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Ef�cient coding has been proposed as a �rst principle explaining neu-
ronal response properties in the central nervous system. The shape of
optimal codes, however, strongly depends on the natural limitations of
the particular physical system. Here we investigate how optimal neu-
ronal encoding strategies are in�uenced by the �nite number of neurons
N (place constraint), the limited decoding time window length T (time
constraint), the maximum neuronal �ring rate fmax (power constraint),
and the maximal average rate h f imax (energy constraint). While Fisher in-
formation provides a general lower bound for the mean squared error of
unbiased signal reconstruction, its use to characterize the coding preci-
sion is limited. Analyzing simple examples, we illustrate some typical
pitfalls and thereby show that Fisher information provides a valid mea-
sure for the precision of a code only if the dynamic range ( fminT, fmaxT) is
suf�ciently large. In particular, we demonstrate that the optimal width of
gaussian tuning curves depends on the available decoding time T. Within
the broader class of unimodal tuning functions, it turns out that the shape
of a Fisher-optimal coding scheme is not unique. We solve this ambiguity
by taking the minimum mean square error into account, which leads to
�at tuning curves. The tuning width, however, remains to be determined
by energy constraints rather than by the principle of ef�cient coding.

1 Introduction

Since Attneave (1954) and Barlow (1959) proposed redundancy reduction
or coding ef�ciency as a major principle for neuronal representations gov-
erning the formation of the central nervous system, much theoretical and
experimental work has attempted to identify this principle within various
structures in the brain. Neurons in cortical circuits are typically coupled
to many other neurons (103

¡ 104) (Braitenberg & Schüz, 1991), and their
activity is propagated and converted in a highly distributed manner. This
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raises the question of how signal processing can in principle be performed
by large populations of neurons. Technically, this question corresponds to
characterizing the class of computations (i.e., �lters or functions) that can
be realized by the combination of elementary units (model neurons). Most
theoretical studies, however, deal only with noise-free units, which cannot
account for the fact that the reliable communication of a signal (that is, the
realization of the identity, which may be seen as the simplest case of noisy
computation) may require a large number of neurons.

Here, we address the issue of optimal signal representation in popula-
tions of neurons. Population codes (Rolls & Cowey, 1970; Georgopoulos,
Schwartz, & Kettner, 1986; Paradiso, 1988) constitute an important class of
neural coding schemes, in which the signal is represented by the number of
spikes emitted from each of the neurons within a given counting time win-
dow. In other words, a population code is completely determined by the
spike counting statistics and may be considered as a simpli�ed snapshot
description of the time-continuous neuronal �ltering process of temporal
integration over synaptic inputs.

In this article, we seek to identify optimal encoding strategies (i.e., a set
of tuning functions) under the assumption of a Poisson noise model, given
a limited number of neurons N and a �nite decoding time window of length
T. Similar to previous studies by Panzeri et al. (Panzeri, Bielle, Rolls, Skaggs,
& Treves, 1996; Panzeri, Treves, Schultz, & Rolls, 1999), we are particularly
interested in short time windows, since psychophysical experiments have
shown that ef�cient computations can be performed in cortex at a rate where
each neuron has �red on average only once (Rolls & Tovee, 1994; Thorpe,
Fitz, & Marlot, 1996). In order to make the optimization problem well posed,
we specify both the objective function (see section 2) and the set of tuning
function arrays within which the optimumisdetermined. With respect to the
latter, we intend to make the class of candidate encoding strategies as large
as possible in order to learn something about the arrangement and shape
of tuning functions that correspond to the ultimate limit of precision. In
particular, this means that we do not restrict the class of encoding strategies
a priori to those tuning functions that are considered biologically plausible;
rather, we intend to check the explanatory power of the coding ef�ciency
principle.

Previous studies of optimal population coding have focused on whether
broad or small tuning widths are advantageous for the representation of
stimulus features (Hinton, McClelland, & Rumelhart, 1986; Baldi & Heili-
genberg, 1988; Snippe & Koenderink, 1992). In particular, an optimal scale
for populations of neurons with arbitrary radially symmetric tuning func-
tions and arbitrary dimensions of the encoded parameter (Zhang & Se-
jnowski, 1999) has been determined with respect to the average Fisher infor-
mation. Subsequently, this analysis has been further generalized in Eurich
and Wilke (2000) by allowing for different scales for each stimulus dimen-
sion. In contrast to the apparent generality of this approach, its validity is



Optimal Short-Term Population Coding 2319

substantially restricted by two problems that make further analysis neces-
sary.

First, the optimization of the scale or width was based on a comparison
between tuning functions with exactly the same shape, neglecting the fact
that the precision may depend much less on the scale or width than on other
aspects of the shape of the tuning functions (see section 6). In contrast, here
we seek to �nd population codes that are optimal with respect to the entire
class of tuning functions speci�ed by very basic constraints only, such as a
limited maximum �ring rate or unimodality.

The other problem results from the limited validity of Fisher information
J (see equation 2.7) as a measure for the precision of a population code. The
precision of a population code is usually de�ned independently from Fisher
information on the basis of the conditional mean squared error (c.m.s.e.) of
an ideal observer as a function of the presented stimulus (Baldi & Heili-
genberg, 1988). While the Cram Âer-Rao bound (see equation 2.8) provides a
general lower bound on the c.m.s.e. of any estimator (Aitken & Silverstone,
1942; Frechet, 1943; Rao, 1946; Cram Âer, 1946), this inequality does not jus-
tify the use of Fisher information as a general measure for the precision of
population codes, because the Cram Âer-Rao bound is not unique for biased
estimators, and it often cannot be attained. Furthermore, the notion of an
ideal observer is not unique, so that no general de�nition of the resolu-
tion exists that �ts all problems, but any de�nition necessarily depends on
further speci�cations.

Our analysis investigates the question of optimal encoding taking these
two aspects into account. Another goal of this article is to strengthen intu-
ition in how far Fisher information can be used to judge on the precision
of different encodings. In the next section, we describe the methods and
notations used throughout the article. In particular, a thorough justi�cation
of Fisher information as a measure for the precision of population codes on
the basis of asymptotic ef�ciency is presented. In section 3, we determine
the optimal scale for the example of gaussian tuning curves with respect
to Fisher information, on the one hand, and with respect to the minimum
mean squared error (MMSE) in the case of a small counting time window,
on the other hand. This example indicates that Fisher information does
not account for the MMSE in the case of short-term population coding.
Subsequently, we show that this problem becomes especially relevant for
Fisher-optimal codes if one drops the a priori restriction to gaussian-shaped
tuning curves by presenting an example in section 4, where two neurons
are suf�cient to achieve arbitrary large Fisher information. The conditions
under which Fisher information can be used to determine the MMSE are
discussed in section 5. In section 6, we investigate the case where the tuning
functions are constrained to have a single maximum only (i.e., unimodal
tuning functions) and the crucial role of energy constraints for the tuning
width is demonstrated in section 7. Finally, we discuss the prerequisites and
implications of our results in section 8.



2320 M. Bethge, D. Rotermund, and K. Pawelzik

2 Methods and Notations

We give a brief overview of the relevant quantities and methods used
throughout this article. The encoded random variable will be denoted by x

and the observable spike count vector by k, whose N components are the
numbers of spikes of the N neurons (see Figure 1). Because all observable
quantities take values within a limited range only, we set the range of x to
the open unit interval x 2 (0, 1) without loss of generality. For convenience,
we assume x to be uniformly distributed with density p (x)

D H (x)H (1 ¡ x) ,
where H (y) denotes the Heaviside function, which is one if y > 0 and zero
otherwise. The distribution speci�ed by p(x) is also called the a priori dis-
tribution, because it determines general properties of the signal x that are
independent of the observed k.

The encoding of x is speci�ed by the set of tuning functions f fj (x)gN

jD1 that
give the mean number of spikes for each neuron j divided by the length
T of the counting time window. Together with the assumption of indepen-
dent Poisson noise, the response statistics of the entire population is then
described by

p(k | x)
D

NY

jD1
pm j

(kj) D

NY

jD1

(Tfj (x) ) kj

kj!
expf¡Tfj (x)g, (2.1)

where pm j
(kj) denotes the probability mass function of the Poisson distribu-

tion with parameter m j D Tfj (x) , which gives the mean and the variance of
the spike count. Apart from the asymptotic cases T ! 0 and T ! 1, we
will frequently consider the case fmaxT D 1, that is, each neuron does not �re
more than one spike on average. As we will discuss in section 8, we suspect
that fmaxT D 1 is of the relevant order for signal transmission in cortex.

Throughout the article, the mean of a random variable is denoted by E[.].
In particular, we will have

E[A (x, k) ] D

Z
p (x)

X

k

p (k | x) A(x, k) dx (2.2)

D

Z
p (x)

1X

k1D0
, . . . ,

1X

kN D0
p (k | x) A (x, k) dx, (2.3)

which reduces to E[A(x)] D

R
p (x)A(x) dx, if A is a function of x only. E[A |

x] D

P
k p (k | x)A (k, x) is called the conditional mean given x. We will

also consider the conditional mean E[A | k] D

R
p (x | k)A (k, x) dx, where

the so-called a posteriori distribution p (x | k) can be obtained by using the
Bayes formula:

p(x | k)
D

p(k | x)p (x)
R

p (k | Qx)p ( Qx)d Qx
. (2.4)
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Figure 1: General scheme of encoding and decoding. The relationship between
a stimulus signal x and the neuronal response k is determined by the likelihood
p (k | x) , which can be decomposed into the encoding and the noise model.
The mean spike counts m j

(x) ´ E[kj | x] D Tfj (x) as functions of x specify the
encoding, while for the noise model, we almost always choose the product of
Poisson distributions in this article. Any function Ox: k 7! Ox (k) may beconsidered
as a candidate estimator of x. The performance of an estimator Ox with respect to
a given x is judged by its mean squared error risk.
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2.1 De�ning an Ideal Observer. The precisionofa neural code isusually
de�ned on the basis of the mean squared error risk r(x)

D E[(x ¡ Ox) 2 | x],
with which a certain estimator Ox reconstructs the presented stimulus x from
the response of the neuronal population. While the estimator is intended
to represent an ideal observer, it is actually not possible to determine an
estimator that is preferable among all possible estimators independently
of the problem at hand. This is because no estimator exists that minimizes
the risk r (x) for all x, apart from trivial cases, where error-free estimation
r(x) ´ 0 is possible (Lehmann & Casella, 1999).

However, if one considers sequences of estimators ( Oxm) 1

mD1, where each
element Oxm (k (1) , . . . , k (m) ) refers to m independent and identically dis-
tributed (i.i.d.) spike count vectors (k (1) , . . . , k (m) ) , the corresponding se-
quence of risk functions asymptotically decreases proportional to 1/m for
many estimators.1 This can essentially be explained by the central limit the-
orem. More precisely, it can be shown under some rather weak assumptions
about p (k | x) and p (x) (Lehmann & Casella, 1999) that the rescaled error
p

m ( Oxm ¡ x) converges in law to a normal distribution with zero mean and
a variance, which is the reciprocal value of Fisher information:

J[p (k | x)] ´ E[(@x log p (k | x) ) 2 | x]. (2.5)

Such (sequences of) estimators are called asymptotically ef�cient.
In the case of a homogeneous Poisson process as considered in this article,

it is equivalent to consider sequences of increasing decoding time windows
Tm D mT0. While the corresponding estimators are functions of a single
spike count vector k only, this spike count vector can be interpreted as the
sum

P
m

tD1 k (t) of m spike count vectors that are independently drawn from
a Poisson distribution corresponding to the time window T0. Thereby, no
information gets lost because

P
m

tD1 kj (t) is a suf�cient statistics for the pa-
rameter of the Poisson distribution (Lehmann & Casella, 1999). Accordingly,
for asymptotically ef�cient estimators holds

lim
T!1

r(x, T) ¢ J[f fj (x)gN

jD1] D 1, (2.6)

1 Note that the term estimator is used with different notions. While basically any arbi-
trary function of the observable random variables is called an estimator, if it is intended
to predict some quantity, we here have a somewhat different meaning: If one talks about
the maximum likelihood estimator or the mean square estimator, one does not refer to a
unique function, but to a certain set of estimators de�ned by a unique construction rule.
If the latter is speci�ed, a sequence of observations naturally leads to a unique sequence
of estimators.
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where r(x, T) denotes the risk depending on T and the Fisher information
is determined by

J[f fj (x)gN

jD1] D T

NX

jD1

f
02
j

(x)

fj (x)
, (2.7)

which is obtained by inserting equation 2.1 into equation 2.5 (Paradiso, 1988;
Seung & Sompolinsky, 1993).

While Fisher information also shows up in the Cram Âer-Rao bound for
unbiased estimators in a similar way, the latter by itself is not suf�cient to
justify the use of Fisher information as a general measure for the coding
precision. In its general version, the Cram Âer-Rao bound,

r(x) ¸

(@xE[ Ox (k) | x])2

J[p (k | x)]
C (E[ Ox (k) | x] ¡ x) 2, (2.8)

is not unique for different estimators. Furthermore, even if uniqueness is
given as, for example, in the case of uniformly unbiased estimators, a com-
parisonof different encodings cannot necessarily be traced back to a compar-
ison of some lower bounds on the decoding risks. Instead, it is indispensable
to determine a suf�ciently close approximation of the actual values. Since
the exact equality r (x)

D J (x) ¡1 holds true only in very rare cases (see sec-
tion A.2), the notion of asymptotic ef�ciency presented above is crucial for
the use of Fisher information (for a more detailed discussion of differences
and relationships between asymptotic theory and the CramÂer-Rao bound,
see, e.g., Lehmann & Casella, 1999). While some previous publications on
population coding relate their results to the asymptotic limit (Paradiso, 1988;
Seung & Sompolinsky, 1993; Dayan & Abbott, 2001), it still lacks a thorough
discussion of the conditions, when this limit can be used to estimate the risk
of an optimal estimator in cases where the number of neurons is arbitrary
large but �nite.

Before we go deeper into the discussion of asymptotic ef�ciency, we
should �rst determine a notion of an ideal observer that holds beyond the
scope of asymptotic ef�ciency. In principle, there are two approaches that
enable a unique selection of an optimal estimator on the basis of the risk:
either the class of allowed estimators is restricted a priori such that the or-
der between the risks r1 (x) , r2 (x) of any two estimators becomes completely
independent from x, or the estimators are compared on the basis of a loss
functional F [r (x) ] over the whole range of x. In other words, the unique se-
lection of an estimator is possible only on the basis of further speci�cations.

Here we consider the average risk,

Â2
D E[( Ox ¡ x)2] D E[E[( Ox ¡ x)2 | x]] D E[E[( Ox ¡ x)2 | k]] (2.9)

which is well established in information theory (Cover & Thomas, 1991)
and neuroscience (Dayan & Abbott, 2001; Salinas & Abbott, 1994; Johnson,
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1996; Roddey, Girish, & Miller, 2000). According to Â2, the best estimator
OxMS is given by

OxMS (k) ´ argmin
Ox

E[( Ox ¡ x) 2 | k] D argmin
Ox

Z
( Ox (k) ¡ x) 2

p(x | k) dx, (2.10)

which is termed the mean square estimator (MS estimator). Equation 2.10
can formally be solved so that the best estimator with respect to the mean
squared error loss is known to be the conditional mean (Lehmann & Casella,
1999):

OxMS (k)
D E[x | k] D

Z
x p(x | k) dx. (2.11)

The conditional mean squared error E[( OxMS ¡ x) 2 | k] of OxMS given an ob-
servation k equals the variance E[x2 | k] ¡ E[x | k]2 of the a posteriori
distribution. Hence, the MMSE is generally determined by

Â2
MS

D E[( OxMS ¡ x) 2] D E[x2] ¡ E[ Ox
2
MS

]. (2.12)

2.2 MS Estimator and Fisher Information. Unfortunately, it is often not
possible to derive the moments of the a posteriori distribution analytically,
and numerical efforts can be immense. Provided a set of regularity con-
ditions holds, however, the MS estimator is known to be asymptotically
ef�cient (Lehmann & Casella, 1999). This means that with an increasing
number of observations, the risk asymptotically approaches 1/ J (x) for all x.
Because this implies that the mean values of both converge, the MMSE is
then asymptotically equal to the mean asymptotic error (MASE):

Â2
AS

´ E

"
1

J[f fj (x)gN

jD1]

#

D

1
T

1Z

0

0

@
NX

jD1

f
02
j

(x)

fj (x)

1

A
¡1

dx. (2.13)

Note, however that even if one can prove asymptotic normality for a certain
sequence of estimators ( Oxm )1

mD1, it is still necessary to know how large m has
to be so that the MASE becomes a good approximation of the MMSE (i.e.,
for the relative difference between both it holds |Â2

MS
¡ Â2

AS
| /Â2

MS
< 2 ¿ 1).

We will demonstrate that T typically has a large effect on the shape of the
MMSE-optimal code, although we have already shown that the large T

limit can be considered as the limit of an asymptotically normal sequence
of estimators. In contrast, the shape of Fisher-optimal codes is necessarily
independent of the available decoding time because T appears only as a
constant factor in equation 2.13.

Previous articles on population coding using Fisher information referred
to the limit of large N rather than to the limit of large T considered above.
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There is an important difference between these two kinds of limiting pro-
cesses: As long as the tuning functions are taken to be static, the integration
of spikes over time corresponds to a sum over i.i.d. spike count vectors.
In contrast, for the spike counts of different neurons, we typically have
p (ki | x) 6

D p(kj | x) for all i 6
D j. This diversity of the tuning functions

can crucially slow the convergence of the MMSE to the MASE, and it may
even destroy the property of asymptotic ef�ciency. In fact, it is possible to
construct sequences of tuning functions so that the difference between the
MASE and MMSE becomes larger and larger the more tuning functions
are taken into account by the MS estimator (an example will be given).
Furthermore, we will show that tuning functions that lead to large Fisher
information are particularly likely to underestimate the MMSE by far. This
becomes a severe problem when Fisher information is used as an objective
function in order to determine optimal encodings.

Another fundamental problem is that Fisher information can be used for
only those encodings for which x is identi�able, which here means that the
mapping of the tuning functions is one-to-one. If x is not identi�able, Fisher
information may either underestimate or overestimate the true error by far.
For example, a single symmetric tuning function centered at 1/2 (the middle
of the interval (0, 1)) cannot improve the mean squared error at all for any
x, while Fisher information can be arbitrarily large everywhere. Conversely,
the Fisher information of a single tuning curve that is constant somewhere
within an arbitrary small but �nite interval predicts a diverging error within
this interval, while the c.m.s.e. in fact depends on the length of this interval
and Â2

MS
can never be larger than the variance of the a priori distribution

(see equation 2.12). Therefore, Fisher optimality in this article is de�ned
to require both a minimal MASE and a one-to-one mapping of the tuning
function array.

3 Optimal Gaussian Tuning Depends on Available Decoding Time

Consider the example of equidistant gaussian tuning curves on the unit
interval

f
gauss

j
(x)

D fmax exp

(

¡

1
2

�
x ¡ j/N

s

´2
)

, j D 1, . . . , N. (3.1)

In order to determine the optimal scale with respect to the MASE, the cor-
responding Fisher information is calculated by inserting equation 3.1 into
equation 2.7:

J[f f
gauss

j
(x)gN

jD1] D

Tfmax

s2

NX

jD1

�
x ¡ j/N

s

´2
exp

(

¡

1
2

�
x ¡ j/N

s

´2
)

. (3.2)
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Figure 2: (Left) Log-log plot of the minimum mean squared error (Â2
MS

) gauss as a
function of the scale s for fmaxT D 1 (solid) compared with the mean asymptotic
error fmaxT (Â2

AS
) gauss

D
(Â2

AS
) gauss

D E[1/J] (dashed) in the case of N D 10 (upper)
and N D 100 neurons (lower). The variance of the a priori distribution Var[x] D

1/12 (dotted) provides an upper bound for Â2
MS

. The arrows indicate the different
minima. (Right) Comparison of the optimal tuning curves with respect to the
mean asymptotic error (Â2

AS
) gauss (dashed) and the minimum mean squared error

(Â2
AS

) gauss (solid) in the case of N D 10 (upper) and N D 100 neurons (lower). The
gray lines indicate the adjacent tuning curves.

Numerical integration over 1/ J[f f
gauss

j
(x)gN

jD1] then yields the MASE
(Â2

AS
) gauss. If it is multiplied by fmaxT, the resulting expression becomes inde-

pendent of time, which implies that the optimal scale with respect to Fisher
information is independent of time too. In Figure 2, fmaxT (Â2

AS
(s ) ) gauss is

plotted as a function of the scale in the case of N D 10 and N D 100 exhibit-
ing a unique minimum, for which the corresponding values are as follows.

N sAS fmaxT (Â2
AS

) gauss

10 0.045 2 ¢ 10¡3

100 0.004 2 ¢ 10¡5

The use of the MASE as objective function is justi�ed only in the case
T ! 1 of asymptotic normality. For �nite T, however, it is necessary to
check whether the MASE agrees with the MMSE. Hence, we computed
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(Â2
MS

) gauss directly for the case of fmaxT D 1 using Monte Carlo methods
(see the appendix).

The MMSE as a function of the scale for fmaxT D 1 is also plotted in
Figure 2 (left, solid line), and the values of the minima are as follows:

N sMS (Â2
MS

) gauss

10 0.11 1.2 ¢ 10¡2

100 0.04 2 ¢ 10¡4

By comparison, we �nd that the optimal scales with respect to (Â2
MS

) gauss

are about one order of magnitude larger than one would conclude from
the MASE. In particular, this difference between the short-term optimum
and the long-term optimum scale becomes even larger when increasing the
number of neurons from 10 to 100. Figure 2 (right) shows the corresponding
tuning curves illustrating this relative increase. While the MASE is close to
(Â2

MS
) gauss for scales that are larger than the optimal scale, the difference be-

tween both increases rapidly the more the scale is reduced from the optimal
scale and reaches a maximum at the minimum MASE.

4 Fisher-Optimal Codes Without Tuning Curve Shape Constraints

The analysis of optimalgaussian tuning in the previoussection indicates that
Fisher-optimal codes are particularly likely to underestimate the MMSE if
the time window is small. This mismatch between the MASE and the MMSE
becomes even more dramatic in the case of Fisher-optimal codes if one does
not stick to the restriction of gaussian-shaped tuning functions. This can be
demonstrated by considering Fisher-optimal population codes where the
tuning curves are not subjected to a priori constraints apart from a limitation
of their dynamic range by a minimum �ring rate fmin and a maximum �ring
rate fmax. We will �rst determine the optimal tuning function in the case of
a single neuron and then for multiple neurons.

4.1 Single Neuron. A way to �nd the tuning function that minimizes
the MASE is to start with a calculus of variations for the MASE functional:

1
T

1Z

0

f (x)
( f 0 (x) )2 dx. (4.1)

A necessary condition for a minimum of the MASE functional is given by
the corresponding Euler-Lagrange differential equation,

f (x)
( f 0 (x) ) 2 C 2 f

0 (x) f (x)
( f 0 (x) )3 D C, (4.2)

which is equivalent to the requirement of a constant Fisher information,
because the left-hand side is proportional to 1/ J[ f ]. The unique solution
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satisfying the boundary conditions f (0)
D fmin and f (1)

D fmax reads

f
opt (x)

D

µ�q
fmax ¡

q
fmin

´
x C

q
fmin

¶2
. (4.3)

While the calculus of variation does not account for solutions with kinks,
one can prove with some additional effort that f

opt in fact constitutes the
Fisher-optimal tuning function in the case of the Poisson noise model. Its
Fisher information is J[ f opt (x) ] D 4T (

p
fmax ¡

p
fmin)2. For constant additive

gaussian noise, an analog analysis leads to a linear tuning function f (x)
D

( fmax ¡ fmin)x C fmin, and in general it can be shown that a constant Fisher
information is a necessary condition for Fisher-optimal codes.

4.2 Many Neurons. If x is encoded by more than one neuron, the re-
quirement of identi�ability of x does not necessarily imply any more that
the tuning functions are monotonic. In particular, if at least one neuron has
a strictly monotone tuning curve, all other neurons may have arbitrarily
shaped tuning functions. This makes it easy to construct Fisher-optimal
codes, for which the MASE vanishes. In particular, we will show that this
is already possible for two neurons if they have, for example, the following
tuning functions (see Figure 3),

f
wave
1 (x)

D fmaxx
2, (4.4)

f
wave
2,v (x)

D fmax [(vx) mod 1]2, (4.5)

where we have set fmin D 0 for convenience. In this example, the total Fisher
information is also a constant:

J[f f
wave

1 (x) , f
wave

2,v (x)g] D 4 fmaxT (v2
C 1) . (4.6)

Hence, the mean asymptotic error of this wave function encoding scheme
equals (Â2

AS
) wave

D [4 fmaxT (v2
C 1)]¡1, which becomes arbitrarily small

with increasing v. If Fisher information would be a general measure for the
precision of population codes, this would imply that all coding problems
could be solved with two neurons only. However, if we compare Fisher
information with the precision of the MS estimator in the case of fmaxT D 1,
we �nd that (Â2

MS
)wave > 0.06 for all v ¸ 1.

In summary, our analysis of Fisher-optimal codes bears two important
conclusions. First, with respect to Fisher information, gaussian tuning
curves are particularly bad codes, however large or small their tuning
widths are. Second, Fisher-optimal codes are not necessarily advantageous
in the case of �nite time windows.
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Figure 3: Fisher-optimal wave coding scheme consisting of two neurons. One
tuning function ensures the identi�ability (top). The other tuning function is a
wave function that leads to arbitrary large Fisher information when the wave-
length is decreased (bottom).

5 When and Why the Mean Asymptotic Error Fails

In the space of possible arrays of tuning functions, it is dif�cult to name
clear-cut decision boundaries that tell precisely where Â2

AS
is a fairly good

approximation of Â2
MS

and where it is not. Therefore, the goal of this section
is to gain intuition about which features of an encoding strategy are most
relevant for the correspondence between the MASE and the MMSE.

We begin with a simple example that demonstrates why the MASE and
the MMSE need not converge in the large N limit. To this purpose, we
construct a sequence of encodings ( f

spec

j
) N

jD1 by simply extending the wave
coding scheme (equations 4.4 and 4.5) to

f
spec

j
(x) :D f

wave

2,v ( j) (x) , (5.1)

with v (1)
D 1. For any given T, v (2) can be chosen suf�ciently large that

(Â2
AS

)spec

ND2 ¿ (Â2
MS

)spec

ND2. The subsequent v ( j) , j ¸ 3 are de�ned recursively
by v ( j C 1) :D v ( j) C j

a, where we introduced the exponent a ¸ 0 in
order to indicate that Fisher information can increase with N arbitrarily
fast. Even in the case of a D 0, however, it holds (Â2

AS
) spec

¿ (Â2
MS

) spec for
arbitrary N, because (Â2

AS
)spec decreases faster than 1/N for all N, which is

in contradiction to the scaling of the mean squared error risk in the case of
asymptotic ef�ciency.
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In general, Fisher information, and hence the MASE, is a separable func-
tion in N and T:

Â2
AS

D

1
T

s(N) . (5.2)

If asymptotic ef�ciency holds for large N, the MMSE has to decrease as N
¡1.

Therefore, it is a necessary condition for asymptotic ef�ciency with respect
to the limit of large N that s(N) decreases proportional to N

¡1, too. This
condition is not necessarily ful�lled, but as in the example, the population
Fisher information can grow much faster with N than linear. Moreover, it is
possible to construct encodings for which the MMSE decreases substantially
faster than N

¡1 (an example is given below), so that the case of asymptotic
ef�ciency holds only for particularly suboptimal codes, which exhibit a high
degree of redundancy.

In the example above, there are tuning functions that map very distant
values of x to the same �ring rate and the mismatch between the MASE and
the MMSE increases with an increasing number of maxima and minima in
the tuning functions. In the following example, we will show that a restric-
tion of the number of maxima is not suf�cient to ensure Â2

AS
¼ Â2

MS
, but the

matching of these two quantities crucially depends on nonlinearities in the
tuning functions.

Consider the following class of Fisher-optimal codes built with mono-
tonic tuning functions2

f
mono

j,º (x)
D

8
><

>:

fmax

±
Nx ¡

(l¡1)NC j¡l

º

²2
,

(l¡1)NC j¡1
ºN

< x < (l¡1)NC j

ºN

fmax

±
l

º

²2
,

(l¡1)NC j

ºN
< x < lNC j¡1

ºN

, (5.3)

where j denotes the neuron index and º D 1, 2, 3, . . . speci�es the shape of
the tuning function array (see Figure 4). Each tuning curve is completely
determined, if one let l run through all integer values l D 1, . . . , º. The Fisher
information of these encodings is independent of º:

J[f f
mono

j,º (x)gN

jD1] D 4 fmaxT N
2. (5.4)

In the limit º ! 1, this coding scheme cannot be distinguished from N

identical tuning functions f
mono

j,1 (x)
D fmaxx

2 (see Figure 4). However, the
populationFisher information J[f f

mono

j,º (x)gN

jD1] isN times larger than the pop-
ulation Fisher information of the asymptotic tuning functions f f

mono

j,1 (x)gN

jD1

2 The proof of Fisher optimality is based on the same reasoning as the proof of Fisher
optimality for unimodal tuning functions given in section 6. However, the set of encodings
ff f

mono

j,º
(x)gN

jD 1 : º D 1, 2, 3, . . .g does not contain all Fisher-optimal tuning function arrays.
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Figure 4: Four examples of Fisher-optimal encodings built with monotonic tun-
ing functions as described by equation 5.3. The left column shows the case of
N D 2, and the right column shows the case of N D 100, where we plotted only
the �rst tuning function (j D 1, gray) and the last one (j D N, black). The interme-
diate tuning functions (j D 2, . . . , N ¡1, not shown) lie between the �rst and the
last one. Independent of N, all tuning functions converge to f mono

1

(x)
D fmaxx

2,
which is illustrated by the comparison of the case º D 5 (upper row) with the
case º D 20 (lower row).

(this is possible because limiting values are not invariant under a change in
the order of limiting processes).

This example nicely demonstrates that Fisher information behaves as if
all structures in the tuning functions are of the same relevance independent
of their length scale. In fact, however, nonlinearities in the tuning functions
become relevant only if they are observable at a scale that is naturally set by
the scattering of the noise distribution. Correspondingly, the critical decod-
ing time Tc that is necessary to approach the asymptotic normal case, which
is described correctly by Fisher information, increases with increasing º.
For large º, Tc has to be roughly proportional to º2 because the squared
deviations of the tuning functions f

mono

j,º (x) from the smoothed tuning func-
tions f

mono

j,1 (x) are of the order of (1/º) 2 and become relevant only if the mean
squared error, which scales like 1/T, is of the same order (or smaller). There-
fore, the critical decoding time diverges for a diverging º, which explains
the difference in the population Fisher information between f f

mono

j,º (x)gN

jD1

and f f
mono

j,1 (x)gN

jD1. Finally, it is worthwhile to note that the ramp coding
scheme obtained for º D 1 can be considered the best among the class of
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Figure 5: The MMSE of f f
mono

j,º (x)g20
jD1 is displayed as a function of the decoding

time T for º D 1, 2, 3, 4, 5 and º D 20 (solid, from dark to pale). Although
all encodings have the same Fisher information (dashed), the critical decoding
time increases with increasing º. If T is smaller than the critical decoding time
and larger than 3/ ( fmaxN) , the MMSE curves are well described by the Fisher
information of the asymptotic tuning functions J[f f

mono

j,1 (x)g20
jD1] (dot-dashed). For

T < 3/ ( fmaxN) , the bound given by the a priori variance 1/12 (dotted) is most
relevant.

Fisher-optimal coding schemes built with nondecreasing tuning functions,
because it has the smallest critical decoding time. This is demonstrated in
Figure 5, where we show how the different dependency of (Â2

MS
) mono on the

decoding time is affected by the parameter º.
Taken together, Fisher information is a measure of the long-term coding

precision of population codes in the �rst place, while in the case of �nite
T, one has to check carefully whether Fisher information provides correct
results for the minimum mean squared error. As a rule of thumb, one can
say that the smoother the tuning functions, the higher the probability is that
the MASE matches the MMSE.

Hitherto, we considered examples only where Â2
AS

· Â2
MS

, and one might
suspect that this holds true in general according to the Cram Âer-Rao bound.
Apart from the trivial fact that Â2

AS
diverges in the limit T ! 0 in contrast to

Â2
MS

· Var[x], we will now show that for arbitrary large T, arrays of tuning
functions exist, for which Â2

AS
À Â2

MS
. In order to show this, we consider a

generalized ramp coding scheme,

f
ramp

j,a (x)
D fmax ([Nx ¡ j C 1]

C
¡ [Nx ¡ j]

C

) a, (5.5)



Optimal Short-Term Population Coding 2333

0 1

1

N�1

N

x

#
ne

ur
on

Figure 6: Illustration of the ramp coding schemes for different values of a. The
tuning functions differ only in the shape of the ramp, which is determined by
a. Apart from the Fisher-optimal encoding, which is given for a D 2 (solid),
we also plotted some other shapes of the ramp (dashed) that correspond to
a D 0, 1, 3, 1 (from pale to dark).

where [y]
C

D yH (y) is the recti�er function. The parameter a 2 [0, 1)
can be used to change the tuning curves smoothly from linear ramp func-
tions (a D 1) to step functions (a ! 0 or a ! 1), which is illustrated
in Figure 6. Furthermore, it is important to note that f

ramp

j,2 (x) is identical
to f

mono

j,1 (x) , which is the Fisher-optimal encoding for nondecreasing tuning
functions with the smallest criticaldecoding time. Accordingto equation 5.5,
the MASE becomes

(Â2
AS

(a) ) ramp
D

1
fmaxTN2 ¢

� 1
a2 (3¡a) , a 2 (0, 3)
1 , otherwise

, (5.6)

which implies that for all T, there is an a < 3 so that (Â2
AS

(a) ) ramp
À Var[x] ¸

(Â2
MS

(a) )ramp. In the case of a ¸ 3, the MASE diverges however large T may
be. The strong dependence on a in case of (Â2

AS
(a) ) ramp isnot likely to hold for

the MMSE too. In particular, it is quite surprising that (Â2
AS

(3) ) ramp diverges,
although the corresponding tuning function array looks very similar to that
in the Fisher-optimal case (a D 2). The reason for this huge discrepancy is
that Fisher information in general cannot account for the precision of en-
codings, for which J (x) has �rst-order zeros (or higher order). One could
say that the latter is a weaker form of nonidenti�ability. Although the en-
coding is one-to-one, Fisher information cannot account for the precision if
the slope of all tuning functions becomes too small somewhere.
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Figure 7: The MMSE (solid) of the Fisher-optimal ramp encoding (a D 2) is
shown in the case of fmaxT D 1. It is very close to the upper bound (dashed)
that is the minimum of the two upper bounds given by equation 5.7 and the a
priori variance. The dotted line indicates the MASE of the Fisher-optimal ramp
encoding, which may be considered as a lower bound on the MMSE for all a
provided N is suf�ciently large. Therefore, all ramp encodings perform similarly
well in case of fmaxT D 1.

In contrast to the strong dependence of the MASE on a, the MMSE in the
case of fmaxT D 1 is very similar for all a. It can be shown analytically (see
the appendix) that the following inequality holds for all a,

(Â2
MS

)ramp
·

1
N2p

C

1
N3

Á

1 ¡

1 ¡ qN

p2

!

, (5.7)

where p D 1 ¡ e
¡ fmaxT increases and q D 1 ¡ p decreases with the length T

of the time window. As one can see in Figure 7, this bound is quite close to
(Â2

AS
(2) )ramp of the Fisher-optimal code.

To summarize, all examples discussed in this section demonstrate that
the matching of the MASE with the MMSE critically depends on the effect
of nonlinearities of the tuning functions on the stimulus reconstruction.
This is also suggested by the fact that Fisher information is calculated only
on the basis of the local shape of the likelihood function p (k | x) , which
corresponds to a linear extrapolation around the true value xtrue.

In the case of the Poisson noise model considered in this article, it is
possible to give this statement about the locality of Fisher information a
precise meaning: If gj D f

¡1
j

denotes the local inverse function of a tuning
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curve fj, then the conditional variance Var[gj (kj/T) | x] at point x can be
expressed by

Var[gj (kj/T) | x] D Var
µ

gj ( fj (x) ) C g
0

j
( fj (x) )

kj ¡ Tfj (x)
T

C O (k2
j

) | x

¶
(5.8)

D

1
J[ fj (x)]

C Var[O (k2
j

) | x]. (5.9)

In a similar way, Fisher information shows up if one determines the er-
ror of the MS estimator in the limit of vanishing noise. For any given x, the
MS estimator can be approximated by a linear function of k in this limit. In
particular, this linear function can be set to the form of a superposition of
the inverse tuning functions gj D f

¡1
j

, because the MS estimator is asymp-
totically unbiased. Therefore, it holds that

OxMS (k) ¼ x C

X

j

Wjg
0

j
( f (x) ) (kj/T ¡ fj (x) )

D x C

X

j

Wj

kj /T ¡ fj (x)
f

0

j
(x)

, (5.10)

where the fWjg
N

jD1 stand for an arbitrary weighting with
P

N

jD1 Wj D 1. Ac-
cordingly, the conditional error variance of the MS estimator is given by

E[( OxMS (k) ¡ x) 2 | x] D

X

j

W
2
j

Var[kj | x]
(Tf

0

j
(x) ) 2 . (5.11)

Minimizing equation 5.11 under the constraint of fWjg
N

jD1 yields

Wj D

(Tf
0

j
(x) )2

Var[kj | x]
P

j

(Tf
0

j
(x) ) 2

Var[kj |x]

, (5.12)

and correspondingly, the conditional error variance becomes

E[( OxMS (k) ¡ x) 2 | x] D

1
P

j

(Tf
0

j
(x) ) 2

Var[kj |x]

D

1
J[f fj (x)gN

jD1]
. (5.13)

This somewhat heuristic calculation suggests that the inverse Fisher infor-
mation is a good approximation of the risk of the MS estimator, when the
scattering of the MS estimator around the true value of x is restricted to a
region within which the tuning functions may be considered linear.



2336 M. Bethge, D. Rotermund, and K. Pawelzik

6 Are Fisher-Optimal Codes Unique?

In order to test the idea of ef�cient coding as a �rst principle for population
codes in the brain, it is important to deduce characteristic predictions for the
shape of neuronal tuning functions from it that can be directly compared
with experimental data. Therefore, it is important to know whether tuning
functions of Fisher-optimal codes exhibit unique features that can be ob-
served experimentally. Several theoretical studies have focused on whether
a large or a small tuning width is advantageous with respect to its coding
ef�ciency. While Fisher information can diverge in the case of two neurons
only, if no particular constraints are imposed on the shape of the tuning
function, the MASE of Fisher-optimal codes remains �nite if the number of
maxima of each tuning function is set to be limited. This is clearly the case
for unimodal tuning functions, which have one maximum only. For such
encodings, Fisher information cannot increase faster than proportional to
N

2, provided identi�ability of x.
Here we derive Fisher-optimal unimodal tuning curves. In order to avoid

asymmetries due to the boundaries of the interval, we switch to the case of
a circular random variable (which could represent the angle of an oriented
bar). The ring topology of the circular random variable requires modifying
the Euclidean distance slightly,

D (x1, x2)
D minf|x1 ¡ x2 |, 1 ¡ |x1 ¡ x2 |], (6.1)

by always choosing the path of smaller distance (Lehmann & Casella, 1999).
Accordingly, the MMSE is then given by

(Â2
MS

)uni
D E[D( OxMS ¡ x) 2]. (6.2)

While this modi�cation reduces the a priori error compared to the case
without periodic boundary conditions, it has no effect asymptotically.

For convenience, we assume that x is encoded by unimodal symmetric
tuning curves of identical shape with equidistantly distributed centers cj D

j/N,

f
uni

j
(x)

D

8
>><

>>:

fmax , D(x, cj) · a

g

±
D(x,cj ) ¡a

b¡a

²
, a < D (x, cj ) < b

fmin , b · D(x, cj) ·

1
2

, (6.3)

where g: (0, 1) ! [ fmin, fmax] is a monotone decreasing and otherwise ar-
bitrary function.

Since the Fisher information J[ f
uni

j
(x)] can be positive only for a < D (x, cj)

< b, we refer to the corresponding regions as Fisher information regions
(F regions) of the tuning functions. Independent from the function g (z) ,
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J[ f
uni

j
(x) ] is proportional to the inverse squared F region width (b ¡ a) ¡2.

Therefore, it is a necessary condition for a minimum of the MASE that the
F regions of different neurons must not overlap, because the contributions
of different neurons add at most linearly to the total Fisher information.

Then the evaluation of the MASE can be decomposed,

E
µ

1
Juni (x)

¶
D

Z

D (x,cj ) <a

dx

Juni (x)
C

Z

a<D (x,cj ) <b

dx

J[ f
uni

j
(x) ]

C

Z

b<D (x,cj ) <0.5

dx

Juni (x)
, (6.4)

and we can conclude from section 4.1. that g (z)
D

( (
p

fmax ¡

p
fmin) (1 ¡z) Cp

fmin) 2 is the minimizer of the second term. It remains to determine the
optimal choice of a and b. As we will show, the MASE becomes a minimum
if the F region width is set to b ¡ a D 1/ (2N) , and b D k/ (2N) for any
k 2 f1, 2, . . . , Ng (see Figure 8). In this case, the total Fisher information Juni

does not depend on x so that it holds

E
µ

1
Juni

¶
D

1
E
x

[Juni]
D

1
16(

p
fmax ¡

p
fmin)2TN2

. (6.5)

Because E[Juni] decreases if b ¡ a is increased, it follows with the Jensen
inequality,

E
µ

1
J

¶
¸

1
E
x

[J]
, (6.6)

that the optimal F region width b ¡ a cannot be larger than 1/ (2N) (see Fig-
ure 9). However, b¡a cannot be smaller than 1/ (2N) due to the requirement
of identi�ability as well as due to the fact that the MASE diverges for all
encoding strategies with b ¡ a < 1/ (2N) .

Since the identical minimal MASE is achieved for sharp tuning as well as
for broad tuning, the length of the tuning width w :D a C b is not appropri-
ate to characterize the Fisher-optimal code in the class of unimodal tuning
functions. Obviously, this conclusion holds true also for suboptimal coding
schemes, such as gaussian or cosine tuning functions. In fact, they have to
be considered a special choice out of many equivalent3 codes that all have
the same shape of decay g (z) but are different with respect to their tuning
width. Instead of the tuning width, we �nd that in general, the length of the

3 Equivalence with respect to the population Fisher information.
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Figure 8: The Fisher-optimal unimodal tuning curve with the smallest critical
decoding time is �at with small edges of length 1/ (2N) . Fisher information and
the special type of noise model are relevant for the shape of optimal tuning
curves only within these edge regions. The solid line refers to a Poisson noise
model and the dashed line to additive gaussian noise of arbitrary variance.
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Figure 9: Sketch of the MASE (solid) as a function of the F-region width (b ¡ a) .
If (b ¡ a) < 1/ (2N) , there is an interval with zero Fisher information and hence
the MASE diverges (gray region). For (b ¡ a)

D 1/ (2N) , we have derived the
encoding with minimal MASE, for which we found that it equals 1/E[J] of that
encoding (dot). Since the MASE is larger than or equal to 1/E[J] (dashed) and
this lower bound is an increasing function of (b ¡ a) , the MASE is an increasing
function of (b ¡ a) too, independent of the particular shape of the encoding. It
follows that the encoding that minimizes the MASE in case of (b¡a)

D 1/ (2N) is
also Fisher optimal compared to coding schemes with different F-region widths.
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F region width is crucial for Fisher optimality because it has to be as small
as possible. Accordingly, steep changes and �at plateaus are the main sig-
natures of Fisher-optimal tuning curves, which is the more true the larger
the populations are, because the minimal average F region width scales
like 1/N.

While the tuning width failed to constitute a characteristic feature of
Fisher-optimal codes, other global aspects may be suitable for this pur-
pose. The derivation above suggests that Fisher-optimal unimodal tuning
functions are approximately box shaped if N is suf�ciently large. However,
the set of Fisher-optimal codes with unimodal tuning functions considered
above is not complete, because we imposed various additional constraints
on the tuning functions there. In fact, there are many more Fisher-optimal
unimodal tuning functions with the same MASE as given by equation 6.5 if
we drop these assumptions. For example, if we require monotony instead
of strict monotony for g (z) only, g may have arbitrarily many constant parts.
Then similar to the idea underlying the Fisher-optimal class of monotonic
tuning function encodings given by equation 5.3, this allows the construc-
tion of various Fisher-optimal codes, which have no features in common
that could be tested experimentally.

7 Optimal Tuning Width—a Question of Energy?

While it was not possible to determine an optimal tuning width with re-
spect to Fisher information under the constraints considered above, we
suspect that in reality, energy consumption plays a crucial role for the tun-
ing widths favoring sparse codes (Levy & Baxter, 1996). Before we derive
an optimal width under this additional constraint, we want to know how
much the MMSE of the Fisher-optimal tuning curves f f

uni

j
g

N

jD1 depends on
the width. Therefore, we computed the minimum of equation 6.2 numeri-
cally for fmin D 0 and fmaxT D 1 (this corresponds to fmax D 200 Hz and
T D 5 ms) in the case of N D 10 and N D 20 neurons. It turns out that
w ¼ 1/2 is optimal, while the objective function is �at in a wide region
around this optimum (see Figure 10). Furthermore, there is a slight asym-
metry: (ÂMS (w) ) uni increases not as fast in the direction of sparse codes as in
the other direction. This asymmetry is due to the Poisson noise model, for
which the noise variance increases proportionally to the average �ring rate.

While the broadness of the minimum of the MMSE as a function of the
tuning width does not indicate a substantial advantage of a certain receptive
�eld size, this is likely to change if energy consumption is taken into account.
Hitherto, the coding ef�ciency was limitedonly by a constraint on the power
( f (x) · fmax), which can be motivated, for example, by the refractory period
of a neuron after the generation of an action potential. On the other hand, it
is likely that energy constraints are relevant because the average interspike
intervals of cortical neurons are much larger than their refractory period.
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Figure 10: MMSE as a function of the tuning width in the case of N D 10
neurons (solid) and N D 20 neurons (dot-dashed). The dashed line indicates the
a priori variance Var[x] D 1/12 that is an upper bound for Â2

MS
. The dotted lines

denote the results for N D 10 (upper) and N D 20 (lower) neurons if the energy
constraint (see equation 7.1) is taken into account.

This fact can be taken into account if one assumes an additional upper bound
for the mean �ring rates E[ fj (x) ] · h f imax.

In order to demonstrate the effect of this energy constraint, we have also
calculated the minimum mean squared error in the case where the mean �r-
ing rate is limited by h f imax D fmax/20 (this corresponds to a maximum �r-
ing rate of 200 Hz and a mean �ring rate of 10 Hz). Therefore both constraints
together can be expressed by a width-dependent maximum �ring rate:

Qfmax (w)
D min

�
fmax,

fmax

20w

´
. (7.1)

The resulting (Â2
MS

) uni
energy

is shown in the case of fmaxT D 1 in Figure 10 by
the dotted line, and it has a distinct minimum located at the maximal w, for
which Qfmax (w)

D fmax. Furthermore, the MASE exhibits a clear asymmetry
toward smaller tuning widths, being minimal for all w · h f imax/ fmax ·

1/20.
This preference for smaller tuning widths gives a precise meaning to

the statement that sparse coding can be explained by constrained energy
consumption. In contrast to previous conclusions in van Vreeswijk (2001),
this result does not rely critically on the Poisson noise model, but also holds
true in the case of a gaussian noise model. In fact, the Fisher-optimal code
for the gaussian noise model differs from the Poisson case only by a small
change of the function g (z) , which becomes g(z)

D
( fmax ¡ fmin) (1¡z) C fmin

(see Figure 8, dashed line). This leads to a MASE v/[2N ( fmax ¡ fmin) ]2, where
v D Var[kj | x] denotes the constant noise variance. Correspondingly, the
MASE is again minimal for all w · h f imax/ fmax · 1/20 in the same way
as in the Poisson case. Moreover, the Poisson model itself is not suf�cient
to explain small receptive �elds, because (Â2

AS
) uni is identical for all tuning
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widths w D 1/N, 2/N, . . . , 1 and the asymmetry of (Â2
MS

) uni in the absence
of energy constraints is very weak.

8 Discussion and Conclusion

This article addresses several questions that arise if ef�cient coding is used
as a �rst principle (Attneave, 1954; Barlow, 1959) in order to explain re-
sponse properties of neuronal populations. The questions range from the
problem of de�ning an ideal observer to the issue of how relevant the need
for ef�cient signal transmission is as a determinant of the shape of neural
codes compared to other constraints that are additionally imposed.

The ideal observer paradigm corresponds to the idea of evaluating all
available information about the stimulus that in principle can be read out
from the neuronal response. In almost all relevant cases, however, it is not
possible to determine an estimator that is optimal for all possible stimuli.
Therefore, it is not a trivial question which objective function is best suited
to the problem of optimal coding. Although many studies use Fisher infor-
mation as a measure for the precision of an ideal observer, this approach
is justi�ed only with respect to the limit of asymptotic normality. In this
limit, the risk functions of many relevant estimators become equal to the in-
verse of Fisher information. Among others, this is the case for the risk of the
maximum likelihood estimator and the MS estimator. Out of the asymptotic
ef�cient estimators, we chose the MS estimator as an ideal observer because
it accounts for all available prior knowledge on the stimulus statistics p (x)
and thus re�ects the ultimate limit of optimal stimulus reconstruction.

The use of prior knowledge and its proper combination with the trans-
mitted data is indispensable for ef�cient coding at short timescales. This is
due not only to the bias-variance trade-off, but also in case of large N, prior
knowledge, like the limitations on the dynamic range, cannot be neglected
because it may have a substantial effect on the shape of optimal codes.
Therefore, the MS estimator appears to be a reasonable choice because it
allows for a very �exible incorporation of all sorts of prior information in a
rather straightforward way.

As with any Bayesian type of estimator, one has to take great care with
the choice of the a priori distribution. There are, however, well-developed
methods to determine noninformative a priori distributions that do not in-
troduce more speci�cations than are actually known (Lehmann & Casella,
1999). While the uniform prior distribution chosen in this article plays the
role of a dummy distribution, it can be seen as a simple choice of a nonin-
formative prior given the dynamic range of the signal x, because it has no
effect on the posterior distribution apart from cutting it to the range of x.

For the need of signal processing, it is natural to require a constant upper
bound for the risk function in order to achieve a certain precision for all
x. This in turn suggests choosing the minimax estimator that minimizes
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the worst-case loss functional F [r(x) ] :D sup
x2[0,1] r (x) instead of the mean.

Due to the uniform prior, however, the risk function of the MS estimator
depends only slightly on x, and its maximum rapidly becomes close to
that of the minimax estimator with increasing data. In comparison to the
minimax error, the MMSE has the advantage of being less sensitive to special
assumptions on the coding model. In particular, the average risk does not
depend on singularities of the risk function, and its computation is by far
not so demanding. Furthermore, the MS estimator is always admissible,
and it is asymptotically ef�cient, which allows for relating the MMSE to the
average inverse Fisher information.

Taken together, we believe that the MMSE provides a reasonable objec-
tive function for optimal population codes that holds beyond the scope of
asymptotic ef�ciency. Moreover, it can be estimated from neurophysiolog-
ical experiments, without the need to specify an estimator a priori to the
data (Roddey et al., 2000).

We also computed the mutual information for all examples presented in
this article. Like Fisher information, mutual information becomes equiva-
lent to Â2

MS
in the case of gaussian distributions so that all three measures

can be used equivalently as objective functions in the case of asymptotic
normality (see also Clarke & Barron, 1990; Brunel & Nadal, 1998). As an
interesting fact, however, we note that mutual information becomes similar
to the MMSE more rapidly than the MASE for all examples considered in
this article (not shown).

While asymptotic ef�ciency is obtained for many population codes, we
demonstrated that the use of Fisher information to characterize the preci-
sion of an encoding for a given decoding time T strongly depends on the
particular coding scheme. As an example, we have shown that the optimal
width of a population of gaussian tuning curves depends on the available
decoding time, while Fisher-optimal codes are always independent of T.

The choice of the counting time window length can be related to the
timescale at which neurons integrate over their synaptic inputs. Since the
high degree of irregularity of neuronal discharge in cortex (Softky & Koch,
1993) implies that the effective integration time constant is of the order of a
few milliseconds, we were most interested in the situation where the spike
count of a single neuron is of the order of one.

We demonstrated that the critical decoding time Tc that is necessary for
a suf�cient matching of the MASE and the MMSE is typically increased
by nonlinearities of the tuning functions. In particular, Tc grows with the
frequency with which the tuning functions rise and decay between their
minimum and maximum �ring rate.

If Fisher information is used as an objective function in order to deter-
mine optimal coding schemes, one is led to tuning functions with a slope
that is as large as possible. In fact, the Fisher information of a (bounded) tun-
ing function behaves like a penalty term for regularization. Because Fisher
information is intended to become as large as possible, however, Fisher op-
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timality has quite the opposite effect of regularization, and, hence, it cannot
be expected to rule out a large number of coding schemes on the basis of
Fisher information only.

As we showed with an example in section 4.2, where only fmaxT and N

are given, the MASE can be reduced to zero with only two neurons. This
means that any additional neuron is completely super�uous with respect
to asymptotic optimality, and hence no substantial constraint is imposed by
Fisher information. In contrast, a clear optimum within the class of bounded
functions can be found on the basis of the MMSE, which we will show in a
forthcoming paper (Bethge, Rotermund, & Pawelzik, 2002).

If the total number of maxima of the tuning functions is �nite, the MASE
remains �nite too.However, in these cases, there is no unique Fisher-optimal
code, but very many encodings achieve the same minimal MASE. This can
be conceived from the case of nondecreasing tuning functions, for which we
presented an in�nitely large set of Fisher-optimal encodings (that was still
not complete). The method with which Fisher optimal codes can be derived
was presented in the case of unimodal tuning functions. It is not restricted
to monotonic or unimodal tuning functions, but can also be applied to tun-
ing functions with more maxima. The crucial point is that the F regions of
Fisher-optimal tuning functions do not overlap, and the total length of the F
regions of a single tuning function fj equals dj/

P
N

iD1 di, where dj denotes the
number of how many times fj (x) is allowed to traverse the dynamic range.4
In the simplest case, the tuning function fj then has dj regions within which
the tuning function increases (or decreases) quadratically, as given by equa-
tion 4.3. We therefore have the general formula for the Fisher information
of Fisher-optimal codes:

J D 4T

�q
fmax ¡

q
fmin

´2
0

@
NX

jD1
dj

1

A
2

. (8.1)

It is also possible that the quadratic increase itself is interrupted by �at
regions as it is the case for f

mono

j,º (x) and º > 1, so that the F regions can
be scattered over the entire range of x. Due to this freedom, the number of
Fisher-optimal codes is very large, and there are no common features that
could be tested experimentally.

Fisher-optimal codes do not perform equally well with respect to the
MMSE. Therefore, it is natural to choose that Fisher-optimal encoding that
has the smallest critical decoding time. Accordingly, one generally obtains
tuning functions with �at maxima and quadratically decaying edges that
are as steep as possible.

4 For example, dj D 1 in case of monotonic tuning functions and dj D 2 in case of
unimodal tuning functions.
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Furthermore, we found that the question of whether small or broad tun-
ing widths are advantageous cannot be decided if only the number of neu-
rons N, the available decoding time T, and the maximum �ring rate fmax
are given. Instead, we demonstrated that a limitation of the average �ring
rate, which can be motivated by energy consumption, naturally breaks the
symmetry toward sparse codes with small tuning widths.

Throughout this article, we considered the estimation of a single param-
eter only. In the case of multiparameter estimation, the choice of the squared
errordistance is not suf�cient to enable a well-posed comparison of different
coding schemes, but additional speci�cations become necessary. While the
optimization can be very complicated if the loss functional L [x̂, x] depends
on different dimensions in a nonlinear fashion, it becomes rather simple if
it is multilinear, that is,

L [x̂, x] D L (Â2
1 , . . . , Â2

D
)

D

DX

dD1
cdÂ2

d
, (8.2)

which makes the individual loss Â2
d

of different parameters commensurable
by an appropriate choice of weightings fcdg

D

dD1. If one further assumes that
no statistical dependencies among the different stimulus components ex-
ist, (that is, p (x)

D

Q
D

mD1 p (xm ) , it is easy to extend our results to the case
where many parameters, say D, have to be inferred simultaneously from
the neuronal population activity.5 Without assuming special constraints, the
optimization problem reduces to the single-parameter case, where optimal
encoding is simply given by D subpopulations that encode each parameter
independently and the number of neurons in each subpopulation has to
be chosen such that the contributions cdÂd to the total loss become equal.
The more general case, where statistical dependencies among the variables
exist, can often be traced back to the case without correlations, provided the
weightings cd are all identical. For example, if p (x) is given by an arbitrary
multivariate normal distribution, for which all correlations are determined
by the covariance matrix, one can always �nd another coordinate system x̃
by the Karhunen-Loeve transformation (Jollife, 1986), for which all variables
become independent (p (x̃)

D

Q
D

mD1 p ( Qxm) ).
From these considerations, we conclude that the shape of optimal tuning

functions is not necessarily related to the number of dimensions. Under
speci�c assumptions, however, dependencies on the number of dimensions
can emerge. For example, the result in Zhang and Sejnowski (1999) that
decreasing the scale maximizes Fisher information in the case of D < 2
and the opposite holds in the case of D > 2 is a direct consequence of the

5 This corresponds to the case considered in Zhang and Sejnowski (1999) and Eurich
and Wilke (2000).
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restriction to radial symmetric tuning curves and the density approximation
of the encoding, by which continuous translation invariance of the coding
problem over the whole real axis is enforced arti�cially.

Although the goal of this work was to understand the general principles
of optimal population coding constraining the possibilities of interneuronal
signal processing in cortex, one might also relate these results to the shape
of measured tuning functions as it has been done in literature. For unimodal
tuning functions, which are ubiquitous in the sensory pathways, the Fisher-
optimal shape with the smallest critical decoding time is �at and has steep
quadratic edges (see Figure 8). For large N, these tuning curves become
very similar to boxes standing in remarkable contrast to most measured
tuning functions of sensory neurons in mammals. This apparent contra-
diction suggests essentially two alternative explanations. On the one hand,
it is by far not evident whether the boxlike tuning curve is indeed favor-
able. It has been derived with the use of Fisher information, and we have
shown how the optimality of a neural encoding relies on additional con-
straints. Other constraints from those considered in this article may be nec-
essary to explain the shape of experimentally observed tuning functions.
For example, it is likely that one needs to consider wiring constraints and
natural limitations of the subsequent neuronal readout that prevent mini-
mum mean square estimation. If in the end, however, the neuronal encoding
strategy is determined by the choice of additional constraints rather than
by optimal coding, the honest conclusion would be that the principle of
ef�cient coding is of rather little relevance for explaining neuronal response
properties.

On the other hand, it is also likely that the quantity x actually encoded by
the neuron is somehow correlated with the stimulus feature s considered in
the experimental tuning curve. If x D s C c, where c stands for an arbitrary
contextual quantity that is not under the control of the experimentalist, its
variability during the measurement would lead to a smoothed version f (s)
of the actual tuning function f (x) .

In summary this means that both the uncertainty in the assumptions of
constraints, as well as the limitedcontrol in experiments, may often counter-
act the goal to explain measured tuning functions by the method of optimal
coding. If we nevertheless speculate about theoretical implications of ef�-
cient coding that might be observed experimentally, we would conclude
from our investigations that place coding is better than intensity coding
(using the terms place coding and intensity coding as de�ned in Snippe, 1996)
in cases where the constraint of decoding time is stronger than the cost
of the required number of neurons. This means that it is advantageous if
neurons are activated in an all-or-nothing manner rather than in a smooth
graded way. Experimentally, this idea can be supported by the fact that
bursting cells, which are activated in a bistable way, are ubiquitous in the
brain.
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Appendix

A.1 Monte-Carlo Integration. While the evaluation of the integrals de-
termining the MS estimator,

Ox (k)
D

1R

0
x p (k | x) dx

1R

0
p (k | x) dx

, (A.1)

can be computed by classical integration routines, the evaluation of the
mean,

E[( Ox (k) ¡ x)2] D

1Z

0

p (x)
1X

k1D0
, . . . ,

1X

kN D0

( Ox (k) ¡ x)2
p (k | x) dx, (A.2)

requires a summation over an N-dimensional space. Accordingto the Monte
Carlo technique (Bishop, 1995), we estimate the value of equation A.2 by an
average over n trials, for which we draw a particular (x, k) i randomly from
the joint distribution p (k | x)p (x) . Then it holds that

E[( Ox (k) ¡ x)2] ¼

1
n

nX

iD1

( Ox(ki) ¡ xi) 2. (A.3)

The error of this approximation drops with the number of trials. We evalu-
ated the right-hand side of equation A.3 up to the second relevant digit. As
a termination criterion, we stopped the averaging process when there was
no change in the value of the second relevant digit during the last 10,000
trials.

A.2 Fisher Information and the Exponential Family. The mean squared
errorof any estimator can always be decomposed into its bias b

Ox
(x)

D
(g (x) ¡

x)2 and its variance v
Ox

(x)
D E[( Ox ¡ g (x) ) 2 | x], where we introduced g (x)

D

E[ Ox | x] for the sake of clarity. Accordingly, the CramÂer-Rao bound (see
equation 2.8) can also be given in the form

v
Ox

(x) ¸

g
0 (x) 2

J (x)
. (A.4)

For this lower bound, it is known that equality holds if and only if p (k | x)
constitutes an exponential family. While the Poisson distribution constitutes
an exponential family with respect to the mean spike count m j D fj (x)T for
each neuron j, it depends on the shape of the tuning functions whether
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an estimator of x exists, for which equality holds in equation A.4. Such an
estimator has to satisfy the following equation (Lehmann & Casella, 1999):

Ox(k)
D g (x) C

g
0 (x)

J (x)
@x log p (k | x) . (A.5)

Therefore, the mean squared error of an estimator is completely determined
by Fisher information if it is unbiased (i.e., g (x)

D x), and the right-hand
side of equation A.5 is independent from x, that is,

x C

@x log p(k | x)
J (x)

D const. (A.6)

Inserting equation 2.1 and taking the derivative with respect to x yields

(k ¡ m )m 00

m 02 D 0, (A.7)

in the case of N D 1. From this, it follows that m 00 equals zero and hence,
the tuning function f (x)

D

1
T

m (x) is required to be linear. While we did not
solve equation A.6 for N > 1, this short calculation may hint at the strong
restrictions that it imposes on the shape of the tuning functions.

A.3 Derivation of Equation 5.7. The upper bound results from a calcu-
lation of the error of an suboptimal estimator:

Ox(k) :D max
�

1
N

,
j

N
H

�
kj ¡

1
2

´���� j D 1, . . . , N

¼
. (A.8)

We decompose the mean squared error,

(Â2 (a) )ramp
D

1Z

0

X

k

(x ¡ Ox (k) ) 2
p (k | x) dx

D

1
N

NX

aD1
N

a

NZ

a¡1
N

X

k

(x ¡ Ox(k) ) 2
p(k | x) dx

| {z }
Â2

a

, (A.9)

and consider the parts Â2
a
, a D 1, . . . , N separately:

Â2
1 D N

1
NZ

0

�
x ¡

1
N

´2

dx · max
x2[0,1/N]

�
x ¡

1
N

´2

D

1
N2 (A.10)
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Â2
2 D p (k2 > 0 | x 2 [1/N, 2/N])

2
NZ

1
N

�
x ¡

2
N

´2

dx (A.11)

C p (k2 D 0 | x 2 [1/N, 2/N])

2
NZ

1
N

�
x ¡

1
N

´2

dx

· p (k2 > 0 | x 2 [1/N, 2/N]) max
x2[1/N,2/N]

�
x ¡

2
N

´2

C p (k2 D 0 | x 2 [1/N, 2/N]) max
x2[1/N,2/N]

�
x ¡

1
N

´2

· p (k2 > 0 | x 2 [1/N, 2/N])
1

N2 C p (k2 D 0 | x 2 [1/N, 2/N])
1

N2

D

1
N2

Â2
3 · p (k2 > 0 | x 2 [2/N, 3/N])

3
NZ

2
N

�
x ¡

2
N

´2

dx

C p (k2 D 0 | x 2 [2/N, 3/N])
�

Â2
2 C

1
N2

´

·

1
N2

(1 C p (k2 D 0 | x 2 [2/N, 3/N]) ) . (A.12)

In general, it holds for all a ¸ 2:

Â2
aC1 ·

1
N2 C p (ka D 0 | x 2 [a/N, (a C 1) /N])Â2

a
D

1
N2 C q Â2

a
, (A.13)

where we introduced the abbreviation q for the probability p(ka D 0 | x 2

[a/N, (a C 1) /N])
D e

¡ fmaxT , which does not depend on the neuron index.
Together with p :D 1 ¡ q, it then follows by induction,

Â2
a

·

1
N2

1 ¡ qa¡1

1 ¡ q
D

1
N2

1 ¡ qa¡1

p
, (A.14)

because it holds

Â2
aC1

Eq. A.13
·

1
N2 C q

1
N2

1 ¡ qa¡1

p
D

1
N2

�
p C q ¡ qa

p

´
D

1
N2

1 ¡ qa

p
. (A.15)
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According to equation A.9, we �nally obtain

(Â2 (a) )ramp
D

1
N

NX

aD1
Â2

a
·

1
N

Á
1

N2 C

NX

aD2

1
N2

1 ¡ q
a¡1

p

!

D

1
N3

Á

1 C

1
p
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(1 ¡ q
a¡1)

!

D

1
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Á
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D

1
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Á

1 C
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. (A.16)
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