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The dual formulation of support vector regression involves two closely
related sets of variables. When the decomposition method is used, many
existing approaches use pairs of indices from these two sets as the working
set. Basically, they select a base set first and then expand it so all indices
are pairs. This makes the implementation different from that for support
vector classification. In addition, a larger optimization subproblem has
to be solved in each iteration. We provide theoretical proofs and conduct
experiments to show that using the base set as the working set leads to
similar convergence (number of iterations). Therefore, by using a smaller
working set while keeping a similar number of iterations, the program
can be simpler and more efficient.

1 Introduction

Given a set of data points, {(x1, z1), . . . , (xl, zl)}, such that xi ∈ Rn is an input
and zi ∈ R1 is a target output. A major form for solving support vector
regression (SVR) is the following optimization problem (Vapnik, 1998):

min
1
2
(α − α∗)TQ(α − α∗)+ ε

l∑
i=1

(αi + α∗i )+
l∑

i=1

zi(αi − α∗i )

l∑
i=1

(αi − α∗i ) = 0, 0 ≤ αi, α
∗
i ≤ C, i = 1, . . . , l, (1.1)

where C is the upper bound, Qij ≡ φ(xi)
Tφ(xj), αi and α∗i are Lagrange

multipliers associated with the ith data xi, and ε is the error that users can
tolerate. Note that training vectors xi are mapped into a higher-dimensional
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space by the function φ. An important property is that for any optimal
solution, αiα

∗
i = 0, i = 1, . . . , l.

Due to the density of Q, currently the decomposition method is the ma-
jor method to solve equation 1.1 (Smola & Schölkopf, 1998; Keerthi, She-
vade, Bhattacharyya, & Murthy, 2000; Laskov, 2002). It is an iterative process
wherein each iteration, the index set of variables is separated to two sets, B
and N, where B is the working set. In that iteration, variables correspond-
ing to N are fixed, while a subproblem on variables corresponding to B is
minimized.

Following approaches for support vector classification, there are some
methods for selecting the working set. Many existing approaches for regres-
sion first use these methods to find a set of variables, called the base set here;
then they expand the base set so all elements are pairs. Here we define the
expanded set as the pair set. For example, if {αi, α

∗
j } are chosen first, they

include {α∗i , αj} in the working set. Then the following subproblem of four
variables (αi, α

∗
i , αj, α

∗
j ) is solved:

min
1
2

[
αi − α∗i
αj − α∗j

]T [
Qii Qij
Qji Qjj

] [
αi − α∗i
αj − α∗j

]
+ (Qi,N(αN − α∗N)+ zi)(αi − α∗i )
+ (Qj,N(αN − α∗N)+ zj)(αj − α∗j )+ ε(αi + α∗i + αj + α∗j )
(αi − α∗i )+ (αj − α∗j ) = −

∑
t∈N

(αt − α∗t ) (1.2)

0 ≤ αi, αj, α
∗
i , α
∗
j ≤ C.

Note that αN and α∗N are fixed elements corresponding to N = {t | 1 ≤ t ≤
l, t 6= i, t 6= j}.

A reason for selecting pairs is to maintain αiα
∗
i = 0, i = 1, . . . , l through-

out all iterations. Hence, the number of nonzero variables during iterations
can be kept small. However, from Lin (2001a, Theorem 4.1), it has been
shown that for some existing work (e.g., Keerthi et al., 2000; Laskov, 2002),
if the base set is used as the working set, the property αiα

∗
i = 0, i = 1, . . . , l

still holds. In section 2, we discuss this in more detail.
Recently there have been implementations without using pairs of

indices—for example, LIBSVM (Chang & Lin, 2001), SVMTorch (Collobert &
Bengio, 2001), and mySVM (Rüping, 2000). A question immediately raised
is on the performance of these two approaches—the base approach and the
pair approach. The pair approach solves a larger subproblem in each itera-
tion, so there may be fewer iterations; however, a larger subproblem takes
more time so the cost of each iteration is higher.

Collobert and Bengio (2001) have stated that working with pairs of vari-
ables would force the algorithm to do many computations with null vari-
ables until the end of the optimization process. In section 3, we elaborate
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on this in a detailed proof. First, we consider approaches with the small-
est size of working set (two and four elements for both approaches) where
the analytic solution of the subproblem is handily available from sequential
minimal optimization (SMO) (Platt, 1998). From mathematical explanations,
we show that while solving the subproblems of the pair set containing four
variables, in most cases, only those two variables in the base set are updated.
Therefore, the number of iterations of both the base and the pair approaches
is nearly the same. In addition, for larger working sets, we prove that af-
ter some finite number of iterations, the subproblem using only the base
set is already optimal for the subproblem using the pair set. These give us
theoretical justification that it is not necessary to use pairs of variables.

In section 4, we conduct experiments to demonstrate the validity of our
analysis. Then in section 5, we provide some conclusions and a discussion.

There are other decomposition approaches for support vector regression
(for example, Flake & Lawrence, 2002). They deal with different situations,
which will not be discussed here.

2 Working Set Selection

Here we consider the working set selection from Joachims (1998) and Keerthi,
Shevade, Bhattacharyya, and Murthy (2001) which were originally designed
for classification. We then apply them for SVR. To make SVR similar to the
form of classification, we define the following 2l by 1 vectors:

α(∗) ≡
[
α

α∗

]
, and yi ≡

{ +1 i = 1, . . . , l,
−1, i = l+ 1, . . . , 2l.

(2.1)

Then the regression problem, 1.1, can be reformulated as

min f (α(∗)) = 1
2
(α(∗))T

[
Q −Q
−Q Q

]
α(∗) + [εeT + zT, εeT − zT

]
α(∗)

0 ≤ α(∗)i ≤ C, i = 1, . . . , 2l,

yTα(∗) = 0. (2.2)

Now f is the objective function of equation 2.2.
Practically we can use the Karush-Kuhn-Tucker (KKT) condition to test

if a given α(∗) is an optimal solution of equation 2.2. If there exists a number
b such that for all i = 1, 2, . . . , 2l,

∇ f (α(∗))i + byi ≥ 0 if α(∗)i = 0, (2.3a)

∇ f (α(∗))i + byi ≤ 0 if α(∗)i = C, (2.3b)

∇ f (α(∗))i + byi = 0 if 0 < α(∗)i < C, (2.3c)

a feasible α(∗) is optimal for equation 2.2. Note that the range of b can be
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determined by

m(α(∗)) ≡ max
1≤t≤2l

( max
α
(∗)
t <C,yt=1

−yt∇ f (α(∗))t,

max
α
(∗)
t >0,yt=−1

−yt∇ f (α(∗))t), (2.4)

M(α(∗)) ≡ min
1≤t≤2l

( min
α
(∗)
t >0,yt=1

−yt∇ f (α(∗))t,

min
α
(∗)
t <C,yt=−1

−yt∇ f (α(∗))t). (2.5)

That is, a feasible α(∗) is an optimal solution if and only if m(α(∗)) ≤ b ≤
M(α(∗)), or equivalently,

M(α(∗))−m(α(∗)) ≥ 0. (2.6)

For convenience, we define the candidates of m(α(∗)) as the set of all
indices t that satisfyα(∗),kt < C, yt = 1 orα(∗),kt > 0, yt = −1, where 1 ≤ t ≤ 2l.
Similarly, we can define the candidates of M(α(∗)).

At the beginning of iteration k, let α(∗),k = [αk, (α∗)k]T be the vector that
we are working on. Then we denote mk ≡ m(α(∗),k) and Mk ≡ M(α(∗),k).
Also, let arg mk be the subset of indices t in the candidates of mk such that
−yt∇ f (α(∗),k)t = m(α(∗),k). Similarly, we define arg Mk.

Thus, during iterations of the decomposition method,α(∗),k is not optimal
yet, so

mk > Mk, for all k. (2.7)

If we would like to select two elements as the working set, intuitively we
tend to choose indices i and j, which satisfy

i ∈ arg mk and j ∈ arg Mk, (2.8)

since they cause the maximal violation of the KKT condition.
A systematic way to select a larger working set in each iteration is as

follows. If q, an even number, is the size of the working set, q/2 indices
are sequentially selected from the largest−yi∇ f (α(∗))i values to the smaller
ones in the candidate set of mk, that is,

−yi1∇ f (α(∗),k)i1 ≥ · · · ≥ −yiq/2∇ f (α(∗),k)iq/2 ,

where i1 ∈ arg mk. The other q/2 indices are sequentially selected from the
smallest −yi∇ f (α(∗))i values to the larger ones in the candidate set of Mk,
that is,

−yjq/2∇ f (α(∗),k)jq/2 ≥ · · · ≥ −yj1∇ f (α(∗),k)j1 ,
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where j1 ∈ arg Mk. Also, we have

− yjq/2∇ f (α(∗),k)jq/2 < −yiq/2∇ f (α(∗),k)iq/2 , (2.9)

to ensure that the intersection of these two groups is empty. Thus, if q is
large, sometimes the actual number of selected indices may be less than q.

Note that this is the same as the working set selection in Joachims (1998).
However, the original derivation in Joachims was from the concept of fea-
sible directions for constrained optimization problems but not from the
violation of the KKT condition.

After the base set of q indices is selected, earlier approaches (Keerthi et al.,
2000; Laskov 2002) expand the set so all elements in it are pairs. The reason
is to keep the property that αk

i (α
∗)ki = 0, i = 1, . . . , l, for all k. However,

if directly using elements in the base set, the following theorem has been
proved in (Lin 2001a, theorem 4.1):

Theorem 1. If the initial solution is zero, then αk
i (α
∗)ki = 0, i = 1, . . . , l for

all k.

Hence we know that αk
i (α
∗)ki = 0 is not a particular advantage of using

pairs of indices. Another important issue for the decomposition method is
the stopping criterion. From equation 2.6, a natural choice of the stopping
criterion is

Mk −mk ≥ −δ, (2.10)

where δ, the stopping tolerance, is a small, positive number. For q = 2,
equation 2.10 is the same as

− yj∇ f (α(∗),k)j − (−yi∇ f (α(∗),k)i) ≥ −δ, (2.11)

where i, j are selected by equation 2.8.
Note that the convergence of the decomposition method under some

conditions of the kernel matrix Q is shown in Lin (2001a) for the base ap-
proach. Some theoretical justification on the use of the stopping criteria,
equation 2.10, for the decomposition method is in Lin (2001b). No partic-
ular convergence proof has been made for the pair approach, but we will
assume it for our analyses.

3 Number of Iterations

In this section, we discuss the relationship between the solutions of subprob-
lems using the base and the pair approaches. The discussion is divided into
two parts. First, we consider approaches with the smallest size of working
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set (two and four elements for both approaches). We show that for most iter-
ations, the optimal solution of the subproblem using the base set is already
optimal for the subproblem using the pair set, so the difference between the
number of iterations of the base and pair approaches should not be large.
Then we consider larger working sets. Although the result is not as elegant
as the first part, we can still show that after enough iterations, the optimal
solution of the subproblem using the base set is the same as the optimal
solution of the subproblem using the pair set.

To start our proof, we state an important property on the difference be-
tween the ith and (i+ l)th gradient elements. Consider αi and α∗i , 1 ≤ i ≤ l.
We have

∇ f (α(∗))i+l = −(Q(α − α∗))i + ε − zi

= −∇ f (α(∗))i + 2ε.

Note that yi = 1 and yi+l = −1 as defined in equation 2.1, so

−yi+l∇ f (α(∗))i+l = −yi∇ f (α(∗))i + 2ε. (3.1)

We will use this in later analyses.
When q = 2, the base set is selected from equation 2.8. It is easy to see

that indices i and i + l where 1 ≤ i ≤ l cannot both be chosen at the same
time. For example, if indices i and i+ l are both selected from equation 2.8,
by equations 3.1 and 2.7, we must have i + l ∈ arg mk and i ∈ arg Mk. By
equations 2.4 and 2.5, this means α(∗),ki+l > 0 and α(∗),ki > 0, which violates
theorem 1. Therefore, (i, i+ l) cannot be chosen together.

Also, if one of α(∗),ki and α
(∗),k
i+l is selected, the other must be zero. We

can prove this by contradiction. Without loss of generality, say if α(∗),ki is
selected and α

(∗),k
i+l is nonzero, then by theorem 1, α(∗),ki must be zero. So

by equations 2.4, 2.5, and 2.8, i ∈ arg mk. Moreover, by equation 2.4, both i
and i+ l are in the candidate set of mk, and we must have −yi∇ f (α(∗),k)i ≥
−yi+l∇ f (α(∗),k)i+l since i ∈ arg mk. But this contradicts equation 3.1. There-
fore, if one of α(∗),ki and α(∗),ki+l is selected, the other must be zero.

If any one of (i, j), (i, j+ l), (i+ l, j), (i+ l, j+ l)where 1 ≤ i, j ≤ l is chosen
from equation 2.8, our goal is to see the difference in solving the two-variable
subproblem and the four-variable subproblem of (i, j, i+ l, j+ l).

Without loss of generality, we consider the case where (i, j) is chosen by
equation 2.8. Then (α(∗),ki , α

(∗),k
j , α

(∗),k
i+l , α

(∗),k
j+l ) are the corresponding variables

at iteration k; from earlier discussions, we know α
(∗),k
i+l = α

(∗),k
j+l = 0. After

a two-variable subproblem on α(∗)i and α(∗)j is solved, we assume the new

values are (ᾱ(∗),ki , ᾱ
(∗),k
j , 0, 0). From equation 3.1 and the KKT condition, it

is easy to see that if ᾱ(∗),ki > 0 and ᾱ(∗),kj > 0, (ᾱ(∗),ki , ᾱ
(∗),k
j , 0, 0) is already an

optimal solution of the four-variable problem, equation 1.2.
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Figure 1: Possible situation of plane changes.

Therefore, the only difference happens when there is a “jump” from the
(i, j) plane to another plane of two variables and the objective value of
equation 1.2 can be further decreased. We illustrate this in Figure 1.

In this figure, each square represents a plane of two nonzero variables.
From the linear constraint

α(∗)i + α(∗)j = −
∑
t6=i,j

ytα
(∗)
t , (3.2)

the two dashed parallel lines in Figure 1 show how the solution plane pos-
sibly changes. For example, after ᾱ(∗),kj becomes zero, if (ᾱ(∗),ki , ᾱ

(∗),k
j , 0, 0) is

not an optimal solution of equation 1.2, we may further reduce its objective
value by entering the (i, j∗) plane. We will check under what conditions
(ᾱ
(∗),k
i , ᾱ

(∗),k
j , 0, 0) is not an optimal solution of equation 1.2.

Since α(∗)i and α
(∗)
j are adjusted on the line, equation 3.2, we consider

the objective value of the subproblem on the (i, j) plane as the following
function of a single variable v, where N = {t | 1 ≤ t ≤ l, t 6= i, t 6= j} are
indices of the fixed variables:

g(v) ≡ 1
2

[
α
(∗),k
i + v α

(∗),k
j − v

] [Qii Qij
Qji Qjj

][
α
(∗),k
i + v
α
(∗),k
j − v

]
+ (Qi,N(α

k
N − (α∗)kN)+ ε + zi)(α

(∗),k
i + v)
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+ (Qj,N(α
k
N − (α∗)kN)+ ε + zj)(α

(∗),k
j − v)

= 1
2
(Qii − 2Qij +Qjj)v2 + (∇ f (α(∗),k)i −∇ f (α(∗),k)j)v+ constant.

Since α(∗)i is increased from α
(∗),k
i to ᾱ(∗),ki , we know

g′(0) = ∇ f (α(∗),k)i −∇ f (α(∗),k)j < 0.

Now if (ᾱ(∗),ki , ᾱ
(∗),k
j , 0, 0) is not an optimal solution of equation 1.2, we can

define a new function ḡ(v) similar to g(v) at (ᾱ(∗),ki , 0) of the (i, j+ l) plane.
If ᾱ(∗),ki can be further increased,

ḡ′(0) = ∇ f (ᾱ(∗),k)i +∇ f (ᾱ(∗),k)j+l < 0. (3.3)

However, from equation 3.1 and ᾱ(∗),ki − α(∗),ki = −(ᾱ(∗),kj − α(∗),kj ),

∇ f (ᾱ(∗),k)i +∇ f (ᾱ(∗),k)j+l

= ∇ f (ᾱ(∗),k)i −∇ f (ᾱ(∗),k)j + 2ε

= ∇ f (α(∗),k)i +Qii(ᾱ
(∗),k
i − α(∗),ki )+Qij(ᾱ

(∗),k
j − α(∗),kj )

− (∇ f (α(∗),k)j +Qji(ᾱ
(∗),k
i − α(∗),ki )+Qjj(ᾱ

(∗),k
j − α(∗),kj ))+ 2ε

= (∇ f (α(∗),k)i −∇ f (α(∗),k)j)

+ (ᾱ(∗),ki − α(∗),ki )(Qii − 2Qij +Qjj)+ 2ε. (3.4)

Since Q is positive semidefinite, QiiQjj−Q2
ij ≥ 0 implies Qii− 2Qij+Qjj ≥ 0.

With ᾱ(∗),ki − α(∗),ki ≥ 0 and equation 3.3, we know if

(∇ f (α(∗),k)i−∇ f (α(∗),k)j)+(ᾱ(∗),ki −α(∗),ki )(Qii−2Qij+Qjj)+2ε≥0, (3.5)

it is impossible to move (ᾱ
(∗),k
i , 0) on (i, j + l) plane further. That is,

(ᾱ
(∗),k
i , ᾱ

(∗),k
j , 0, 0) is already an optimal solution of equation 1.2. For other

cases, that is, (i, j+ l), (i+ l, j), and (i+ l, j+ l), results are the same. Note that
now, 1 ≤ i, j ≤ l so ∇ f (α(∗),k)i − ∇ f (α(∗),k)j is actually the value obtained
in equation 2.11. That is, it is the number used for checking the stopping
criterion. Therefore, we have the following theorem:

Theorem 2. For all iterations with the violation on the stopping criterion, equa-
tion 2.11, no more than 2ε, an optimal solution of the two-variable subproblem is
already an optimal solution of the corresponding four-variable subproblem.

If ε is not small, the stopping tolerance in most iterations is smaller than
2ε. In addition, as most decomposition iterations are spent in the final stage
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due to slow convergence, this theorem has shown a conclusive result that
no matter whether the two-variable or four-variable approach is used, the
difference on the number of iterations should not be much.

For larger working set (q > 2), we may not be able to get results as elegant
as theorem 2. When q = 2, for example, we know exactly the relation on the
changes ofα(∗),ki andα(∗),kj in one iteration, as ᾱ(∗),ki −α(∗),ki = −(ᾱ(∗),kj −α(∗),kj ).
However, when q > 2, the change on each variable can be different. In the
following, we will show that if {α(∗),k} is an infinite sequence, during final
iterations, after k is large enough, solving the subproblem of the base set is
the same as solving the larger subproblem of the pair set. Next, we describe
some properties that will be used for the proof.

Assume that the sequence {α(∗),k} of the base approach converges to an
optimal solution α̂(∗). Then we can define

M̂ ≡ M(α̂(∗)) and m̂ ≡ m(α̂(∗)). (3.6)

We also note that equation 2.9 implies that for any index 1 ≤ i ≤ 2l in the
working set of the kth iteration,

Mk ≤ −yi∇ f (α(∗),k)i ≤ mk. (3.7)

Now we describe two theorems from Lin (2001b) that are needed for the
main proof. These theorems deal with a general framework of decomposi-
tion methods for different SVM formulations. We can easily check that the
base approach satisfies the required conditions of these two theorems so
they can be applied:

Theorem 3.

lim
k→∞

mk −Mk = 0. (3.8)

Theorem 4. For any α̂(∗)i , 1 ≤ i ≤ 2l, whose corresponding −yi∇ f (α̂(∗))i is
neither m̂ nor M̂, after k is large enough, α(∗),ki is at a bound and is equal to α̂(∗)i .

Immediately, we have a corollary of theorem 3, which is specific to SVR:

Corollary 1. After k is large enough, for all i = 1, 2, . . . , l, α(∗),ki and α(∗),ki+l
would not be both selected in the base working set.

Proof. By the convergence of mk−Mk to 0, after k is large enough, mk−Mk < ε.
If there exists 1 ≤ i ≤ l such that α(∗),ki and α

(∗),k
i+l are both selected in

the base working set, from equation 3.7, Mk ≤ −∇ f (α(∗),k)i ≤ mk and
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Mk ≤ ∇ f (α(∗),k)i+l ≤ mk. However, equation 3.1 shows ∇ f (α(∗),k)i+l =
−∇ f (α(∗),k)i + 2ε so mk −Mk ≥ 2ε, and there is a contradiction.

Next, we describe the main proof of this section, which is an analysis on
the infinite sequence {α(∗),k}.

Theorem 5. We assume that M̂ 6= m̂ + 2ε. After k is large enough, any opti-
mization subproblem of the base set is already optimal for the larger subproblem of
the pair set.

Proof. If the result is wrong, there is an index 1 ≤ i ≤ l and an infinite set
K such that for all k ∈ K, α(∗),ki (or α(∗),ki+l ) is selected in the working set, but

then α(∗),ki+l (or α(∗),ki ) is also modified. Without loss of generality, we assume

that α(∗),ki is selected in the working set, but α(∗),ki+l is modified infinite times.
So by theorem 4,

∇ f (α̂(∗))i+l = m̂, or ∇ f (α̂(∗))i+l = M̂.

By equation 3.1,

−∇ f (α̂(∗))i = m̂− 2ε < m̂, or −∇ f (α̂(∗))i = M̂− 2ε < M̂.

For the second case, by the assumption that m̂ 6= M̂ − 2ε, we have m̂ <

−∇ f (α̂(∗))i or m̂ > −∇ f (α̂(∗))i. But if m̂ < −∇ f (α̂(∗))i, we have m̂ < −∇ f (α̂(∗))i
< M̂, which is impossible for an optimal solution. Hence,

− yi∇ f (α̂(∗))i < m̂ (3.9)

holds for both cases. Therefore, we can define

1 ≡ min(ε/2, (m̂− (−yi∇ f (α̂(∗))i))/3) > 0.

By the convergence of the sequence {−yj∇ f (α(∗),k)j} to −yj∇ f (α̂(∗))j, for all
j = 1, . . . , 2l, after k is large enough,

|yj∇ f (α(∗),k)j − yj∇ f (α(∗),k+1)j| ≤ 1 and (3.10)

|yj∇ f (α(∗),k)j − yj∇ f (α̂(∗))j| ≤ 1. (3.11)

Suppose that at the kth iteration, j ∈ arg Mk is selected in the working set
and

−yj∇ f (α(∗),k)j = Mk.

By equations 3.7, 3.10, 3.11, and 3.9,

−yj∇ f (α̂(∗))j ≤ −yj∇ f (α(∗),k)j +1 = Mk +1
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≤ −yi∇ f (α(∗),k)i +1 ≤ −yi∇ f (α̂(∗))i + 21

≤ −yi∇ f (α̂(∗))i + 2(m̂− (−yi∇ f (α̂(∗))i))/3

< m̂ ≤ M̂. (3.12)

From theorem 4 and equation 3.12, after k is large enough, α(∗),kj is at a bound

and is equal to α̂(∗)j . That is, α(∗),kj = α
(∗),k+1
j = α̂

(∗)
j . Since α(∗),k+1

j = α
(∗),k
j

and α(∗),kj is in the candidates of Mk, by equations 3.7, 3.10, and 3.11,

Mk+1 ≤ −yj∇ f (α(∗),k+1)j

≤ −yj∇ f (α(∗),k)j +1 = Mk +1
≤ −yi∇ f (α(∗),k)i +1
≤ −yi∇ f (α(∗),k+1)i + 21.

Hence, we get

Mk+1 ≤ −yi∇ f (α(∗),k+1)i + ε. (3.13)

On the other hand, α(∗),ki is modified to α(∗),k+1
i , so at least one of them is

strictly positive. By the definition of mk,

∇ f (α(∗),k)i+l ≤ mk, or ∇ f (α(∗),k+1)i+l ≤ mk+1. (3.14)

From equations 3.1, 3.7, 3.13, and 3.14, for all large enough k ∈ K,

Mk ≤ mk − 2ε, or Mk+1 ≤ mk+1 − ε.
Therefore,

lim
k→∞

mk −Mk 6= 0

which contradicts theorem 3.

4 Experiments

We consider two regression problems, abalone (4177 data) and add10 (9792
data), from Blake and Merz (1998) and Friedman (1988), respectively. The
RBF kernel is used:

Qij ≡ e−γ ‖xi−xj‖2
.

Since our purpose is not to examine the quality of the solutions, we do not
perform model selection on the value of γ . Instead, we fix it to 1/n, where
n is the number of attributes in each data. For these two problems, n is
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Table 1: Problem abalone.

Iteration Iteration
Parameters (2-variable) (4-variable) SV Candidatesa Jumpsb

C = 10, ε = 0.1 18,930 18,790 3967 8438 14
C = 10, ε = 1 10,173 10,173 2183 1705 0
C = 10, ε = 10 17 17 7 0 0

C = 100, ε = 0.1 142,190 140,686 3938 63,057 207
C = 100, ε = 1 122,038 119,981 2147 10,187 48
C = 100, ε = 10 261 261 9 0 0

Notes: aThe number of iterations that violate conditions of Theorem 2.
bThe number of plane changes as illustrated in Figure 1.

Table 2: Problem add10.

Iteration Iteration
Parameters (2-variable) (4-variable) SV Candidates Jumps

C = 10, ε = 0.1 28,625 28,955 9254 13,918 1
C = 10, ε = 1 22,067 21,913 4997 2795 1
C = 10, ε = 10 116 116 14 0 0

C = 100, ε = 0.1 350,344 350,325 9158 109,644 12
C = 100, ε = 1 227,604 227,604 4265 14,628 0
C = 100, ε = 10 105 105 11 0 0

eight and ten, respectively. Based on our experience, we think that it is an
appropriate value when data are scaled to [−1, 1].

Tables 1 and 2 present results using different ε and C on two problems.
We consider ε to be greater than 0.1 because for smaller ε, the number of
support vectors approaches the number of training data. On the other hand,
we consider ε up to 10 where the number of support vectors is close to zero.
For each parameter set, we present the number of iterations by both two-
variable and four-variable approaches, number of support vectors, number
of iterations that violate conditions of theorem 2 (i.e., possible candidates of
jumps), and the number of real jumps as illustrated in Figure 1 when using
the four-variable approach.

The solution of the four-variable approach is obtained as follows. First
a two-variable problem obtained from equation 2.8 is solved. If there is at
least one variable that goes to zero, another two-variable problem has to be
solved. As indicated in Figure 1, at most three two-variable problems are
needed. For our experiments, both versions of the code are directly modified
from LIBSVM (version 2.03).

It can be clearly seen that both approaches take nearly the same number
of iterations. In addition, the number of jumps while using the four-variable
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Table 3: Problem abalone (First 200 Data).

q = 10 q = 20

Iteration Iteration Iteration Iteration
Parameters (base) (pairs) NAVMa (base) (pairs) NAVMa

C = 10, ε = 0.1 132 173 77 100 114 111
C = 10, ε = 1 49 46 3 42 40 10
C = 10, ε = 10 1 1 0 1 1 0

C = 100, ε = 0.1 1641 1983 184 1168 1086 250
C = 100, ε = 1 807 552 29 258 310 46
C = 100, ε = 10 1 1 0 1 1 0

Note: aNumber of added variables that are modified for the pair approach.

approach is very small, especially when ε is larger. Furthermore, the num-
ber of “candidates” is much larger than the number of real jumps. This
means that (ᾱ(∗),ki − α(∗),ki )(Qii − 2Qij + Qjj) of equation 3.4 is large enough
so equation 3.5 is usually satisfied.

Next, we experiment with using larger working sets. We use a simple
implementation written in MATLAB so only small problems are tested.
We consider the first 200 data points of abalone and add10. Results are in
Tables 3 and 4, where we show the number of iterations and the number of
added variables that are modified (NAVM) for the pair approach. Note that
we use “number of added variables that are modified” instead of “number
of jumps” since for larger subproblems, we cannot model the change of
variables as jumps between planes.

The NAVM column is defined as follows. If the pair approach is used,
the working set in the kth iteration is the union of two sets: Bk, which is the
base set, and its extension, B̄k. We check the value of variables in α(∗)

B̄k
before

and after solving the subproblem. NAVM is the sum of the count for those
modified variables in α(∗)

B̄k
throughout all iterations, so it is at most the sum

of |B̄k| throughout all iterations, which is roughly the number of iterations
multiplied by the maximal size of the base set, q.

In Tables 3 and 4, the column NAVM is relatively small compared to
the number of iterations multiplied by q. That means that in nearly all the
optimization steps, only variables corresponding to the base set rather than
the extended set are changed. In addition, from Tables 1 through 4, we found
that the pair approach may not lead to fewer iterations, so it is not necessary
to use the pair approach for solving SVR.
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Table 4: Problem add10 (First 200 Data).

q = 10 q = 20

Iteration Iteration Iteration Iteration
Parameters (base) (pairs) NAVMa (base) (pairs) NAVMa

C = 10, ε = 0.1 59 50 13 27 26 33
C = 10, ε = 1 55 60 0 18 18 0
C = 10, ε = 10 2 2 0 2 2 0

C = 100, ε = 0.1 2519 2094 112 1317 1216 135
C = 100, ε = 1 944 956 12 236 278 28
C = 100, ε = 10 2 2 0 2 2 0

Note: aNumber of added variables modified for the pair approach.

5 Conclusion and Discussion

From our theoretical proofs, we show that in the final iterations of the de-
composition methods, the solution of the subproblem for the base approach
is the same as that for the pair approach. This means that extending the base
working set to the pair set will not benefit much, so it is not necessary to
use the pair method.

Experiments confirmed our analysis. The difference between number of
iterations of the two approaches is negligible. Moreover, the pair approach
solves a larger optimization subproblem in each iteration, which costs more
time, so the program using the base approach is more efficient.

We mentioned in equation 2.2 that the regression problem can be refor-
mulated to have the same structure as the classification problem, so if we
solve SVR using the base approach, it is possible to use the same program for
classification with little modification. For example, LIBSVM used this strat-
egy. However, if equation 2.2 is directly applied without using as many re-
gression properties as possible, our experience shows that the performance
may be a little worse than software specially designed for regression.
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