η → 0 the dynamics becomes deterministic and fluctuations due to the
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stochastic nature of on-line learning vanish. In this case the sub-optimal fixed point
is unstable but the Jacobian is zero at the fixed point (in the 1-dimensional case)
indicating that one must go to higher order to describe the dynamics. Standard
methods for describing the dynamics of on-line algorithms have all been devel-
oped in the neighborhood of fixed points with negative eigenvalues and are not
applicable in this case (Heskes and Kappen, 1993). Furthermore, stability of the
fixed point is induced by fluctuations. This is contrary to ourintuition that fluc-
tuations may be beneficial, resulting in quicker escape fromsub-optimal fixed
points. In the present case one has precisely the opposite effect: stochasticity sta-
bilises an otherwise unstable fixed point. In similar studies of on-line PCA (Biehl
and Schlösser, 1998) and back-propagation algorithms (Biehl and Schwarze, 1995;
Saad and Solla, 1995a,b) sub-optimal fixed points have been found which are also
stabilised when the learning rate exceeds some critical value. However, the scale
of critical learning rate stabilising these fixed points is typically O(N−1), much
larger than in the present case. Also, the resulting time-scale for learning isO(N2)
with a very small prefactor (in practice anO(N) term will dominate for realistic
N ). These fixed points reflect saddle points in the mean flow while here we have
a flat region and escape is through much weaker higher order effects. This type
of sub-optimal fixed point is more reminiscent of those whichhave been found
in studies of small networks, which often have a much more dramatic effect on
learning efficiency (Heskes and Wiegerinck, 1998).

It is presently unclear whether on-line ICA algorithms based on Maximum-
likelihood and Information-theoretic principles (see, for example, Amari et al.,
1996; Bell and Sejnowski, 1995; Cardoso and Laheld, 1996) exhibit sub-optimal
fixed points similar to those studied here. These algorithmsestimate a square de-
mixing matrix and will require a different theoretical treatment than for the projec-
tion model considered here, since there may be no simple macroscopic description
of the system for largeN .
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A Derivation of the dynamical equations

From equation (5) one can calculate the change inR andQ (defined in (7)) after a
single learning step,

∆R = ησφ(y)sT + α(I −Q)R ,

∆Q = ησ(I + α(I −Q))φ(y)yT + ησyφ(y)T(I + α(I −Q))

+2α(I −Q)Q+ α2(I −Q)2Q+ η2φ(y)xTxφ(y)T . (20)

Here, the definition in equation (2) and the constraint in equation (4) have been
used to setxTAs = sT. One can obtain a set of differential equations in the limit
N → ∞ using a statistical mechanics formulation which has previously been ap-
plied to the dynamics of on-line PCA algorithms (Biehl, 1994; Biehl and Schlösser,
1998) as well as other unsupervised and supervised learningalgorithms (see, for
example, Biehl and Schwarze (1995); Saad and Solla (1995a,b) and contributions
in Saad (1998)). To obtain differential equations one should scale the parameters
of the learning algorithm in an appropriate way, in particular η ≡ µ/N . Typi-
cally one choosesα = O(1) but in order to obtain an analytical solution it is more
convenient to chooseα ≡ α0/N before takingN → ∞ and then take the limit
α0 → ∞. The dynamics do not appear to be sensitive to the exact valueof α as
long asα ≫ η and it is therefore hoped that the dynamical equations are valid
for α = O(1) which is usually the case. The learning rate is taken to be constant
here but the dynamical equations are also valid when the learning rate is changed
slowly, as suggested for the annealed learning studied in section 4.1.

AsN → ∞ one finds,

dR

dτ
= µσ〈φ(y)sT〉+ α0(I −Q)R , (21)

dQ

dτ
= µσ〈φ(y)yT + yφ(y)T〉+ µ2〈φ(y)φ(y)T〉+ 2α0Q(I −Q),(22)
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whereτ ≡ t/N is a rescaled time parameter. The angled brackets denote averages
overy as defined in equation (8). In deriving the above equations one should check
that fluctuations inR andQ vanish in the limitN → ∞. This relies on an assump-
tion thatR = O(1) which may not be appropriate in some cases. For example,
in section 4.2 a sub-optimal fixed point is analysed where it is more appropriate to
considerR = O(1/

√
N) and a more careful treatment of fluctuations is required.

As α0 is increased,Q approachesI. If one setsQ− I ≡ q/α0 and make the
á priori assumption thatq = O(1) then,

1

α0

dq

dτ
= µσ〈φ(y)yT + yφ(y)T〉+ µ2〈φ(y)φ(y)T〉 − 2q +O(1/α0) . (23)

As α0 → ∞ one can solve forq,

q =
1

2

(

µσ〈φ(y)yT + yφ(y)T〉+ µ2〈φ(y)φ(y)T〉
)

, (24)

which is consistent with théa priori assumption. Substituting this result into equa-
tion (21) leads to equation (9) in the main text. This is an example of adiabatic
elimination of fast variables (Gardiner, 1985, section 6.6) and greatly simplifies
the dynamical equations.

B Eigensystem of asymptotic Jacobian

The Jacobian ofdR/dτ asµ → 0 is defined (divided byµ),

Jijkl =
∂

∂Rkl

(

1

µ

dRij

dτ

∣

∣

∣

∣

µ=0

)∣

∣

∣

∣

∣

R=R∗

. (25)

This is a tensor rather than a matrix because the system’s variables are in a matrix.
One can think of pairs of indices(i, j) and(k, l) as each representing a single index
in a vectorised system. If the dynamics is equivalent to gradient descent on some
potential function then the above quantity is proportionalto the (negative) Hessian
of this cost function. The Jacobian is not guaranteed to be symmetric in the present
case, so this will not be possible in general. From equation (9) one obtains,

Jijkl = −δikδjl
(

ξi +
1

2
ξj
)

− 1

2
δilδjkξi , (26)

with,

ξi =

{

σii〈siφ(si)− φ′(si)〉 for i ≤ min(K,M) ,
0 otherwise .
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One must solve the following eigenvalue problem,
∑

kl

JijklVklnm = λnmVijnm , (27)

whereλij andVklij are the eigenvalues and eigenvectors respectively. A solution
is required for alli ≤ K andj ≤ M in order to get a complete set of eigenvalues,

λii = −2ξi , Vklii = δikδil ,

λij = −1

2
(ξi + ξj) , Vklij = δikδjl − δjkδil for i < j ≤ K ,

λij = −ξi , Vklij = δikδjl for j > K ,

λij = −(ξi + ξj) , Vklij = ξiδikδjl + ξjδjkδil for i > j . (28)
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Figure 3: 100-dimensional data (N = 100) is produced from a mixture containing
a small number of uniformly distributed sources. Figures onthe left (a–c) are for a
single non-Gaussian source and a single projection (M = K = 1) while figures on
the right (d–f) are for two non-Gaussian sources and two projections (M = K =
2). Each column shows examples of learning with the same initial conditions and
data but with different learning rates. From top to bottom:η = 10−5 (ν = 0.1),
η = 10−4 (ν = 1) andη = 4× 10−4 (ν = 4).
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