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We investigate the energy ef�ciency of signaling mechanisms that transfer
information by means of discrete stochastic events, such as the opening
or closing of an ion channel. Using a simple model for the generation
of graded electrical signals by sodium and potassium channels, we �nd
optimum numbers of channels that maximize energy ef�ciency. The op-
tima depend on several factors: the relative magnitudes of the signaling
cost (current �ow through channels), the �xed cost of maintaining the
system, the reliability of the input, additional sources of noise, and the
relative costs of upstream and downstream mechanisms. We also analyze
how the statistics of input signals in�uence energy ef�ciency. We �nd that
energy-ef�cient signal ensembles favor a bimodal distribution of channel
activations and contain only a very small fraction of large inputs when
energy is scarce. We conclude that when energy use is a signi�cant con-
straint, trade-offs between information transfer and energy can strongly
in�uence the number of signaling molecules and synapses used by neu-
rons and the manner in which these mechanisms represent information.

1 Introduction

Energy and information are intimately related in all forms of signaling. Cel-
lular signaling involves local movements of ions and molecules, shifts in
their concentration, and changes in molecular conformation, all of which
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require energy. Nervous systems have highly evolved cell signaling mech-
anisms to gather, process, and transmit information, and the quantities of
energy consumed by neural signaling can be signi�cant. In the blow�y
retina, the transmission of a single bit of information across one chemi-
cal synapse requires the hydrolysis of more than 100, 000 ATP molecules
(Laughlin, de Ruyter van Steveninck, & Anderson, 1998). The adult hu-
man brain accounts for approximately 20% of resting energy consumption
(Rolfe & Brown, 1997). Recent calculations suggest that the high rate of
energy consumption in cortical gray matter results mainly from the trans-
mission of electrical signals along axons and across synapses (Attwell &
Laughlin, 2001). Given that high levels of energy consumption constrain
function, it is advantageous for nervous systems to use energy-ef�cient
neural mechanisms and neural codes (Levy & Baxter, 1996; Baddeley et al.,
1997; Sarpeshkar, 1998; Laughlin, Anderson, O’Carroll, & de Ruyter van
Steveninck, 2000; Schreiber, 2000; Balasubramanian, Kimber, & Berry, 2001;
de Polavieja, in press).

We set out to investigate the relationship between energy and informa-
tion at the level of the discrete molecular events that generate cell signals.
Ultimately, information is transmitted by the activation and deactivation of
signaling molecules. These are generally single proteins or small complexes
that respond to changes in electrical, chemical, or mechanical potential. Fa-
miliar neural examples are the opening of an ion channel, the binding of
a ligand to a receptor, the activation of a G-protein, and vesicle exocytosis.
These events involve the expenditure of energy—for example, to restore
ions that �ow across the membrane, restore G-proteins to the inactive (G-
GDP) state, and remove and recycle neurotransmitter. The ability of these
events to transmit information is limited by their stochasticity (Laughlin,
1989; White, Rubinstein, & Kay, 2000). This uncertainty reduces reliability
and hence the quantity of transmitted information. To increase informa-
tion, one must increase the number of events used to transmit the signal;
this, in turn, increases the consumption of energy. We investigate this funda-
mental relationship between information and energy in molecular signaling
systems by developing a simple model within the context of neural infor-
mation processing: a population of ion channels that responds to an input
by changing their open probability. We derive the quantity of information
transmitted by the population of channels and demonstrate how informa-
tion varies as a function of the properties of the input and the number of
channels in the population. We identify optima that maximize the ratio be-
tween transmitted information and cost. These optima depend on the input
statistics and, as with spike codes (Levy & Baxter, 1996), the ratio between
the costs of generating signals (the signaling cost) and the cost of construct-
ing the system, maintaining it in a state of readiness and providing it with
an input (the �xed costs).

The article is organized as follows. Section 2 introduces the model for a
system that transmits information with discrete stochastic signaling events.
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In section 3, we de�ne measures of information transfer, energy consump-
tion, and metabolic ef�ciency for such a system. In section 4, we analyze
the dependence of energy ef�ciency on the number of stochastic units for
gaussian input distributions. The in�uence of additional noise sources is
studied in section 5. In section 6, we look at the energy ef�ciency of combi-
nations of systems, and in section 7, we derive optimal input distributions
and show how energy ef�ciency depends on the number of stochastic units
when the distribution of inputs is optimal. Finally, in section 8 we conclude
our investigation with an extensive discussion.

2 The Model

We consider an information transmission system with input x and output
k. The system has N identical, independent units that are activated and
deactivated stochastically. The input x directly controls the probability that
a unit is activated. The number of activated units, k, constitutes the output
of the system.

Because realistic physical inputs are bounded in magnitude, any given
distribution of inputs can be mapped in a one-to-one fashion onto the acti-
vation probabilities of units, within the interval [0I 1]. We therefore assume,
without loss of generality, that x 2 [0I 1] is equivalent to the probability of
being in an activated state. Consequently, the conditional probability that a
given input x activates k units is given by a binomial distribution,

p(k|x) D
³

N
k

´
xk (1 ¡ x)N¡k. (2.1)

The variance s2
k|x of this binomial probability distribution,

s2
k|x D Nx(1 ¡ x), (2.2)

is a measure for the system’s transduction accuracy, de�ning the magnitude
of the noise. Note that s2

k|x depends on both the number of available units
N and the input x.

In an equivalent interpretation, the model can also be considered as a
linear input-output system,

k D Nx C g (N, x), (2.3)

where Nx is the “deterministic” component of the output and g (N, x) rep-
resents the noise due to the stochasticity of the units. The noise distribution
corresponds to p(k|x) shifted to have zero mean; its variance is therefore
given by s2

k|x. Thus, we see that the input x speci�es a noise-free output
N ¢ x, to which the noise g is added, yielding the integer-valued output k.
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Figure 1: (A) Schematic view of the membrane model. The input x directly
determines the probability that sodium channels are open. In contrast to the
stochastic sodium channels, potassium channels are considered nonstochastic at
this stage of analysis; independent of the input, a constant fraction pK is open. (B)
Schematic view of two model signaling systems with N D 5 and N D 10 sodium
channels, respectively. Note that the ratio of sodium to potassium channels is
kept constant (here NK /N D 1).

2.1 Implementing the Model. For concreteness, we have chosen to im-
plement the model in the context of a basic neural signaling mechanism.
A membrane contains two populations of voltage-insensitive channels: one
controlling inward current and the other outward current (see Figure 1). For
convenience, we refer to these as sodium and potassium channels, respec-
tively. There are N sodium channels and NK potassium channels.

In our analysis, an input, x, produces a voltage response by changing
the open probability of the set of sodium channels, which take the role of
the stochastic signaling units. The input x could be derived from a variety
of sources, both external, such as light, and internal, such as synaptically
released transmitter. But regardless of its origins, the input is assumed to be
unambiguously represented by the open probability of sodium channels.
For simplicity, the second set of ion channels—the potassium channels—is
considered to be input independent and noise free. Thus, a �xed proportion
of potassium channels is kept open, regardless of the size of the input.

The input signal speci�es the voltage output signal by directly deter-
mining the probability that sodium channels are open. Thus, a given input
value x, presented in a small time interval Dt , will result in k open sodium
channels. Note that because of channel noise, the number of open sodium
channels k will vary with different presentations of the same input. The
state of the model system, on the other hand, is given by the number of
open sodium channels k and translates uniquely into a voltage output if we
neglect the in�uence of membrane capacitance. Conversely, if we know the
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output voltage V, we can directly infer the number of open sodium chan-
nels k. Both variables are therefore equivalent from an information-theoretic
point of view. By working in the channel domain (i.e., by taking the number
of open sodium channels k as a measure of the system’s output), we can
simplify our analysis and avoid the nonlinear relationship of conductance,
current, and voltage.

Note that to achieve the linear relationship between the input x and the
(average) output k, the channels are not voltage sensitive. For simplicity, we
do not study the effects of membrane capacitance on the time course of the
voltage response, assuming that the signal variation is slow incomparison to
the timescale of the effects introduced by membrane capacitance. Nor do we
analyze the effects of channel kinetics. By working at a fundamental level,
the mapping of the input onto discrete molecular events, we can investigate
a simple model of general validity.

3 Calculating the Metabolic Ef�ciency

We de�ne the metabolic ef�ciency of a signaling system as the ratio be-
tween the amount of transmitted information I and the metabolic energy E
required. Ef�ciency I/E thus can be expressed in bits per energy unit. (For
other ef�ciency measures, see section A.3.) Both information transfer I and
metabolic energy (or cost) E depend on the number of available signaling
units—the number of channels, N. To investigate the relationship between
ef�ciency and the number of stochastic units, we drive the model system
with a �xed distribution of inputs, px (x), and vary N, the size of the popula-
tion of sodium channels used for signaling. This is equivalent to changing
the channel density of our model membrane while maintaining the same
input. To ensure that systems with different values of N, the number of
sodium channels, produce the same mean voltage output in response to a
given input, x, the population of potassium channels, NK, is set to a constant
proportion of N. Under these conditions, we can now calculate how the in-
formation transmitted, I, and the energy consumed, E, vary for different
numbers of channels.

3.1 Information Transfer. Consider the transmission of a single signal.
The model system receives an input, x, drawn from the input distribution,
px (x), and produces a single output, k. According to Shannon, the informa-
tion transmitted by the system is given by

I[NI px (¢)] D
NX

kD0

Z 1

0
dxp (k|x)px (x) log2

µ
p(k|x)
pk (k)

¶
, (3.1)

and depends on the input distribution px (x) and, via the binomial distri-
bution of channel activation p(k|x) (see equation 2.1), also on the number
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of available units, N. For a continuously signaling neuron, this is equiv-
alent to the response during a discrete time bin of duration Dt , and I is
the rate of transmission in bits/Dt . In this article, we study two different
scenarios—gaussian input distributions and input distributions that max-
imize the information transfer—both in the presence of noise caused by
stochastic units (e.g., channel noise).

3.2 Energy. The total amount of energy required for the maintenance of
a signaling system and the transmission of a signal is given by

E[NI px (¢)] D b C
Z 1

0
px (x)e(x, N) dx, (3.2)

where b is the �xed cost, and e (x, N) characterizes the required energy as a
function of the input x and the number of stochastic signaling units N. Thus,
we classify the metabolic costs into two groups:costs that are independent of
N and costs that depend on the total number of channels, N. For simplicity,
we assume that the latter costs are dominated by the energy used to generate
signals (in this case, restoring the current that �ows through ion channels),
and we neglect the energy required to maintain channels. The �rst group of
costs, b, relates to costs that have to be met in the absence of signals, such
as the synthesis of proteins and lipids. These costs are therefore called �xed
costs and are constant with respect to x and N. Because we have set up
our systems to produce identical mean values of the voltage output signal
given x (by �xing the ratio N/NK), the function e(N, x) is separable into the
variables N and x (see section A.1),

e (x, N) D NQe(x), (3.3)

so that the signaling-related total energy consumption rises linearly with N.
The function Qe(x) increases monotonically between Qe(0) D 0 and Qe (1) D ech,
where ech denotes the energy cost associated with a single open sodium
channel. (The precise form of Qe(x) is derived in section A.1.) Rescaling the
measurement units of energy, we will from now on set ech D 1. Altogether,
the total energy reads

E[NI px (¢)] D b C Qe (x)N, (3.4)

where Qe(x) is the average signal-related energy requirement of one stochastic
unit and the average is taken with respect to the input distribution px (x).
In the �rst part of the analysis, where we analyze energy-ef�cient numbers
of channels, we make the simplifying assumption that the average cost per
channel, Qe (x), is approximately equal to the mean of the input, x. Note that
the energy E is de�ned as a measure of cost for one time unit Dt , just as I is
the measure of information transfer in Dt .
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4 Gaussian Input Distributions

4.1 Information Transfer. We focus on gaussian inputs �rst, because
according to the central limit theorem, they are a reasonable description
of signals composed of many independent subsignals, and they also allow
an analytic expression of information transfer. To con�ne the bulk of the
gaussian distributions within the input interval [0I 1], the mean, x, and the
variance,s2

x , are chosen such that the distance from the mean to the interval
borders is always larger than 3sx. Values falling outside the interval [0I 1]
are cut off, and the distribution is then normalized to unity. Numerical
simulations (see section A.2) show that the effects of this procedure on the
results are negligible.

The information transfer I (Shannon & Weaver, 1949) per unit time for a
linear system with additive gaussian noise and gaussian inputs is given by

I D
1
2

log2 (1 C SNR), (4.1)

where SNR denotes the signal-to-noise ratio. It is de�ned as the ratio be-
tween the signal variance, s2

x , and the effective noise variance, s2
k|x /N2. If two

criteria are met—�rst, the binomial noise g (N, x) can be approximated by a
gaussian and, second, within the regime of most likely inputs x, changes in
the noise variance s2

x|k are negligible—the following equation gives a reason-
ably good approximation of the information transfer of our model system:

I D
1
2

log2

³
1 C

Ns2
x

x(1 ¡ x)

´
. (4.2)

This is the case for large N and a restriction to the gaussian inputs described
above. Numerical tests (see section A.2) show that the deviation between
the real information transfer with N stochastic signaling units and the in-
formation transfer given by equation 4.2 is very small.

4.2 Ef�ciency. For the ef�ciency, de�ned as I/E, we obtain the following
expression:

I
E

D
1

2(xN C b)
log2

³
1 C

Ns2
x

x(1 ¡ x)

´
. (4.3)

In Figure 2, ef�ciency curves I/E are depicted as a function of N for three
different values of �xed costs b. The energy ef�ciency exhibits an optimum
for all curves. Signal transmission with numbers of channels N within the
range of the optimum is especially energy ef�cient. The position of the opti-
mum depends strongly on the size of the �xed cost b relative to the average
cost of a single channel Qe (x) ¼ x. Figure 2 displays the dependence of the
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Figure 2: (A) Ef�ciency I/E as a function of N for three different �xed costs.
From top to bottom, the �xed cost b is equivalent to the cost of 500, 2000, and
5000 open channels. The optimal N shifts to larger N with rising �xed cost b (see
also the inset), and the ef�ciency curves become wider. (B) Ef�ciency curves
for �xed costs of b D 50, b D 500, and b D 5000 rescaled, so that the maximum
corresponds to (1,1). The inset shows the same data on a logarithmic scale. These
rescaled curves, (I/E)n, are similar in shape, independent of the size of b. For all
graphs, the parameters of the input distribution px (x) are sx D 0.16 and x D 0.5.

optimal number of channels N on the �xed cost b. The most ef�cient num-
ber of channels increases approximately linearly with the size of the �xed
cost, although close inspection reveals that the slope is steeper for smaller
�xed costs and shallower in the range of higher b. If b D 0, the most ef�cient
system capable of transmitting information uses one channel. The average
costs of the most energy-ef�cient population of channels, employing Nopt
channels, are given by Noptx. Therefore, the ratio between these signaling
costs at Nx D 0.5, and the �xed cost b is approximately 1:4 in the example
depicted. This ratio however, which can be derived from the slope of the
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b-Nopt curve in the inset of Figure 2A, strongly depends on the input distri-
bution. The analysis for gaussian input distributions shows that the ratio of
Nopt to b increases with decreasing input variance, s2

x (results not shown).
Remarkably, the ef�ciency curves rise very steeply for small N and, after

passing the optimum, decrease only gradually. This characteristic does not
strongly depend on the size of b, as shown in Figure 2B. It is thus very un-
economical to use a number of channels suf�ciently far below the optimum,
whereas above, there is a broad range of high ef�ciency. In this range, a cell
could adjust its number of channels to the amount of information needed
(e.g., add more channels), without losing much ef�ciency. However, as the
inset to Figure 2B indicates, increasing the number of channels by a given
factor has a similar effect on ef�ciency as decreasing them by the same factor.

5 Additional Noise Sources

The most energy-ef�cient number of channels is in�uenced by the size of
additional noise. This might be noise added to the input (additive input
noise) or internal noise generated within the signaling system independent
of the activation of sodium channels (input-independent internal noise).

5.1 Additive Input Noise. If the input contains gaussian noise of a �xed
variance hg2

xi that is not correlated with the signal, the variances of the signal
and the noise add, yielding the modi�ed SNR at the output

SNR D
Ns2

x

Nhg2
xi C x(1 ¡ x)

. (5.1)

The additional noise gx decreases the SNR and, consequently, the informa-
tion transfer. For N ! 1, the SNR converges to s2

x /hg2
x i, and thus sets an

upper limit to the information transfer. Figure 3 shows that it is more ef�-
cient to operate at lower numbers of channels in the presence of additional
signal noise.

5.2 Input-Independent Internal Noise. To exemplify internal noise, we
consider an additional population of sodium channels that is not in�uenced
by the input x but rather has a �xed open probability p0 , though it contributes
to the noise. Assuming a �xed ratio N/N0 between the total number of
the original input-dependent sodium channels N and the total number of
these new input-independent sodium channels N0 , the voltage output is
determined by the sum of open channels from both populations k C k0 .
Because noise from both populations is uncorrelated, the SNR reads

SNR D
N2s2

x

N2hg2
xi C Nx(1 ¡ x) C N0p0 (1 ¡ p0 )

, (5.2)
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Figure 3: Ef�ciency I/E as function of the number of signaling units, N, for the
case of a noisy input signal (solid line). For comparison, we also replot the case
where there is no input noise (dotted line), as in Figure 2A. For both curves, the
variance of the input distribution equals s2

x D 0.162, x D 0.5, and b D 5000. The
noise variance of the signal is hg2

xi D 0.042 .

where N0p0 (1 ¡ p0 ) represents the noise variance of the input-independent
population of channels. The ef�ciency of the signaling system is thus further
decreased for all N, and the ef�ciency optimum, Nopt , is shifted to lower
values.

Other noise sources, such as leakchannels andadditional synaptic inputs,
will also lower the SNR. Therefore, they will reduce ef�ciency and in�uence
the optimum number of channels.

6 Ef�ciency in Systems Combining Several Mechanisms

Signaling mechanisms do not act in isolation; they are usually organized
into systems in which one mechanism drives another, either within a cell
or between cells. The relationship between information transfer and cost
of each mechanism determines optimal patterns of investment in signaling
units across the whole system, as we will demonstrate with some simple
examples.

First, consider two signaling mechanisms in series (see Figure 4). Cell
1 uses N1 channels to convert the input x into the output k1, which, in
turn, drives cell 2, which uses N2 channels, to produce the output k2. From
equation 2.3, we know that k1 D N1x C g1, where Nx is the signal and g1 is
the noise generated by the random activity of channels. Because we de�ne
an input in terms of a probability distribution of signals, ranging from 0 to
1, the output k1 of cell 1 should be normalized by N1, so that the input to
cell 2 is k1/N1. Note that, for simplicity, we are neglecting nonlinearities in
signal transfer within a cell, as, for example, in neurotransmitter release. As
a consequence, the mean open probability in both cells is the same, but its
variance differs. The output of cell 2 is given by k2 D N2x2 C g2, where g2
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Figure 4: Schematic view of the cell arrangement . The normalized output of
cell 1 serves as input for cell 2. Both cells are subject to channel noise g1 and g2 ,
respectively.

is the additive channel noise of cell 2. Therefore, the information transfer
from an input signal x, with mean x and variance s2

x , to the output k2 can
be approximated by Shannon’s formula as

I D
1
2

log2

³
1 C

N1N2s2
x

(N1 C N2)x(1 ¡ x)

´
. (6.1)

The cost of information transfer through the two-cell system is

E D ech1xN1 C ech2xN2 C b1 C b2, (6.2)

where b1 and b2 are the �xed metabolic costs of the cells and ech1/2x the costs
per open channel.

If we introduce an effective number of channels, Ni
eff D N1N2/ (N1 C

N2), for the information transfer and NE
eff D N1 C N2 for the metabolic

cost, the equations for I and E correspond to those of the single-cell case—
equations 4.2, and 3.4, respectively. For simplicity, the cost per open channel
is set to unity for both cells. Because NE

eff ¸ Ni
eff for all nonnegative N1

and N2, the information transfer increases more slowly with the number
of channels than the cost, cutting down ef�ciency. Thus, a two-cell system
requires more channels to transmit the same amount of information and is
therefore less ef�cient than a single cell, even if the �xed cost of a cell in
the two-cell model is only half the cost of the single cell. Consequently, in a
metabolically ef�cient nervous system, serial connections should be made
only when signal processing is required.



1334 S. Schreiber, C. K. Machens, A. V. M. Herz, and S. B. Laughlin

Furthermore, in an energy-ef�cient system, the cost of one mechanism
in�uences the amount of energy that should be consumed by another. Such
considerations are important when one set of signaling events is more costly
than another. This can be demonstrated by incorporating the cost of an
upstream mechanism into the �xed cost of a downstream mechanism (i.e.,
the cost of a mechanism includes the cost of providing it with a signal). Here
we can de�ne E as

E D ech2xN2 C b¤
2 with b¤

2 D ech1xN1 C b1 C b2. (6.3)

As we have seen with one mechanism, an increase in �xed cost raises
the optimal number of channels. Therefore, when the cost of an upstream
mechanism is high, one improves energy ef�ciency by using more units
downstream. The precise pattern of investment required for optimal per-
formance will depend on the relative costs (�xed and signaling) of every
mechanism (e.g., channels) and the characteristics of the input signal.

7 Limits to the Achievable Ef�ciency

Information transfer and ef�ciency depend on the distribution of input sig-
nals. In the previous sections, we have considered gaussian inputs. We now
calculate the input distribution that maximizes information transfer I given
a limited energy budget E and a particular number of channels N. The ef�-
ciency I/E reached gives an upper bound on the ef�ciency the system can
achieve for given E and N. Although the nervous system has less in�uence
on the distribution of external signals, it is able to shape its internal signals
to optimize information transfer (Laughlin, 1981).

The optimal input distribution, popt
x (x), and the maximum information

transfer (the informationcapacityCN) of a system withN stochastic units can
be obtained by the Blahut-Arimoto algorithm (Arimoto, 1972; Blahut, 1972),
which is described in further detail in section A.4. Given the noise distri-
bution p(k|x), the algorithm yields a numerical solution to the optimization
of the input distribution px (x), maximizing the information transfer and
minimizing the metabolic cost. This algorithm has been applied by Bala-
subramanian et al. (2001) and de Polavieja (in press) to study the metabolic
ef�ciency of spike coding.

7.1 Optimal Input Distributions. For a given number of channels N, a
given �xed cost b, and a given cost function depending on the input Qe(x),
the energy E D N Qe(x) C b used by the system depends exclusively on the
input distribution px (x). If the available energy budget is suf�ciently large,
energy constraints do not in�uence the shape of the optimal input distribu-
tion, and the information capacity CN of the system reaches its maximum
(see Figure 5E, point A). The optimum input distribution turns out to be
symmetrical, with inputs from the midregion around x D 0.5 drawn less of-
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Figure 5: (A)–(D) Optimal input distributions for different energy budgets E
with b D 0 and N D 100. The distributions were calculated numerically and are
discretized to a resolution Dx D 0.01. All distributions show small values for
inputs around x D 0.5 where the noise variance s2

k|x is highest. With decreas-
ing energy budget, the distributions become less symmetrical, preferring low
inputs. (E) Information capacity CND 100 depending on the energy budget (for
b D 0). The points mark the location of the input distributions shown in A–D in
the energy capacity space.

ten, whereas inputs at the boundaries 0 and 1 are preferred (see Figure 5A).
This result is very intuitive, when we take the dependence of the noise vari-
ance, s2

k|x, as de�ned in equation 2.2, on the input x into account. The noise
variance is symmetrical as well, showing a maximum at x D 0.5 and falling
off toward x D 0 and x D 1. Thus, an input distribution that is optimal from
the point of view of information transfer, leaving metabolic considerations
aside for a moment, favors less noisy input values over noisier ones.
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Figure 6: (A) Capacity CND 100 (of Figure 5E) as a function of energy E for a �xed
cost b D 20 (solid line). The capacity curve is simply shifted along the energy axis
by the value of b. The ef�ciency CN /E as a function of E is shown as a dash-dotted
line. The maximum ef�ciency (CN /E)max is given at the point of the CN (E) curve
whose tangent (dashed line) intersects with the origin. (B) Achievable ef�ciency
(CN /E)max as a function of N for a �xed cost b D 200 (solid line). For comparison,
the ef�ciency I/E for a gaussian input distribution (Nx D 0.5, sx D 0.16) is also
shown (dashed line). The inset depicts the optimal number of channels Nopt as
a function of b.

Limiting the energy that can be used by a system of N units, however,
changes the optimal input distribution, px (x), and destroys the symmetry.
As we reduce the energy budget, values neighboring x D 0 are increasingly
preferred and the costly values approaching x D 1 are avoided (see Fig-
ures 5B–5D). This asymmetry reduces the information capacity CN. Thus,
ef�cient use of a restricted budget requires a cell to keep most of its units
deactivated. For our simple model, this is equivalent to maintaining the
membrane close to resting potential by keeping most of its sodium chan-
nels closed.

The �xed cost, b, is a metabolic cost independent of the value of the input
x and cannot be avoided. Consequently, it does not in�uence the shape of the
energy-capacity curve of a system. Adding the �xed cost b results merely in
a horizontal translation of the energy-capacity curve (see Figure 6A). Here
as well, the shape of the input distribution changes with the value of E.

7.2 Ef�ciency. Having obtained the dependence of the information ca-
pacity on the energy used for a given N, we can also derive energy ef�ciency
CN /E as a function of the energy E. Of particular interest is the maximum
value (CN /E)max D maxEfCN /Eg, giving the optimal ef�ciency for a �xed
value of N, which is achieved by a speci�c input distribution px (x). Note
that this ef�ciency gives the upper bound to the achievable ef�ciency in our
system and therefore cannot be surpassed by any other input distribution
px (x).
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At the maximum of CN /E, the �rst derivative with respect to E is zero,

@

@E

³
CN

E

´
D 0, (7.1)

which can be transformed to give

@CN

@E
¢ E D CN . (7.2)

Thus, geometrically, the maximum value (CN /E)max corresponds to the
point on the capacity graph whose tangent intersects the origin (see Fig-
ure 6A). The slope of the tangent is given by (CN /E)max itself, so that the
optimal ef�ciency (CN /E)max decreases with increasing b, as can be inferred
from Figure 6A by shifting the CN (E) curve to the right.

Figure 6B shows the optimal ef�ciency (CN /E)max as a function of the
number of channels N for a �xed cost b D 200. For comparison, we also show
the ef�ciency I/E obtained for a gaussian input distribution. The optimal
input distribution surpasses the gaussian distribution roughly by a factor
of two in this case.

In conclusion, as with gaussian input distributions, we can derive the
most ef�cient number of channels Nopt as a function of the �xed cost. The
use of optimal input distributions reduces Nopt but, as with gaussian inputs,
Nopt rises approximately linearly with the basic cost, b, as illustrated in the
inset of Figure 6B.

8 Discussion

A growing number of studies of neural coding suggest that the consumption
of metabolic energy constrains neural function (Laughlin, 2001). Compara-
tive studies indicate that the mammalian brain is an expensive tissue whose
evolution, development, and function have been shaped by the availabil-
ity of metabolic energy (Aiello & Wheeler, 1995; Martin, 1996). The human
brain accounts for about 20% of an adult’s resting metabolic rate. In chil-
dren, this proportion can reach 50% and in electric �sh 60% (Rolfe & Brown,
1997; Nilsson, 1996). Because much of this energy is used to generate and
transmit signals (Siesjö, 1978; Ames, 2000), these levels of consumption have
the potential to constrain neural computation by placing an upper bound
on synaptic drive and spike rate (Attwell & Laughlin, 2001).

Current evidence suggests that the advantages of an energy-ef�cient ner-
vous system are not con�ned to larger animals with highly evolved brains.
In general, the speci�c metabolic rate of brains is 10 to 30 times the average
for the whole animal, at rest (Lutz & Nilsson, 1994). In addition, for both
vertebrates and insects, the metabolic demands of the brain are more acute
in smaller animals because the ratio of brain mass to total body mass de-
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creases as body mass increases (Martin, 1996; Kern, 1985). Moreover, insect
species with similar body masses exhibit large differences in the total mass
of the brain and in the masses or relative volumes of different brain areas,
and these differences correlate with behavior and ecology (Kern, 1985; Gro-
nenberg & Liebig, 1999; Laughlin et al., 2000). Signi�cant changes have been
observed among individuals of a single species. In the ant Harpegnathos, the
workers are usually visually guided foragers. However, when young work-
ers are inseminated and begin to lay eggs following the death of their queen,
their optic lobes are reduced by 20% (Gronenberg & Liebig, 1999). These ob-
servations suggest that the reduction of neural energy consumption is also
a signi�cant factor in the evolution of small brains.

The relationship between energy consumption and the ability of neu-
rons to transmit information suggests that nervous systems have evolved
a number of ways of increasing energy ef�ciency. These methods include
redundancy reduction (Laughlin et al., 1998), the mix of analog and digital
operations found in cortical neurons (Sarpeshkar, 1998), appropriate distri-
butions of interspike intervals (Baddeley et al., 1997;Balasubramanian et al.,
2001; de Polavieja, 2001), and distributed spike codes (Levy & Baxter, 1996).
We have extended these previous theoretical investigations to a level that is
more elementary than the analysis of signaling with spikes: the representa-
tion of information by populations of ion channels. Thus, as independently
advocated by Abshire and Andreou (2001), we have analyzed the energy
ef�ciency of information transmission at the level of its implementation by
molecular mechanisms.

We have estimated the amount of information transmitted by a popu-
lation of voltage-insensitive channels when their open probability is deter-
mined by a de�ned input. These channels typify the general case of sig-
naling with stochastic events. Consequently, our analysis is also applicable
to many other forms of molecular signaling (e.g., the binding of a ligand
to a receptor) and to synaptic transmission (e.g., the release of a synaptic
vesicle according to Poisson or binomial statistics). Our theoretical results
verify a well-known trend: the amount of information carried by a popula-
tion of channels increases with the size of the population because random
�uctuations are averaged out, as observed in blow�y photoreceptors and
their synapses (de Ruyter van Steveninck, Lewen, Strong, Koberle, & Bialek,
1997; Laughlin et al., 1998; Abshire & Andreou, 2000) and demonstrated by
models of synaptic transmission to cortical neurons (Zador, 1998). However,
increasing the number of channels in the population increases both the level
of redundancy and the energy used for transmission, leading to changes in
metabolic ef�ciency (Laughlin et al., 1998).

Following Levy and Baxter (1996), we have chosen to discuss ef�ciency
as the ratio between the number of bits of information transmitted and
the energy consumed. However, our analysis also provides a mathemati-
cal framework to describe energy ef�ciency from the more general point of
view of maximizing information transfer and minimizing the metabolic cost
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(maximizing I ¡ sE, where s describes the importance of energy minimiza-
tion over information maximization), as brie�y outlined in section A.3. We
distinguish two energy costs: the cost of generating signals and the �xed cost
of keeping a signaling system in a state of readiness. The signaling cost is
derived from the current �ow through ion channels. Under the assumptions
of the model, the signaling cost increases with the number of channels. This
simple linear relationship can be easily applied to other forms of signaling,
such as protein phosphorylation or the turnover of transmitter and second
messenger. In the absence of data on the costs of constructing and main-
taining a population of channels in a membrane, we again follow Levy and
Baxter (1996). The �xed cost is expressed in the same units as the signaling
cost and is varied to establish its effect on ef�ciency.

The analysis demonstrates that energy ef�ciency is maximized by using
a speci�c number of channels. These optima depend on a number of impor-
tant factors: the �xed cost of the system, the cost of signaling, the reliability
of the input, the amount of noise generated by other intrinsic mechanisms,
the cost of upstream and downstream signaling mechanisms, and the dis-
tribution of the input signals provided by upstream mechanisms. Each of
these factors is involved in neural processing.

The �xed cost of building and maintaining the cell in a physiological
state within which the ion channels operate is a dominant factor. When the
�xed cost increases, the optimum system increases the energy invested in
signaling by increasing the number of channels (see Figure 2A). Levy and
Baxter (1996) discovered the same effect in their analysis of energy-ef�cient
spike trains. This may well be a general property of energy-ef�cient systems
because when a signaling system is expensive to make and maintain (i.e., the
ratio between �xed and signaling costs is high), it pays to increase the return
on the �xed investment by transmitting more bits. This takes more channels
and more signaling energy. For the example shown, which operates with a
broad input distribution and a mean open probability of 50%, the optimum
population of channels has a peak energy consumption (all channels open)
that is approximately half the �xed cost (see Figure 2A). The relationship
between the energy spent on signaling by the channels and the �xed cost
varies with the distribution of inputs. For input distributions that make
a reasonably broad use of possible open probabilities, the ratio between
signaling costs and �xed costs lies approximately in the range between 1:4
and 1:1. It is dif�cult to judge whether populations of neuronal ion channels
follow this pattern because data about the ratio of �xed costs to signaling
costs insingle cells arenotavailable.However, in morecomplicated systems,
the proportion of energy devoted to signaling is in the predicted range. For
the whole mammalian brain, signaling has been linked to approximately
50% of the metabolic rate (Siesjö, 1978), and in cortical gray matter this rises
to 75% (Attwell & Laughlin, 2001).

We are aware that there are a number of additional factors, not accounted
for by our model, that will in�uence the ratio of signaling costs to �xed costs
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in nervous systems. For example, our analysis underestimates the total en-
ergy usage by the brain because it is con�ned to a single operation: the
generation of a voltage signal by channels. Within neural systems, signals
must be transmitted over considerable distances, and various computations
must be performed. These extra operations take extra energy. Along these
lines, the transmission of signals along axons, in the form of action poten-
tials, accounts for over 40% of the signaling cost of cortical gray matter
(Attwell & Laughlin, 2001).

Noise at the input reduces the optimum number of channels (see Fig-
ure 3) because it reduces the effect of channel �uctuations on the total
noise power. There is some evidence that nervous systems reduce the num-
ber of signaling events in response to a less reliable input. In the blow�y
retina, the SNR of chromatic signals is lower than that of achromatic signals,
and a class of interneurons involved in the chromatic pathway uses fewer
synapses than comparable achromatic interneurons (Anderson & Laugh-
lin, 2000). Considering a chain of signaling mechanisms allows us to study
networks where the output from one population of channels de�nes the
SNR at the input of the next. As a result, when analog signals are trans-
ferred from one mechanism to another, the noise accumulates stage by
stage (Sarpeshkar, 1998). The chain describes how this buildup of noise
reduces metabolic ef�ciency. Given this reduction, an energy-ef�cient sys-
tem should connect one population of channels (or synapses) to another
in a serial manner only when information is actually processed, not when
it is merely transmitted. Where signals must be repeatedly ampli�ed to
avoid attenuation, pulses should be used to resist the buildup of analog
noise (Sarpeshkar, 1998). These design strategies are hypothetical. The en-
ergy savings that are made by restricting the number of serial or conver-
gent analog processes and converting analog signals to spikes (Sarpeshkar,
1998; Laughlin et al., 2000) have yet to be demonstrated in a neural
circuit.

Our analysis suggests that when transmission and processing involve
several types of signaling events (e.g., calcium channels, synaptic vesicles,
and ligand gated channels at a synapse), it is advantageous to use more of the
less expensive events and fewer of the more expensive. This distribution is
analogous to the pattern of investment in bones of a mammal’s leg. Proximal
bones are thicker than distal bones because they are less costly per unit mass
(they move less during a stride). The thickening of distal bones is adjusted
to optimize the ratio between the probability of fracture and cost for the
limb as a whole (Alexander, 1997).

Finally, the probability distribution of the input signal has a large effect
on ef�ciency. On both an evolutionary timescale as well as on the timescale
of physiological adaptation processes, the way an external signal with spe-
ci�c statistical properties is transmitted could therefore be optimized by
mapping the external signal distribution on an ef�cient distribution of prob-
abilities of channels to be open (which we call the input distribution). More
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importantly, the internal signals passed on from one mechanism to the next
could be shaped such that the signal distributions employed will enhance
the ef�ciency of information transfer. The Blahut-Arimoto algorithm yields
input distributions that optimize the amount of information transferred
under a cost constraint and has been successfully applied to spike codes
(Balasubramanian et al., 2001; de Polavieja, 2001). Our application shows
how inputs can be mapped onto the probabilities of activating signaling
molecules to maximize the metabolic ef�ciency of analog signaling. The
improvement over gaussian inputs is greater than 50% and is achieved by
two means. First, signaling avoids the midregion of activation probabilities
where, according to binomial statistics, the noise variance is high. Second,
signaling avoids the expensive situation of having a high probability of
opening channels in favor of the energetically cheaper low-probability con-
dition, similar to the results that a metabolically ef�cient spike code avoids
high rates (Baddeley et al., 1997; Balasubramanian et al., 2001). Our analy-
sis suggests that an ef�cient population of sodium and potassium channels
usually operates close to resting potential, with most of its sodium channels
closed, but infrequently switches to opening most of its sodium channels.
In other words, there is a tendency toward using a combination of numer-
ous small signals close to a low resting potential and less frequent voltage
peaks.

In conclusion, we have analyzed the energy ef�ciency of a simple biolog-
ical system that represents analog signals with stochastic signaling events,
such as ion channel activation. Optimum con�gurations depend on the ba-
sic physics that connects information to energy (the dependency of noise,
redundancy, and cost on the number of signaling events) and basic eco-
nomics (the role played by �xed costs in determining optimum levels of
expenditure on throughput). Given this fundamental basis, the principles
that we have demonstrated are likely to apply to other systems. In particular,
we have shown that energy ef�ciency is a property of both the component
mechanism and the system in which it operates. To assess a single popula-
tion of ion channels, we had to consider the �xed cost, the distribution of
signal and noise in the input, and additional noise sources. After connecting
two populations of ion channels in series, we had to add the relative costs
of the two mechanisms and the noise fed from one population to the next to
our list of factors. Energy ef�ciency is achieved by matching the mechanism
to its signal or, for optimum input distributions, the signal to the mecha-
nism. Matching is a characteristic of designs that maximize the quantity of
information coded by single cells, regardless of cost. To achieve this form of
ef�ciency, neurons exploit the adaptability of their cellular and molecular
mechanisms (Laughlin, 1994). The extent to which the numbers of channels
and synapses used by neurons, and their transfer functions, are regulated
for metabolic ef�ciency remains to be seen. The analysis presented here pro-
vides a starting point that can guide further experimental and theoretical
work.
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Appendix

A.1 Energetic Cost of Inputs. For the channel model, the average ener-
getic cost per unit time e(x, N) is a function of the input x and the number of
sodium channels N. The sodium and potassium currents, iNa and iK, depend
on the reversal potentials ENa and EK, the membrane potential V, as well as
on the conductances of the sodium and potassium channels, respectively,

iNa (x) D NgNa0x(V (x) ¡ ENa), (A.1)

iK (x) D NKgK0pK (V (x) ¡ EK). (A.2)

The vigorous electrogenic pump extrudes three sodium ions and takes up
two potassium ions for every ATP molecule hydrolyzed. The pump current
ipump equals iK /2, assuming that the pump maintains the internal potassium
concentration by accumulating potassium ions at a rate equal to the outward
potassium current, iK. Equating all currents across the membrane gives

iNa (x) C iK (x) C ipump (x) D iNa (x) C
3
2

iK (x) D 0. (A.3)

The energetic cost e(x, N) is proportional to the pump current, ipump, so that
we de�ne

e (x, N) D c ¢ ipump (x) (A.4)

D cN ¢
gK0pK

±
NK
N

²
gNa0 (ENa ¡ EK)x

3gK0pK

±
NK
N

²
C 2gNa0x

, (A.5)

where c is the factor of proportionality. Because (NK
N ) is constant, we can

separate e(x, N) into the variables N and x:

e (x, N) D NQe(x). (A.6)

The energy function Qe(x) can be written as

Qe (x) D C
ABx

Ax C B
, (A.7)

with the constants A D 2gNa0, B D 3gK0pK ( NK
N ), and C D c(ENa ¡ EK)/6.

Because we de�ne units of energy in this study such that Qe (1) D ech D 1,
the rescaled energy function that is implemented in the Blahut-Arimoto
algorithm reads

Qe (x) D
(A C B)x
Ax C B

. (A.8)

It does not depend on the values of the reversal potentials ENa and EK.
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A.2 Numerical Validation. The signaling system with stochastic units
operates under additive binomial noise (caused by the random activation
and deactivation of the units), whose variance depends on the input x (see
equation 2.2). In order to validate the approximation of the information
transfer in such a model by equation 4.2, that, strictly speaking, applies only
to systems with additive gaussian noise of a �xed, input-independent vari-
ance, we performed numerical tests. To this end, the input x was discretized
into 1000 equispaced values between zero and one. The information trans-
fer was then calculated according to equation 3.1. The noise distribution
p(k|x) was assumed to be binomial as in equation 2.1, and the output dis-
tribution pk (k) was calculated using pk (k) D

P
x p(k|x)px (x). We found that

the information transfer in the stochastic unit system is well approximated
by equation 4.2, as shown in Figure 7. For very broad input distributions
(e.g., sx D 0.16), where the approximation error is biggest, the deviations
are well below 4% for N > 100. The relative error is signi�cantly smaller
for narrower distributions. The largest deviation below N D 100 occurs
for N D 1 and is less than 11% for broad input distributions px (x). A �ner
discretization into 10, 000 input values gives similar results.

A.3 Ef�ciency. The most general approach to treat energy as a constraint
is the maximization of I ¡ sE, where s is a trade-off parameter between
energy and information. The higher s, the tighter is the energy budget.
This is a Lagrangian multiplier problem, where for a given, �xed energy,
the optimal information transfer I and number of channels N have to be
determined. However, both the information transfer I and the metabolic
cost E depend on only one variable: the number of channels N. So if the
energy is �xed, N and I are �xed too. Thus, each point on the curve depicting
energy ef�ciency as a function of the number of channels N (as shown in
Figure 2) corresponds to the solution of the general I ¡ sE optimization
problem for a particular trade-off parameter s. From these solutions, we
have chosen to pay special attention to the ratio I/E. This approach becomes
more obvious for the optimization of input distributions with the Blahut-
Arimoto algorithm, where I¡sE is optimized explicitly before concentrating
on the subset of distributions maximizing the ratio I/E.

A.4 Information Capacity and Blahut-Arimoto Algorithm. The Blahut-
Arimoto algorithm maximizes the function

C[NI s] D max
px (¢)

£
I[NI px (¢)] ¡ sE[NI px (¢)]

¤
, (A.9)

where s is a trade-off parameter that gives the relative importance of en-
ergy minimization versus information maximization. The input distribu-
tion px (x) needs to be discretized. Given an initial input distribution p0

x (x),
the set of conditional probabilities p(k|x), and the expense for each input
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Figure 7: Numerically derived information transfer as a function of N for the
model of stochastic units (�lled diamonds) in comparison to the information
transfer speci�ed by Shannon’s formula (gray stars) in equation 4.2. The largest
relative difference DI is depicted for each set of inputs. The input distributions
px (x) are shown in the insets. (A) Information transfer for a broad gaussian
input distribution px (x) with sx D 0.16 and x D 0.5 for very small numbers of
channels N. (B) The same for a narrow input distribution px (x) with sx D 0.01 and
x D 0.9. (C) Information transfer for large N and a broad input distribution with
parameters as in A. (D) Information transfer for large N and the narrow input
distribution used in B. Shannon’s formula gives a very good approximation of
the information in the channel model. The quality of the approximation increases
with rising N and decreasing variance of the input distributions.

symbol, the algorithm iteratively calculates the distribution px (x) that max-
imizes C[NI s]. In every step of the iterative algorithm, upper and lower
bounds on the information capacity can be derived (Blahut, 1972), which
help to estimate the quality of the current probability set.

For the numerical calculations, we discretized the input (xj D j/200 with
j D 0, . . . , 200, xj 2 [0I 1]). The input distributions maximizing information
transfer werecalculated for N D 10, 20, . . . , 1000 and 26 values of theparam-
eter s, ranging from 0 (no energy restriction) to 20 (high energy constraint).
The cost Qe(x) was assumed to depend on x according to equation A.8, with
gNa0 D 20pS, gK0 D 20pS, pK D 0.5, and NK /N D 0.5. The resulting 26
points in C-E space for a given N were subject to a cubic spline interpolation
(Figure 5E shows four points and the respective interpolation curve for the
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whole set of s; N D 100 here.). Afterward, the energy was scaled by multipli-
cation with N according to equation A.6. For the whole study, the �xed cost
is always stated in the unit of cost of one open channel (i.e., b D 500 corre-
sponds to the cost of 500 open channels). The optimal number of stochastic
units, Nopt , for a given �xed cost b was determined choosing the N of all
calculated N, where the ef�ciency (CN /E)max for that b was maximal. Since
those values of N are multiples of 10, the data were subsequently �tted with
a function f of the form f (x) D a1xa2 (a1 and a2 being parameters) in order
to obtain a smooth graphical representation.
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Siesjö, B. (1978). Brain energy metabolism. New York: Wiley.
White, J. A., Rubinstein, J. T., & Kay, A. R. (2000). Channel noise in neurons.

TINS, 23(3), 131–137.
Zador, A. (1998). Impact of synaptic unreliability on the information transmitted

by spiking neurons. J. Neurophysiol., 79, 1219–1229.

Received July 23, 2001; accepted October 2, 2001.

http://rudolfo.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0036-8075^28^29275L.1805[aid=215115]
http://rudolfo.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-1042^28^2986L.343[aid=2363169]
http://rudolfo.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0959-4388^28^2911L.475[aid=2363171]
http://rudolfo.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1097-6256^28^291:1L.36[aid=968967]
http://rudolfo.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^298:3L.531[aid=2363172]
http://rudolfo.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-0949^28^29199L.603[aid=528099]
http://rudolfo.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0031-9333^28^2977L.731[aid=2363173]
http://rudolfo.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^2910L.1601[aid=216012]
http://rudolfo.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-3077^28^2979L.1219[aid=218762]
http://rudolfo.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0036-8075^28^29275L.1805[aid=215115]
http://rudolfo.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^298:3L.531[aid=2363172]

