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Abstract

Previous analytical studies of on-line Independent CorepbAnalysis (ICA) learn-
ing rules have focussed on asymptotic stability and effayiem practice the tran-
sient stages of learning will often be more significant ired@ining the success of
an algorithm. This is demonstrated here with an analysiskdélabian ICA algo-
rithm which can find a small number of non-Gaussian compangiken data com-
posed of a linear mixture of independent source signalsdaalised data model is
considered in which the sources comprise a number of norsgtauand Gaussian
sources and a solution to the dynamics is obtained in théwmere the number of
Gaussian sources is infinite. Previous stability resultscanfirmed by expanding
around optimal fixed points, where a closed form solutioméoléarning dynamics
is obtained. However, stochastic effects are shown tolstalmtherwise unstable
sub-optimal fixed points. Conditions required to destabilbne such fixed point
are obtained for the case of a single non-Gaussian compdnditating that the
initial learning raten required to successfully escape is very low=t O(N~2)
whereN is the data dimension) resulting in very slow learning tggicrequiring
O(N?3) iterations. Simulations confirm that this picture holdsddinite system.
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1 Introduction

Independent component analysis (ICA) is a statistical riadetechnique which
has attracted a significant amount of research interestenteears (for a review,
see|Hyvarinen, 19P9). In ICA the goal is to find a represamanf data in terms
of a combination of statistically independent variablekistechnique has a num-
ber of useful applications, most notably blind source sajiam, feature extraction
and blind deconvolution. A large number of neural learnitggpathms have been
applied to this problem, as detailed in the aforementioestw.

Theoretical studies of on-line ICA algorithms have mairdgdssed on asymp-
totic stability and efficiency, using the established ressaf stochastic approxima-
tion theory. However, in practice the transient stagesarfiieg will often be more
significant in determining the success of an algorithm. Is gaper a Hebbian
ICA algorithm is analysed and a solution to the learning dyica is obtained in
the limit of large data dimension. The analysis highligthts tritical importance
of the transient dynamics and in particular an extremelyitatial learning rate is
found to be essential in order to avoid trapping in a subragltifixed point close
to the initial conditions of the learning dynamics.

This work focuses on the bigradient learning algorithmddtrced by Wang
and Karhunen (1996) and studied in the context of ICA by Hiyeén and Oja
(1998) where it was shown to have nice stability conditiofibis algorithm can
be used to extract a small number of independent componemsdata of high
dimension and is closely related to projection pursuit algms which detect “in-
teresting” projections in high-dimensional data. The &thm can be defined in
on-line mode or can form the basis of a fixed-point batch @lgorwhich has been
found to improve computational efficienqy (Hyvarinen and,Q99Y¥). In this work
the dynamics of the on-line algorithm is studied. This mayheepreferred mode
when the model parameters are non-stationary or when tlaeséais very large.
Although the analysis is restricted to a stationary dataehdte results are rele-
vant to the non-stationary case in which learning strategie often designed to
increase the learning rate when far from the optimyim (Mugleal., 1998). The
results obtained here suggest that this strategy can leghgoor performance.

In order to gain insight into the learning dynamics an ideadimodel is consid-
ered in which data is composed of a small number of non-Ganssiurce signals
linearly mixed in with a large number of Gaussian signals.ohion to the dy-
namics is obtained in the limiting case where the number afsGian signals is
infinite. In this limit one can use techniques from statedtimechanics similar
to those which have previously been applied to other oniéaening algorithms,
including other unsupervised Hebbian learning algorittsmsh as Sanger's PCA
algorithm (Biehl and Schlosser, 1998). For the asymptdyicamics close to an




optimal solution the stability conditions due(to Hyvamnand Oja (1998) are con-
firmed and the eigensystem is obtained which determinessthragtotic dynamics
and optimal learning rate decay. However, the dynamicahegus also have sub-
optimal fixed points which are stable for agy N~!) learning rate whereV is
the data dimension. Conditions required to destabilise suoh fixed point are
obtained in the case of a single non-Gaussian source, tirdjdhat learning must
be very slow initially in order to learn successfully. Theabsis requires a care-
ful treatment of fluctuations which prove to be importantreirethe limit of large
input dimension. Finally, simulation results are preséntich indicate that this
phenomenon persists also in finite sized systems.

2 Data model

The linear data model is shown in figyfe 1. In order to apply-thbbian ICA algo-
rithm one should first sphere the data, ie. linearly tramsftite data so that it has
an identity covariance matrix. This can be achieved by stahttansformations in
a batch setting but for on-line learning an adaptive splgesigorithm, such as the
one introduced by Cardoso and Laheld (1996), could be usediniplify matters

it is assumed here that the data has already been spherdehuiNdss of general-
ity it can also be assumed that the sources each have umihuariThe sources are
decomposed intd/ non-Gaussian anl¥y — M Gaussian components respectively,
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To conform with the above model assumptions the mixing matdrimust be uni-
tary. The mixing matrix is decomposed into two rectangulatrinesA; and A,
associated with the non-Gaussian and Gaussian compoespectively,

(1)

m:A[Z]:[ASAH][Z]:ASMFAW. )

The unitary nature ofA results in the following constraints,
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Figure 1: The linear mixing model generating the data is shalove. There are
M non-Gaussian independent sourseshile the remainingV — M sourcesn are
uncorrelated Gaussian variables. Therefdmutputse formed by multiplying the
sources by the square non-singular mixing mattix= [As A,,]. The outputs are
linearly projected onto thé-dimensional vectoyy = WTz. It is assumed that
M <« NandK < N.

3 Algorithm

The following on-line Hebbian learning rule was introdudsd/Nang and Karhunen

(1996) and analysed in the context of ICA|By Hyvarinen and @P98),

Wi — W =noa'p(y")" + aW' (I — (WHTW?), (5)

where ¢(y'); = ¢(y!) is an odd non-linear function which is applied to every
component of theé¢-dimensional vectoy = W T. The first term on the right
is derived by maximising the non-Gaussianity of the prégext in each compo-
nent of the vectory. The second term ensures that the column®bfare close
to orthogonal so that the projections are uncorrelated &nahib variance. The
learning ratey is a positive scalar parameter which must be chosen witharadte
may depend on time. The paramaeteis less critical and setting = 0.5 seems to
provide reasonable performance in general. The diagonalxwa has elements
oii € {—1,1} which ensure the stability of the desired fixed point. Theneets
of this matrix can either be chosen adaptively or can be chaseording tc pri-
ori knowledge about the source statistics. Stability of thenogit fixed point is



ensured by the condition (Hyvarinen and Oja, 1998),
o = Sign((sid(si) — ¢'(s1))) , (6)

assuming we order indices such that— +s; for i < min(K, M) asymptotically.
The angled brackets denote an average over the sourcéutisini.

A remarkable feature of the above algorithm is that the samnelinearity can
be used for source signals with very different characiesistFor example, both
sub-Gaussian and super-Gaussian signals can be sepasiaigeitherp(y) = 3
or ¢(y) = tanh(y), two common choices of non-linearity.

4 Dynamics for large input dimension
Define the following two matrices,

R=w"A,, Q=w'w. 7
Using the constraint in equatiof] (3) one can show that,

y = W (A;s+ An)
Rs+z where z~MN(0,Q—- RR"Y). (8)

Knowledge of the matriceR and@ is therefore sufficient to describe the relation-
ships between the projectiomsand the sources in full. Although the dimension
of the data isV, the dimension of these matricesAs x M and K x K respec-
tively. The system can therefore be described by a small Bumibmacroscopic
guantities in the limit of largeéV as long ag< and M remain manageable.

In appendiX A it is shown that in the lim¥ — oo, Q — I while R evolves
deterministically according to the following first ordeffdrential equation,

U _ o (6w)s™) ~ Howh™ + o) 1R) - 1 (6w)ou) 1R (©

with rescaled variables = ¢/N andyu = N7. This deterministic equation is only
valid for R = O(1) and a different scaling is considered in secfio} 4.2, in thic
case fluctuations have to be considered even in the limit. bfhekets denote ex-
pectations with respect to the source distribution and A’(0,I — RRT). The
bracketed terms therefore only dependR®rand statistics of the source distribu-
tions, so that the above equation forms a closed system.



4.1 Optimal asymptotics

The desired solution is one where as many as possible df thejections mirror
one of theM sources. IfK < M then not all the sources can be learned and
which ones are learned depends on details of the initialitond. If K > M
then which projections mirror each source also depends einttial conditions.
For K > M there will be projections which do not mirror any sourcegstawill

be statistically independent of the sources and have a Gaudistribution with
identity covariance matrix.

Consider the case whetyg — s; fori = 1...min(K, M) asymptotically (all
other solutions can be obtained by a trivial permutatiomdfdes and/or changes
in sign). The optimal solution is then given W}, = 4;; which is a fixed point
of equation [[p) ag. — 0. Asymptotically the learning rate should be annealed in
order to approach this fixed point and the usual inverse langaing can be shown
to be optimal subject to a good choice of prefactor,

o~ o as 7 (or equivalentlyn ~ % as t— oo) . (20)
-

The asymptotic solution to equatiof] (9) with the above alimgachedule was
given by[Leen et al. (1998). Let;; = R;; — R;; be the deviation from the fixed
point. Expanding equatiofi](9) around the fixed point oneinbta

K M 1 9 7o —HOAKL .
Uij(T) ~ Z Z Vijkl _§Xkl<¢ (Sn)>5nm+ (?) Unm(TO) Vklnm7
kn=1[lm=1
(11)

2 1 1 — 10 Aij
SO ' LR R R D
—,LL())\Z'J'—I T T0 T

Here,, is the time at which annealing begins akd andV;;;,; are the eigenvalues
and eigenvectors of the Jacobian of the learning equati@irstwrder inu. These
are written as matrices and tensors respectively ratharst@ars and vectors be-
cause the system’s variables are in a matrix. One can thip&ic$ of indiceqi, j)
and(k,[) as each representing a single index in a vectorised systamexplicit
solution to the eigensystem is given in apperidix B. From tgerwalues, defined
in equation [28), it is clear that the fixed point is stableriflanly if the condition
in equation [(6) is met.

There is a critical learning ratgy{" = —1/A\na Where . is the largest
eigenvalue (smallest in magnitude, since the eigenvaltesiegative), such that
if o < pg" then the approach to the fixed point will be slower than thénugit
1/7 decay. From the eigenvalues given [in](28) we find that = —¢&,, where

where,
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& = oii(sip(si) — ¢'(s;)), so thatud" = 1/&un. As long asug > pg* then the
terms involvingr in equations[(11) and (12) will be negligible and the asyripto
decay will be independent of the initial conditions and sient dynamics.
Assuminguo > pg" and substituting in the explicit expressions for the eigen-
system we find the following simple form for the asymptoticdgnics to leading

orderinl/r,
1202 ( s
ug(r) ~ 24 <7‘j;;f§i<jl)2>> . (13)

4.2 Escape from the initial transient

Unfortunately, the optimal fixed points described in thevjires section are not the
only stable fixed points of equatiof] (9). In some cases theriétign will converge
to a sub-optimal solution in which one or more potentiallyedéed signals remain
unlearned and the corresponding entryiirdecays to zero. The stability of these
points is due to the)(u?) term in equation[{9) which becomes less significant as
the learning rate is reduced, in which case the correspgnugative eigenvalue
of the Jacobian eventually vanishes. Higher order terms kbad to instability
and escape from this sub-optimal fixed point. One can therefeoid trapping by
selecting a sufficiently low learning rate during the iditransient.

Consider the simplest case whdke= M = 1 in which case the matribR
reduces to a scalai = Ry; ando = o1;. Expanding equatiorf](9) arourmtl= 0,

O L0 W R + brale”(2)) oult® + O(R). (14)

Here, k4 is the fourth cumulant of the source distribution and thekets denote
averages ovet ~ N(0,1). Although R = 0 is a stable fixed point, the range
of attraction is reduced as — 0 until eventually instability occurs. The condi-
tion under which one will successfully escape the fixed p@ribund by setting
d|R|/dt > 0,

. m R2|<¢m(z)>“4|
7 = Signra("(2))) s p< =g (15)
Notice that the condition oa for escaping the initial transient is not generally
the same as the condition in equatin (6) which ensuredistaifithe asymptotic
fixed point. Forp(y) = > the conditions are exactly equivalent. However, in other
cases the conditions may conflict and an adaptive choiedased on equatiof](6),
as suggested Ry Hyvarinen and Oja (1998), may give pooftsesith ¢(y) =
tanh(y) the conditions appear to be equivalent in many cases. Thiditaan is




equally applicable to gradient based batch algorithmsesinis due to theD(u)
term above, which is not related to fluctuations.

If the entries inA and W are initially of similar order then one would expect
R = O(N‘%). This is the typical case if we consider a random and uncueeé!
choice for A and the initial entries i##/. Larger initial values ofR could only
be obtained with some prior knowledge of the mixing matrixickhwe will not
assume. WithR = O(N‘%) the initial value ofu required to escape 9(N 1),
indicating a very slow initial phase in the dynamics (retiadt the unscaled learn-
ing raten = u/N). Larger learning rates will result in trapping in the syitimal
fixed point. However, the above result is not strictly validassRk = O(1), since
this was an assumption used in the derivation of equafjon{®enR = O(N‘%)
then one can no longer assume that fluctuations are negligdsl — oo. Define
the O(1) quantitiesr = Rv/N andv = nN2. The mean and variance of the
change in- at each learning step can be calculated (to leading ordsrih,

E[Ar] ~ (—%<¢2(z)>y2r + %54(&”(2)}01/ rg) N3, (16)
Var[Ar] ~ ($*(2))v?N73. 17)

This expression is derived by a similar adiabatic elimmatof ), as carried
out for the deterministic case in appendlik A. This requitest & andn are the
same order before taking the limN — oo, followed by the limitaa. — oo and
corresponds to the usual form of “slaving” in Haken’s terabrgy in which the
eliminated variable only contributes to the change in me@ther scalings may
result in slightly different expressions (see, for examf@ardiner, 1985, section
6.6) although it is expected that the main conclusions desgtibelow will not be
affected.

The equation for the mean is similar to equatipr} (14). Howethe variance is
the same order as the mean in the litNit— oo and fluctuations cannot be ignored
in this case. The system is better described by a FokkecRlkaguation (see, for

example [Gardiner, 1985) with a characteristic time-sofl®(N?). The system

is locally equivalent to a diffusion in the following quarfpotential,

U(r) = 1(6°(2))v°r? — 5qlka(@" (2)) v r* (18)

with a diffusion coefficientD = (¢?(z))v? which is independent af. The shape
of this potential is shown in figur} 2. A potential barri@l/ must be overcome
to escape an unstable state closerte= 0 (assuming that the condition anin
equation [(15) is satisfied).

For largev this system corresponds to an Ornstein-Uhlenbeck procéks w
a Gaussian stationary distribution of fixed unit variancbuq, if one chooses too
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Figure 2: Forr = Rv/N = O(1) the dynamics can be represented as a diffusion in
a symmetric quartic potentidl (r). The escape time from an unstable fixed point
atr = 0 is mainly determined by the potential barri&f/.

largev initially the dynamics will become localised closefRo= 0. Asv is reduced
the potential barrier confining the dynamics is reduced. {ithe-scale for escape
for large v is mainly determined by the effective size of the barrier r{geer,

1985) e (22 = oy <M) (19)
escape D 8 | R4 <¢//l (Z)> | .

As the learning rate is reduced so the time-scale for escaglead reduced. How-
ever, the choice of optimal learning rate is non-trivial @adnot be determined by
considering only the leading order termsitnas above, because although small
will result in a quicker escape from the unstable fixed poegdanRk = 0 this will
then lead to a very slow learning transient after escape.

From the above discussion one can draw two important caodsis Firstly,
the initial learning rate should @(N —2) or less initially in order to avoid trapping
close to the initial conditions. Secondly, the time-scalguired to escape the initial
transient isO(N?3), resulting in an extremely slow initial stage of learning.

4.3 Other sub-optimal fixed points

In studies of other on-line learning algorithms, such asg8es rule and back-
propagation, a class of sub-optimal fixed points have bestodered which are
due to symmetries inherent in the learning machine’s sirec(Saad and Solla,
19954 b[ Biehl and Schwarze, 1p95; Biehl and Schlosség)1T hese symmetric
fixed points are unstable for small learning rates, but thergialues determining
escape are typically of very small magnitude so that tragppam occur if the initial

conditions are sufficiently symmetric. In practice thisIvi§ipically occur only




for very large input dimensions\ > 10°) and will result in learning timescales
of O(N?) for O(N~!) learning rates. Equatior] (9) does exhibit fixed points of
this type for particular initial conditions. Consider thaseK = M = 2 as an
example. If initially R11 ~ Ro; andRi5 ~ Roo then the dynamics will preserve
this symmetry until instabilities due to slight initial thfences lead to escape from
an unstable fixed point. This symmetry breaking is necegsagood performance
since each projection must specialise to a particular sosignal.

As mentioned above, sufficiently small differences in thidhvalue of the en-
tries in R will typically only occur for very largelV, much larger than the typical
values currently used in ICA. A very small learning rate isrthrequired to avoid
trapping in a fixed point near the initial conditions, as diged in the previous
section. This initial trapping is far more serious than thmmetric fixed point
since it requires a learning rate 6f(N—2) in order to escape, resulting in a far
greater loss of efficiency. In practice, symmetric fixed poitho not appear to be
a serious problem and we have not observed any such fixedspnistmulations
of finite systems. This may be due to the highly stochastiareadf the initial
dynamics, in which fluctuations are large compared to theageedynamical tra-
jectory. This is in contrast to the picture for back-propgama for example, where
fluctuations result in relatively small corrections to thverage trajectory (Barber
etal., 1996). The strong fluctuations observed here maylrebk any symmetries
which might otherwise lead to trapping in a symmetric fixechpalthough a full
understanding of this effect requires careful analysihefrhultivariate diffusion
equation describing the dynamics near the initial conadgio

5 Simulation results

The theoretical results in the previous section are forithizgihg case whergv. —
oo. In practice we should verify that the results are relevarihé case of large but
finite N. In this section simulation evidence is presented whichatetrates that
the trapping predicted by the theory occurs in finite systems

Figures[B(a)—(c) show results produced by an algorithrmiegra single pro-
jection from 100-dimensional data with a single non-Garsguniformly dis-
tributed) component = 100,M = K = 1). The matricesA and W are
randomly initialised with orthogonal, normalised colum&milar results are ob-
tained for other random initialisations. A cubic non-lingais used andr is set
to —1, although the adaptive scheme for settinguggested by Hyvarinen and Oja
(1998) gives similar results. In each example, dashed bhesv the maxima of
the potential in figurd]2. Figurg 3(a) shows the learning dyioa from a single
run withn = 107° (v = 0.1). The dynamics follows a relatively smooth tra-
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jectory in this case and much of the learning is determinethbycubic term in
equation [16). With this choice of learning rate there isrargy dependence on
the initial conditions, with larger initial magnitude & often resulting in signif-
icantly faster learning. However, recall that a high valae R cannot be chosen
without prior knowledge of the mixing matrix. Figufk 3(b)osts the learning dy-
namics with a larger learning rate= 10~* (v = 1) for exactly the same initial
conditions and sequence of data. In this case the learrajegtory is more obvi-
ously stochastic and is initially confined within the unsedub-optimal state with
R ~ 0. Eventually the system leaves this unstable state and lgjuagproaches
R ~ 1. In this case the dynamics is not particularly sensitiveh ihitial mag-
nitude of R although the escape time can vary significantly due to therérit
randomness of the learning process. In fidlire 3(c) the legquaiynamics is shown
for a larger learning rate = 4 x 10~* (v = 4). In this case the system remains
trapped in the sub-optimal state for the entire simulatioret

The analysis in section 4.2 is only strictly valid for the eas a single non-
Gaussian source and a single projection. However, simmd@ptng occurs in gen-
eral as demonstrated in figurgls 3(d)—(f). The componentR aire plotted for
an algorithm learning two projections from 100-dimenslodiata with two non-
Gaussian (uniformly distributed) componenié & 100, M = K = 2). The dif-
ferent learning regimes identified in the single componaseare mirrored closely
in the case of this two component model.

6 Conclusion

An on-line Hebbian ICA algorithm was studied for the case imok data com-
prises a linear mixture of Gaussian and non-Gaussian soame a solution to
the dynamics was obtained for the idealised scenario intwthie number of non-
Gaussian sources is finite while the number of Gaussian esuscnfinite. The
analysis confirmed the stability conditions found by Hyman and Oja (1998) and
the eigensystem characterising the asymptotic regime eta@srdined. However, it
was also shown that there exist sub-optimal fixed points ei¢hrning dynamics
which are stabilised by stochastic effects under certamditions. The simplest
case of a single non-Gaussian component was studied in. d€ke analysis re-
vealed that typically a very low learning rate & O(N~2) whereN is the data
dimension) is required to escape this sub-optimal fixedtpo@sulting in a long
learning time ofO(N3) iterations. Simulations of a finite system support these
theoretical conclusions.

The sub-optimal fixed point studied here has some integegéatures. In
the limit » — 0 the dynamics becomes deterministic and fluctuations duleeto t
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stochastic nature of on-line learning vanish. In this cheestib-optimal fixed point
is unstable but the Jacobian is zero at the fixed point (in tdanensional case)
indicating that one must go to higher order to describe theadhycs. Standard
methods for describing the dynamics of on-line algorithrasehall been devel-
oped in the neighborhood of fixed points with negative eighres and are not
applicable in this case (Heskes and Kappen, [1993). Furtivernstability of the
fixed point is induced by fluctuations. This is contrary to mtuition that fluc-
tuations may be beneficial, resulting in quicker escape fsou-optimal fixed
points. In the present case one has precisely the oppofdte: eftochasticity sta-
bilises an otherwise unstable fixed point. In similar stadiéon-line PCA (Biehl
and Schldsser, 1998) and back-propagation algorithneh{Bnd Schwarze, 1995;
Baad and Solla, 1996h,b) sub-optimal fixed points have leemifwhich are also
stabilised when the learning rate exceeds some criticakvaHowever, the scale
of critical learning rate stabilising these fixed pointsyipitally O(N~1!), much
larger than in the present case. Also, the resulting tinagedor learning isD(N?)
with a very small prefactor (in practice & (N) term will dominate for realistic
N). These fixed points reflect saddle points in the mean flowenigre we have
a flat region and escape is through much weaker higher orflatef This type
of sub-optimal fixed point is more reminiscent of those whidve been found
in studies of small networks, which often have a much morendt effect on
learning efficiency|(Heskes and Wiegerinck, 1998).

It is presently unclear whether on-line ICA algorithms thea Maximum-
likelihood and Information-theoretic principles (seer &xample, Amari et al.,
1996;[Bell and Sejnowski, 199p; Cardoso and Laheld, ]199B)bexsub-optimal
fixed points similar to those studied here. These algoritestenate a square de-
mixing matrix and will require a different theoretical tte@ent than for the projec-
tion model considered here, since there may be no simpleasampic description
of the system for largeV.
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A Derivation of the dynamical equations

From equation[{5) one can calculate the changR endQ (defined in [[7)) after a
single learning step,

AR = noo(y)s' +o(I-Q)R,
AQ = no(I+a—-Q)oy)y" +noye(y) (I +ao - Q))
+20(I - Q)Q + *(I - Q)*°Q + o (y)x"zo(y)" .  (20)

Here, the definition in equatior}](2) and the constraint inatign (#) have been
used to set™ A, = s*. One can obtain a set of differential equations in the limit
N — oo using a statistical mechanics formulation which has preslipbeen ap-
plied to the dynamics of on-line PCA algorithnis (Biehl, 7j9B#hl and Schlosser,
1998) as well as other unsupervised and supervised leaahjogithms (see, for
example[ Biehl' and Schwarze (199F); Saad and Solla (Ji9P&achcontributions
in Baad (1998)). To obtain differential equations one stheghle the parameters
of the learning algorithm in an appropriate way, in paréeu} = p/N. Typi-
cally one chooses = O(1) but in order to obtain an analytical solution it is more
convenient to choose = «/N before takingV — oo and then take the limit
a9 — oo. The dynamics do not appear to be sensitive to the exact whlueas
long asa > n and it is therefore hoped that the dynamical equations dré va
for « = O(1) which is usually the case. The learning rate is taken to betaah
here but the dynamical equations are also valid when thaitearate is changed
slowly, as suggested for the annealed learning studiecciiosd.].

As N — oo one finds,

S oloy)s™) + ool - QR 21)
L~ oy +usw)) o) bw)") + 200Q1 - Q).(22)
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wherer = t/N is a rescaled time parameter. The angled brackets denateyage
overy as defined in equatiofif (8). In deriving the above equatioessbould check
that fluctuations inR and@ vanish in the limitV.— oo. This relies on an assump-
tion that R = O(1) which may not be appropriate in some cases. For example,
in section[4]2 a sub-optimal fixed point is analysed whergitdre appropriate to
considerR = O(1/+v/N) and a more careful treatment of fluctuations is required.
As qy is increased(@ approached. If one sets) — I = g/« and make the
a priori assumption thag = O(1) then,

1dg

adr po(dW)y" +yoy)") + 1*(d(y)d(y)") — 2+ O(1/ag) . (23)

As oy — oo one can solve fog,

a=; (noéwy" +vo@") + Pewewh) . (@9

which is consistent with thé priori assumption. Substituting this result into equa-
tion (1) leads to equatiorf](9) in the main text. This is annepie of adiabatic

elimination of fast variableq (Gardiner, 1985, section) @6d greatly simplifies
the dynamical equations.

B Eigensystem of asymptotic Jacobian

The Jacobian ol R/dr asp — 0 is defined (divided by:),

0 (ldRij )‘ . (25)
#=0/ | R=R~

ORky \ p dr
This is a tensor rather than a matrix because the systemébles are in a matrix.
One can think of pairs of indice$, j) and(k, [) as each representing a single index
in a vectorised system. If the dynamics is equivalent toigradiescent on some
potential function then the above quantity is proporticioahe (negative) Hessian
of this cost function. The Jacobian is not guaranteed to brersstric in the present
case, so this will not be possible in general. From equafipoife obtains,

Jijkl =

Jijkt = —0ikdji (&' + %é’j) — 160016, (26)
with,

0 otherwise.

€ = { oii(sip(s;) — ¢'(s;)) for i < min(K, M),
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One must solve the following eigenvalue problem,
Z Jijklvklnm = )\nm‘/ijnm ’ (27)
kl

where);; andV},;; are the eigenvalues and eigenvectors respectively. Aigolut
is required for alk < K andj < M in order to get a complete set of eigenvalues,

Ni = =2, Vi = oixda

Aij —2&+ &), Vi = 6ubj — oy fori <j <K,

Xij = =&y Vi =0wdy forj> K,

Aij —(&+&) s Vg = &bt + &00q  fori > j. (28)
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Figure 3: 100-dimensional dat&/(= 100) is produced from a mixture containing
a small number of uniformly distributed sources. Figureshanleft (a—c) are for a
single non-Gaussian source and a single projectidn< K = 1) while figures on
the right (d-f) are for two non-Gaussian sources and tweeptins (/ = K =
2). Each column shows examples of learning with the samairitinditions and
data but with different learning rates. From top to bottam= 10=° (v = 0.1),
n=10"*(v =1)andn =4 x 107* (v = 4).
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