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Abstract

We consider the problem of calculating learning curves (i.e., average generalization per-
formance) of Gaussian processes used for regression. On the basis of a simple expression for
the generalization error, in terms of the eigenvalue decomposition of the covariance function,
we derive a number of approximation schemes. We identify where these become exact, and
compare with existing bounds on learning curves; the new approximations, which can be used
for any input space dimension, generally get substantially closer to the truth. We also study
possible improvements to our approximations. Finally, we use a simple exactly solvable learn-
ing scenario to show that there are limits of principle on the quality of approximations and
bounds expressible solely in terms of the eigenvalue spectrum of the covariance function.

1 Introduction: Gaussian processes

Within the neural networks community, there has in the last few years been a good deal of excitement
about the use of Gaussian processes as an alternative to feedforward networks (see e.g. (Williams and
Rasmussen, 1996; Williams, 1997; Barber and Williams, 1997; Goldberg et al., 1998; Sollich, 1999a;
Malzahn and Opper, 2001). The advantages of Gaussian processes are that prior assumptions about
the problem to be learned are encoded in a very transparent way, and that inference—at least in the
case of regression that we will consider—is relatively straightforward; they are also ‘non-parametric’
in the sense that their effective number of parameters (‘degrees of freedom’) can grow arbitrarily
large as more and more training data is collected.

One crucial question for applications is then how ‘fast’ Gaussian processes learn, i.e., how many
training examples are needed to achieve a certain level of generalization performance. The typical
(as opposed to worst case) behaviour is captured in the learning curve, which gives the average gen-
eralization error ǫ as a function of the number of training examples n. Several workers have derived
bounds on ǫ(n) (Michelli and Wahba, 1981; Plaskota, 1990; Opper, 1997; Trecate et al., 1999; Opper
and Vivarelli, 1999; Williams and Vivarelli, 2000) or studied its large n asymptotics (Silverman,
1985; Ritter, 1996). As we will illustrate below, however, the existing bounds are often far from
tight; and asymptotic results will not necessarily apply for realistic sample sizes n. Our main aim
in this paper is therefore to derive approximations to ǫ(n) which get closer to the true learning
curves than existing bounds, and apply both for small and large n. We compare these approxi-
mations with existing bounds and the results of numerical simulations; possible improvements to
the approximations are also discussed. Finally, we study an analytically solvable example scenario
which sheds light on how tight bounds on learning curves can be made in principle. Summaries of
the early stages of this work have appeared in the conference proceedings (Sollich, 1999a,b).

In its simplest form, the regression problem that we are considering is this: We are trying to learn
a function θ∗ which maps inputs x (real-valued vectors) to (real-valued scalar) outputs θ∗(x). We are
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given a set of training dataD, consisting of n input-output pairs (xl, yl); the training outputs yl may
differ from the ‘clean’ target outputs θ∗(xl) due to corruption by noise. Given a test input x, we are
then asked to come up with a prediction θ(x) for the corresponding output, expressed either in the

simple form of a mean prediction θ̂(x) plus error bars, or more comprehensively in terms of a ‘predic-
tive distribution’ P (θ(x)|x,D). In a Bayesian setting, we do this by specifying a prior P (θ) over our
hypothesis functions, and a likelihood P (D|θ) with which each θ could have generated the training
data; from this we deduce the posterior distribution P (θ|D) ∝ P (D|θ)P (θ). If we wanted to use a
feedforward network for this task, we could proceed as follows: Specify candidate networks by a set
of weights w, with prior probability P (w). Each network defines a (stochastic) input-output relation
described by the distribution of output y given input x (and weights w), P (y|x,w). Multiplying over
the whole data set, we get the probability of the observed data having been produced by the network
with weights w: P (D|w) = ∏n

l=1 P (yl|xl, w). Bayes’ theorem then gives us the posterior, i.e., the
probability of network w given the data, as P (w|D) ∝ P (D|w)P (w) up to an overall normalization
factor. From this, finally, we get the predictive distribution P (y|x,D) =

∫

dwP (y|x,w)P (w|D).
This solves the regression problem in principle, but leaves us with a nasty integral over all possible
network weights: the posterior P (w|D) generally has a highly nontrivial structure, with many local
peaks (corresponding to local minima in the training error). One therefore has to use sophisticated
Monte Carlo integration techniques (Neal, 1993) or local approximations to P (w|D) around its
maxima (MacKay, 1992) to tackle this problem. Even once this has been done, one is still left with
the question of how to interpret the results: We may for example want to select priors on the basis of
the data, e.g. by making the prior P (w|h) dependent on a set of hyperparameters h and choosing h
such as to maximize the probability P (D|h) of the data. Once we have found the ‘optimal’ prior we
would then hope that it tells us something about the regression problem at hand (whether certain
input components are irrelevant, for example). This would be easy if the prior told us directly how
likely certain input-output functions are; instead we have to extract this information from the prior
over weights, often a complicated process.

By contrast, for a Gaussian process it is an almost trivial task to obtain the posterior and the
predictive distribution (see below). One reason for this is that the prior P (θ) is defined directly
over input-output functions θ. How is this done? Any θ is uniquely determined by its output
values θ(x) for all x from the input domain, and for a Gaussian process, these are simply assumed
to have a joint Gaussian distribution (hence the name). This distribution can be specified by the
mean values 〈θ(x)〉θ (which we assume to be zero in the following, as is commonly done), and
the covariances 〈θ(x)θ(x′)〉θ = C(x, x′); C(x, x′) is called the covariance function of the Gaussian
process. It encodes in an easily interpretable way prior assumptions about the function to be
learned. Smoothness, for example, is controlled by the behaviour of C(x, x′) for x′ → x: The
Ornstein-Uhlenbeck (OU) covariance function C(x, x′) ∝ exp(−||x − x′||/l) produces very rough
(non-differentiable) functions, while functions sampled from the radial basis function (RBF) prior
with C(x, x′) ∝ exp[−||x − x′||2/(2l2)] are infinitely differentiable. (Intermediate priors yielding r
times differentiable functions can also be defined by using modified Bessel functions as covariance
functions; see (Williams and Vivarelli, 2000).) Figure 1 illustrates these characteristics with two
samples from the OU and RBF priors, respectively, over a two-dimensional input domain. The
‘length scale’ parameter l in the covariance functions also has an intuitive meaning: It corresponds
directly to the distance in input space over which we expect our function to vary significantly. More
complex properties can also be encoded; by replacing l with different length scales for each input
component, for example, relevant (small l) and irrelevant (large l) inputs can be distinguished.

How does inference with Gaussian processes work? We only give a brief summary here and
refer to existing reviews on the subject (see e.g. (Williams, 1998)) for details. It is simplest to
assume that outputs y are generated from the ‘clean’ values of a hypothesis function θ(x) by adding
Gaussian noise of x-independent variance σ2. The joint distribution of a set of n training outputs
{yl} and the function values θ(x) is then also Gaussian, with covariances given by

〈ylym〉 = C(xl, xm) + σ2δlm = (K)lm

〈ylθ(x)〉 = C(xl, x) = (k(x))l

where we have defined an n × n matrix K and an x-dependent n-component vector k(x). The
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Figure 1: Samples drawn from Gaussian process priors over functions on [0, 1]2. Left: OU covariance
function, C(x, x′) = exp(−||x − x′||/l). Right: RBF covariance function, C(x, x′) = exp[−||x −
x′||2/(2l2)]. The length scale l = 0.1 determines in both cases over what distance the functions vary
significantly. Note the difference in roughness of the two functions; this is related to the behaviour
of the covariance functions for x → x′.

posterior distribution P (θ|D) is then obtained by simply conditioning on the {yl}. It is again
Gaussian and has mean

θ̂(x,D) ≡ 〈θ(x)〉θ|D = k(x)TK−1y (1)

and variance
ǫ(x,D) ≡

〈

(θ(x) − θ̂(x))2
〉

θ|D
= C(x, x) − k(x)TK−1k(x). (2)

Eqs. (1,2) solve the inference problem for Gaussian process: They provide us directly with the
predictive distribution P (θ(x)|x,D). The posterior variance, eq. (2), in fact also gives us the
expected generalization error (or Bayes error) at x. Why? If the teacher is θ∗, the squared deviation

between our mean prediction and the teacher output1 is (θ̂(x) − θ∗(x))2; averaging this over the
posterior distribution of teachers P (θ∗|D) just gives (2). The underlying assumption is that our
assumed Gaussian process prior is the true one from which teachers are actually generated (and
that we are using the correct noise model). Otherwise, the expected generalization error is larger
and given by a more complicated expression (Williams and Vivarelli, 2000). In line with most
other work on the subject, we only consider the ‘correct prior’ case in the following. Averaging the
generalization error at x over the distribution of inputs gives then

ǫ(D) = 〈ǫ(x,D)〉x =
〈

C(x, x) − k(x)TK−1k(x)
〉

x
(3)

This form of the generalization error, which is well known (Michelli and Wahba, 1981; Opper, 1997;
Williams, 1998; Williams and Vivarelli, 2000), still depends on the training inputs; the fact that
the training outputs have dropped out already is a signature of the fact that Gaussian processes are
linear predictors (compare (1)). Averaging over data sets yields the quantity we are after,

ǫ = 〈ǫ(D)〉D . (4)

This average expected generalization error (we will drop the ‘average expected’ in the following)
only depends on the number of training examples n; the function ǫ(n) is called the learning curve.

1One can also measure the generalization by the squared deviation between the prediction θ̂(x) and the noisy

teacher output; this simply adds a term σ2 to eq. (3).
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Figure 2: Generalization error ǫ(x,D) as a function of input position x ∈ [0, 1], for noise level
σ2 = 0.05, RBF covariance function C(x, x′) = exp[−|x − x′|2/(2l2)] with l = 0.1, for randomly
drawn training sets D of size n = 2 (left) and n = 100 (right). To emphasize the difference in scale,
the plot on the left actually also includes the results for n = 100, just visible below the dashed line
at ǫ(x,D) = σ2.

Its exact calculation is difficult because of the joint average in eqs. (3,4) over the training inputs xl

and the test input x.
Before proceeding with our calculation of the learning curve ǫ(n), let us try to gain some intuitive

insight into its dependence on n. Consider a simple example scenario, where inputs x are one-
dimensional and drawn randomly from the unit interval [0, 1], with uniform probability. For the
covariance function we choose an RBF form, C(x, x′) = exp[−|x− x′|2/(2l2)] with l = 0.1. Here we
have taken the prior variance C(x, x) as unity; as seems realistic for most applications we assume
the noise level to be much smaller than this, σ2 = 0.05. Figure 2 illustrates the x-dependence of
the generalization error ǫ(x,D) for a small training set (n = 2): Each of the examples has made
a ‘dent’ in ǫ(x,D), with a shape that is similar to that of the covariance function2. Outside the
dents, ǫ(x,D) still has essentially its prior value, ǫ(x,D) = 1; at the centre of each dent it is reduced
to a much smaller value, ǫ(x,D) ≈ σ2/(1 + σ2) (this approximation holds as long as the different
training inputs are sufficiently far away from each other). The generalization error ǫ(D) is therefore
dominated by regions where no training examples have been seen; one has ǫ(D) ≫ σ2, and the
precise value of ǫ(D) depends only very little on σ2 (assuming always that σ2 ≪ 1). Gradually, as
n is increased, the covariance dents will cover the input space, so that ǫ(x,D) and ǫ(D) become
of order σ2; this situation is shown on the right of Figure 2. From this point onwards, further
training examples essetially have the effect of averaging out noise, eventually making ǫ(D) ≪ σ2 for
large enough n. In summary, we expect the learning curve ǫ(n) to have two regimes: In the initial
(small n) regime, where ǫ(n) ≫ σ2, ǫ(n) is essentially independent of σ2 and reflects mainly the
geometrical distribution of covariance dents across the inputs space. In the asymptotic regime (n
large enough such that ǫ(n) ≪ σ2), on the other hand, the noise level σ2 is important in controlling
the size of ǫ(n) because learning arises mainly from the averaging out of noise in the training data.

2More precisely, the dents have the shape of the square of the covariance function: If the training inputs xi are
sufficiently far apart, then around each xi we can neglect the influence of the other data points and apply (2) with
n = 1, giving ǫ(x,D) ≈ C(x, x)− C2(x, xi)/[C(xi, xi) + σ2].
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2 Approximate learning curves

Calculating learning curves for Gaussian processes exactly is a difficult problem because of the joint
average in (3,4) over the training inputs xl and the test input x. Several workers have therefore
derived upper and lower bounds on ǫ (Michelli and Wahba, 1981; Plaskota, 1990; Opper, 1997;
Williams and Vivarelli, 2000) or studied the large n asymptotics of ǫ(n) (Silverman, 1985; Ritter,
1996). As we will illustrate below, however, the existing bounds are often far from tight; likewise,
asymptotic results can only capture the large n regime defined above and will not necessarily apply
for sample sizes n occurring in practice. We therefore now attempt to derive approximations to
ǫ(n) which get closer to the true learning curves than existing bounds, and which are applicable
both for small and large n.

As a starting point for an approximate calculation of ǫ(n), we first derive a representation of the
generalization error in terms of the eigenvalue decomposition of the covariance function. Mercer’s
theorem (see e.g. (Wong, 1971)) tells us that the covariance function can be decomposed into its
eigenvalues λi and eigenfunctions φi(x):

C(x, x′) =

∞
∑

i=1

λiφi(x)φi(x
′) (5)

This is simply the analogue of the eigenvalue decomposition of a finite symmetric matrix. We
assume here that eigenvalues and eigenfunctions are defined relative to the distribution over inputs
x, i.e.,

〈C(x, x′)φi(x
′)〉x′ = λiφi(x) (6)

The eigenfunctions are then orthogonal with respect to the same distribution, 〈φi(x)φj(x)〉x = δij
(see e.g. (Williams and Seeger, 2000)). Now write the data-dependent generalization error (3) as

ǫ(D) = 〈C(x, x)〉x − tr
〈

k(x)k(x)T
〉

x
K−1

and perform the x-average:

〈

(k(x)k(x)T)lm
〉

x
=
∑

ij

λiλjφi(xl) 〈φi(x)φj(x)〉x φj(xm) =
∑

i

λ2
iφi(xl)φi(xm).

This suggests introducing the diagonal matrix (Λ)ij = λiδij and the ‘design matrix’ (Ψ)li = φi(xl),
so that

〈

k(x)k(x)T
〉

x
= ΨΛ2ΨT. One then also has

〈C(x, x)〉x = trΛ (7)

and the matrix K is expressed as
K = σ2I+ΨΛΨT

with I being the identity matrix. Collecting these results, we have

ǫ(D) = trΛ− tr (σ2I+ΨΛΨT)−1ΨΛ2ΨT

This can be simplified using the Woodbury formula3 to give4 ǫ(n) = 〈ǫ(D)〉D with

ǫ(D) = trΛ(I+ σ−2ΛΨTΨ)−1 = tr (Λ−1 + σ−2ΨTΨ)−1 (8)

The advantage of this (still exact) representation of the generalization error is that the average over
the test input x has already been carried out, and that the remaining dependence on the training
data is contained entirely in the matrix ΨTΨ. It also includes as a special case the well-known

3(A+UVT)−1 = A−1−A−1U(I+VTA−1U)−1VTA−1 for matrices A, U, V of appropriate size; see e.g. (Press
et al., 1992).

4If the covariance function has zero eigenvalues, the inverse Λ−1 does not exist, and the first form of ǫ(D) given
in (8) must be used; similar alternative forms, though not explicitly written, exist for all following results.
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result for linear regression (see e.g. (Sollich, 1994)); Λ−1 and ΨTΨ can be interpreted as suitably
generalized versions of the weight decay (matrix) and input correlation matrix.

Starting from (8), one can now derive approximate expressions for the learning curve ǫ(n). The
most naive approach is to neglect entirely the fluctuations in ΨTΨ over different data sets and
replace it by its average, which is simply

〈

(ΨTΨ)ij
〉

D
=
∑n

l=1 〈φi(xl)φj(xl)〉D = nδij . This leads
to

ǫOV(n) = tr (Λ−1 + σ−2nI)−1. (9)

While this is not, in general, a good approximation, it was shown by Opper and Vivarelli to be
a lower bound (called OV bound below) on the learning curve (Opper and Vivarelli, 1999). It
becomes tight in the large noise limit σ2 → ∞ at constant n/σ2: The fluctuations of the elements
of the matrix σ−2ΨTΨ then become vanishingly small (of order

√
nσ−2 = (n/σ2)/

√
n → 0) and so

replacing ΨTΨ by its average is justified.
To derive better approximations, it is useful to see how the matrix G = (Λ−1 + σ−2ΨTΨ)−1

changes when a new example is added to the training set. This change can be expressed as

G(n+1)− G(n) =
[

G−1(n) + σ−2ψψT
]−1

− G(n)

= − G(n)ψψTG(n)
σ2 +ψTG(n)ψ

(10)

in terms of the vector ψ with elements (ψ)i = φi(xn+1). To get exact learning curves, one would
have to average this update formula over both the new training input xn+1 and all previous ones.
This is difficult, but progress can be made by neglecting correlations of numerator and denominator
in (10), averaging them separately instead. Also treating n as a continuous variable, this yields the
approximation

∂G(n)

∂n
= −

〈

G2(n)
〉

σ2 + trG(n)
(11)

where we have introduced the notation G = 〈G〉. If we also neglect fluctuations in G, approximating
〈

G2
〉

= G2, this equation can easily be solved and yields G−1(n) = Λ−1 + σ−2n′I and so

ǫUC(n) = tr (Λ−1 + σ−2n′I)−1 (12)

with n′ determined by the self-consistency equation

n′ + tr ln(I+ σ−2n′Λ) = n.

By comparison with (9), n′ can be thought of as an ‘effective number of training examples’. The
subscript UC in (12) stands for Upper Continuous (i.e., treating n as continuous) approximation.
A better approximation with a lower value is obtained by retaining fluctuations in G. As in the
case of the linear perceptron (Sollich, 1994), this can be achieved by introducing an auxiliary offset
parameter v into the definition of

G−1 = vI+Λ−1 + σ−2ΨTΨ. (13)

One can then write

− tr
〈

G2
〉

=
∂

∂v
tr 〈G〉 = ∂ǫ/∂v (14)

and obtains from (11) the partial differential equation

∂ǫ

∂n
− 1

σ2 + ǫ

∂ǫ

∂v
= 0 (15)

This can be solved for ǫ(n, v) using the methods of characteristic curves (see App. A). Resetting
the auxiliary parameter v to zero yields the Lower Continuous approximation to the learning curve,
which is given by the self-consistency equation

ǫLC(n) = tr

(

Λ−1 +
n

σ2 + ǫLC
I

)−1

. (16)

6



It is easy to show that ǫLC ≤ ǫUC. One can also check that both approximations converge to
the exact result (9) in the large noise limit (as defined above). Encouragingly, we see that the LC
approximation reflects our intuition about the difference between the initial and asymptotic regimes
of the learning curve: For ǫ ≫ σ2, we can simplify (16) to

ǫLC(n) = tr

(

Λ−1 +
n

ǫLC
I

)−1

where as expected the noise level σ2 has dropped out. In the opposite limit ǫ ≪ σ2, on the other
hand, we have

ǫLC(n) = tr
(

Λ−1 +
n

σ2
I
)−1

(17)

which—again as expected—retains the noise level σ2 as an important parameter. Eq. (17) also
shows that ǫLC approaches the OV lower bound (from above) for sufficiently large n.

We conclude this section with a brief qualitative discussion of the expected n-dependence of ǫLC
(which below will turn out to be the more accurate of our two approximations). Obviously this
n-dependence depends on the spectrum of eigenvalues λi; below we always assume that these are
arranged in decreasing order. Consider then first the asymptotic regime ǫ ≪ σ2, where ǫLC and ǫOV

become identical. One then shows easily that for eigenvalues decaying as a power-law, λi ∼ i−r, the
asymptotic learning curve scales as5 ǫLC ∼ (n/σ2)−(r−1)/r; this is in agreement with known exact
results (Silverman, 1985; Ritter, 1996). In the initial regime ǫ ≫ σ2, on the other hand, one can
take σ2 → 0 and finds then a faster decay6 of the generalization error, ǫLC ∼ n−(r−1). We are not
aware of exact results pertaining to this regime, except for the OU case in d = 1 which has r = 2
and for which thus ǫLC ∼ n−1, in agreement with an exact calculation (Manfred Opper, private
communication).

3 Comparisons with bounds and numerical simulations

We now compare the LC and UC approximations with existing bounds, and with the ‘true’ learning
curves as obtained by numerical simulations. A lower bound on the generalization error was given
by Michelli and Wahba (Michelli and Wahba, 1981) as

ǫ(n) ≥ ǫMW(n) =

∞
∑

i=n+1

λi (18)

This bound is derived for the noiseless case by allowing ‘generalized observations’ (projections of
θ∗(x) along the first n eigenfunctions of C(x, x′)), and so is unlikely to be tight for the case of ‘real’
observations at discrete input points. Given that the bound is derived from the σ2 → 0 limit, it can
only be useful in the initial (small n, ǫ ≫ σ2) regime of the learning curve. There, it confirms the
conclusion of our intuitive discussion above that the learning curve has a lower limit below which
it will not drop even for σ2 → 0.

Plaskota (Plaskota, 1990) generalized the MW approach to the noisy case and obtained the
following improved lower bound:

ǫ(n) ≥ ǫPl(n) = min
{ηi}

n
∑

i=1

λiσ
2

ηi + σ2
+

∞
∑

i=n+1

λi (19)

where the minimum is over all non-negative η1, . . . , ηn obeying
∑n

i=1 ηi = S ≡ ∑n
l=1 C(xl, xl).

Plaskota only derived this bound for covariance functions for which the prior variance C(x, x)
5 Among the scenarios studied in the next section, the OU covariance function provides a concrete example of this

kind of behaviour: In d = 1 dimension it has, from (44), λi ∼ i−2 and thus r = 2. The RBF covariance function, on
the other hand, has eigenvalues decaying faster than any power law, corresponding to r → ∞ and thus ǫLC ∼ σ2/n
(up to logarithmic corrections) in the asymptotic regime.

6 For covariance functions with eigenvalues decaying faster than a power law, the behaviour in the initial regime
is nontrivial; for the RBF covariance function in d = 1 with uniform inputs, for example, we find (for large n)
ǫLC ∼ n exp(−cn2) with some constant c.

7



is independent of x. We call these ‘uniform’ covariance functions; due to the general identity
〈C(x, x)〉x = trΛ, they obey C(x, x) = trΛ (and hence S = n trΛ). We recap Plaskota’s proof
in App. B and also show there that it extends to general covariance functions in the form stated
above. The Plaskota bound is close to the MW bound in the small n regime (equivalent to σ2 → 0);
for larger n it becomes substantially larger. It therefore has the potential to be useful for both
small and large n. Note that, in contrast to all other bounds discussed in this paper, the MW and
Plaskota bounds are in fact ‘single data set’ (worst case) bounds: They apply to ǫ(D) for any data
set D of the given size n, rather than just to the average7 ǫ(n) = 〈ǫ(D)〉.

Opper used information theoretic methods to obtain a different lower bound (Opper, 1997), but
we will not consider this because the more recent OV bound (9) is always tighter. Note that the
OV bound incorrectly suggest that ǫ decreases to zero for σ2 → 0 at fixed n. It therefore becomes
void for small n (where ǫ ≫ σ2) and is expected to be of use only in the asymptotic regime of large
n.

There is also an Upper bound due to Opper (Opper, 1997),

ǫ̃(n) ≤ ǫUO(n) = (σ−2n)−1 tr ln(I+ σ−2nΛ) + tr (Λ−1 + σ−2nI)−1 (20)

Here ǫ̃ is a modified version of ǫ which (in the rescaled version that we are using) becomes identical
to ǫ in the limit of small generalization errors (ǫ ≪ σ2), but never gets larger that 2σ2; for small
n in particular, ǫ(n) can therefore actually be much larger than ǫ̃(n) and its bound (20). For this
reason, and because in our simulations we never get very far into the asymptotic regime ǫ ≪ σ2,
we do not display the UO bound in the graphs below.

The UO bound is complemented by an upper bound due to Williams and Vivarelli (Williams
and Vivarelli, 2000), which never decays below values around σ2 and is therefore mainly useful
in the initial regime ǫ ≫ σ2. It applies for one-dimensional inputs x and stationary covariance
functions—for which C(x, x′) = Cs(x− x′) is a function of x− x′ alone—and reads:

ǫ(n) ≤ ǫWV(n) = Cs(0)−
1

Cs(0) + σ2

∫ ∞

0

da fn(a)C
2
s (a) (21)

with
fn(a) = 2(1− a)nΘ(1− a) + 2(n− 1)(1− 2a)nΘ(1− 2a) (22)

and where the Heaviside step functions Θ (defined as Θ(z) = 1 for z > 0 and = 0 otherwise) in the
two terms imply that only values of a up to 1 and 1/2, respectively, contribute to the integral in (21).
The function fn(a) is a normalized distribution over a which for n → ∞ becomes peaked around
a = 0, implying that the asymptotic value of the bound is ǫWV(n → ∞) = Cs(0)σ

2/[Cs(0) + σ2] ≈
σ2 for σ2 ≪ Cs(0). The derivation of the bound is based on the insight that ǫ(x,D) always decreases
as more examples are added; it can therefore be upper bounded for any given x by the smallest
ǫ(x,D′) that would result from training on any data set D′ comprising only a single example from
the original training set D. The idea can be generalized to using the smallest ǫ(x,D′) obtainable
from any two of the training examples, but this does not significantly improve the bound (Williams
and Vivarelli, 2000).

As stated above in (21,22), the WV bound applies only to the case of a uniform input distribu-
tions over the unit interval [0, 1]. However, it is relatively straightforward to extend the approach to
general (one-dimensional) input distributions P (x); only the data set average becomes technically
a little more complicated. We omit the details and only quote the result: Eq. (21) remains valid if
the expression (22) for fn(a) is generalized to

fn(a) = n
〈

P (x− a)[1−Q(x)]n−1 + P (x+ a)[Q(x)]n−1
〉

x

+ n(n− 1)
〈

Θ(x′ − x− 2a)[P (x+ a) + P (x′ − a)][1 +Q(x)−Q(x′)]n−2
〉

x,x′
(23)

where Q(z) =
∫ z

−∞dx P (x) is the cumulative distribution function. In the simpler scenario consid-
ered by Williams and Vivarelli this can be shown to reduce to (22), while in the most general case
the numerical evaluation of the bound requires a triple integral (over x, x′ and a).

7Our generalized version of the Plaskota bound depends on the specific data set only through the value of
S =

∑n

l=1
C(xl, xl). To obtain an average case bound one would need to average over the distribution of S.
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Finally, there is one more upper bound, due to Trecate, Williams and Opper (Trecate et al.,
1999); based on the generalization error achieved by a ‘suboptimal’ Gaussian regressor, they showed

ǫ(n) ≤ ǫTWO(n) = trΛ− n
∑

i

λi

ci

where
ci = (n− 1)λi + σ2 +

〈

C(x, x)φ2
i (x)

〉

x
. (24)

For a uniform covariance function, the average in ci becomes trΛ
〈

φ2
i (x)

〉

x
= trΛ and the bound

simplifies to

ǫTWO(n) =
∑

i

λi
trΛ+ σ2 − λi

trΛ+ σ2 + (n− 1)λi

We now compare the quality of these bounds and our approximations with numerical simulations
of learning curves. All the theoretical expressions require knowledge of the eigenvalue spectrum of
the covariance function, so we focus on situations where this is known analytically. We consider
three scenarios: For the first two, we assume that inputs x are drawn from the d-dimensional unit
hypercube [0, 1]d, and that the input density is uniform. As covariance functions we use the RBF
function C(x, x′) = exp[−||x − x′||2/(2l2)] and the OU function C(x, x′) = exp(−||x − x′||/l), to
have the extreme cases of smooth and rough functions to be learned; both contain a tunable length
scale l. To be precise, we use slightly modified versions of the RBF and OU covariance functions
(using what physicists call ‘periodic boundary conditions’) which make the eigenvalue calculations
analytically tractable; the details are explained in App. C. In the third scenario we explore the
effect of a non-uniform input distribution by considering inputs x drawn from a d-dimensional (zero
mean) isotropic Gaussian distribution P (x) ∝ exp[−||x||2/(2σ2

x)], for an RBF covariance function.
Details of the eigenvalue spectrum for this case can also be found in App. C. Note that in all
three cases, the covariance function is uniform, i.e. has a constant variance C(x, x); we have fixed
this to unity without loss of generality. This leaves three variable parameters: the input space
dimension d, the noise level σ2 and the length scale l. As explained above we generically expect
the prior variance to be significantly larger than the noise on the training data, so we only consider
values of σ2 < 1. The length scale l should also obey l < 1; otherwise the covariance functions
C(x, x′) would be almost constant across the input space, corresponding to a trivial GP prior of
essentially x-independent functions. We in fact choose the length scale l for each d in such a way
as to get a reasonable decay of the learning curve within the range of n = 0 . . . 300 that can be
conveniently simulated numerically. To see why this is necessary, note that each covariance ‘dent’
covers a fraction of order ld of the input space, so that the number of examples n needed to see a
significant reduction in generalization error ǫ will scale as (1/l)d. This quickly becomes very large
as d increases unless l is increased simultaneously. (The effect of larger l leading to a faster decay
of the learning curve was also observed in (Williams and Vivarelli, 2000).)

In the following figures, we show the lower bounds (Plaskota, OV), the non-asymptotic upper
bounds (TWO and, for d = 1 with uniform input distribution, WV), and our approximations
(LC and UC). The true learning curve as obtained from numerical simulations is also shown. For
the numerical simulations, we built up training sets by randomly drawing training inputs from
the specified input distribution. For each new training input, the matrix inverse K−1 has to be
recalculated. By partitioning the matrix into its elements corresponding to the old and new inputs,
this inversion can be performed with O(n2) operations (see e.g. (Press et al., 1992)), as opposed
to O(n3) if the inverse is calculated from scratch every time. With K−1 known, the generalization
error ǫ(D) was then calculated from (3), with the average over x estimated by an average over
randomly sampled test inputs. This process was repeated up to our chosen nmax = 300; the results
for ǫ(D) were then averaged over a number of training set realizations to obtain the learning curve
ǫ(n). In all the graphs shown, the size of the error bars on the simulated learning curve is of the
order of the visible fluctuations in the curve.

In Figure 3 we show the results for an OU covariance function with inputs from [0, 1]d, for d = 1
(left) and d = 2 (right). One observes that the lower bounds (Plaskota and OV) are rather loose in
both cases. The TWO upper bound is also far from tight; the WV upper bound is better where it
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Figure 3: Learning curve for a GP with OU covariance function and inputs uniformly drawn from
x ∈ [0, 1]d, at noise level σ2 = 0.05. Left: d = 1, length scale l = 0.01. Right: d = 2, l = 0.1.
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Figure 4: Learning curve for a GP with RBF covariance function and inputs uniformly drawn from
x ∈ [0, 1]d, at noise level σ2 = 0.05; dimension d = 1, length scale l = 0.01. We also show the MW
bound here to show how it is first close to the Plaskota bound but then “misses” the change in
behaviour where the generalization error crosses over into the asymptotic regime (ǫ ≪ σ2).

can be defined (for d = 1). Our approximations, LC and UC, are closer to the true learning curve
than any of the bounds and in fact appear to bracket it.

Similar comments apply to Figure 4, which displays the results for an RBF covariance function
with inputs from [0, 1]. Because functions from an RBF prior are much smoother than those from
an OU prior, they are easier to learn and the generalization error ǫ shows a more rapid decrease
with n. This makes visible, within the range of n shown, the anticipated change in behaviour as ǫ
crosses over from the initial (ǫ ≫ σ2) to the asymptotic (ǫ ≪ σ2) regime. The LC approximation
and, to a less quantitative extent, the Plaskota bound both capture this change. By contrast, the
OV bound (as expected from its general properties discussed above) only shows the right qualitative
behaviour in the asymptotic regime.

Figure 5 shows corresponding results in higher dimension (d = 4), at two different noise levels
σ2. One observes in particular that the OV lower bound becomes looser as σ2 decreases; this is as
expected since for σ2 → 0 the bound actually becomes void (ǫOV → 0). The Plaskota bound also
appears to get looser for lower σ2, though not as dramatically. (Note that the kinks in the Plaskota
curve are not an artifact: For larger d the multiplicities of the different eigenvalues can be quite
large; the value of ǫPl can become dominated by one such block of degenerate eigenvalues, and kinks
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Figure 5: Learning curve for a GP with RBF covariance function and inputs uniformly drawn from
x ∈ [0, 1]d, for dimension d = 4 and length scale l = 0.3. Left: noise level σ2 = 0.05. Right:
σ2 = 0.001. Note that, for lower σ2, the OV bound becomes looser as expected (it approaches zero
for σ2 → 0).

occur where the dominant block changes.) The TWO upper bound, finally, is only weakly affected
by the value of σ2 and quite loose throughout.

All results shown so far pertain to uniform input distributions (over [0, 1]d). We now move to the
last of our three scenarios, a GP with an RBF covariance function and inputs drawn from a Gaussian
distribution (see App. C for details). In Figure 6 we see that in d = 1 the (generalized) WV bound
is still reasonably tight, while the LC approximation now provides less of a good representation of
the overall shape of the learning curve than for the case of uniform input distributions. However,
as in all previous examples, the LC and UC approximations still bracket the true learning curve
(and come closer to it than the bounds). One is thus lead to speculate whether the approximations
we have derived are actually bounds. Figure 7 shows this not to be the case, however: In d = 4,
the true learning curve drops visibly below the LC approximation in the small n regime, and so the
latter cannot be a lower bound. The low noise case (σ2 = 0.001) shown here illustrates once more
that the OV lower bound ceases to be useful for small noise levels.

In summary, of the approximations which we have derived, the LC approximation performs
best. While we know on theoretical grounds that it will be accurate for large noise levels σ2, the
examples shown above demonstrate that it produces predictions close to the true learning curves
even for the more realistic case of low noise levels (compared to the prior variance). As a general
trend, agreement appears to be better for the case of uniform input distributions.

It is interesting at this stage to make a connection to the recent work of Malzahn and Op-
per (Malzahn and Opper, 2001). They devised an elegant way of approaching the learning curve
problem from the point of view of statistical physics, calculating the relevant partition function
(which is an average over data sets) using a so-called Gaussian variational approximation. The
result they find for the Bayes error is identical to the LC approximation under the condition that
ǫ(x) = 〈ǫ(x,D)〉D, the x-dependent generalization error averaged over all data sets, is independent
of x. Otherwise, they find a result of the same functional form, ǫ(n) = tr (Λ−1 + ηI)−1, but the
self-consistency equation for η is more complicated than the simple relation η = n/(ǫ+σ2) obtained
from the LC approximation (16). The LC approximation would thus be expected to perform less
well for such “non-uniform” scenarios. This agrees qualitatively with our above findings: For the
scenario with a Gaussian input distribution, the LC approximation is of poorer quality than for the
cases with uniform input distributions8 over [0, 1]d.

8 It is easy to see that in these cases ǫ(x) is indeed independent of x; the absence of effects from the boundaries
of the hypercube comes from the periodic boundary conditions that we are using.
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Figure 6: Learning curve for a GP with RBF covariance function (length scale l = 0.01) and inputs
drawn from a Gaussian distribution in d = 1 dimension; noise level σ2 = 0.05. Note that the LC
approximation provides less of a good representation of the overall shape of the learning curve here
than for the previous examples with uniform input distributions. The curve labelled WV shows our
generalized version of the Williams-Vivarelli bound (see eq. (23)).
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Figure 7: Learning curve for a GP with RBF covariance function (length scale l = 0.3) and inputs
drawn from a Gaussian distribution in d = 4 dimensions. Left: noise level σ2 = 0.05. Right:
σ2 = 0.001. The OV lower bound is very loose for this smaller noise level. Note that, in contrast
to all previous examples, there is a range of n here where the true learning curve lies below the LC
approximation.
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4 Improving the approximations

In the previous section we saw that in our test scenarios the LC approximation (16) generally pro-
vides the closest theoretical approximation to the true learning curves. This may appear somewhat
surprising, given that we made two rather drastic approximations in deriving (16): We treated
the number of training examples n as a continuous variable, and we decoupled the average of the
right hand side of (10) into separate averages over numerator and denominator. We now investi-
gate whether the LC prediction for the learning curves can be further improved by removing these
approximations.

We begin with the effect of n, the number of training examples, taking only discrete (rather
than continuous) values. Starting from (10), averaging numerator and denominator separately as
before and introducing the auxiliary variable v as in (13,14), we obtain

ǫ(n+ 1)− ǫ(n) =
1

σ2 + ǫ

∂ǫ

∂v
(25)

instead of (15). It is possible to interpolate between the two equations by writing

1

δ
[ǫ(n+ δ)− ǫ(n)] =

1

σ2 + ǫ

∂ǫ

∂v
(26)

Then δ = 1 corresponds to (25), which is the equation we wish to solve (discrete n), while in the
limit δ → 0 we retrieve (15). To proceed, we treat δ as a perturbation parameter and assume that
the solution of (26) can be expanded as

ǫ = ǫ0 + δǫ1 +O(δ2)

where ǫ0 ≡ ǫLC. Expanding both sides of (26) to first order in δ yields

∂ǫ0
∂n

+ δ
∂ǫ1
∂n

+
1

2
δ
∂2ǫ0
∂n2

+O(δ2) =

(

1

σ2 + ǫ0
− δ

ǫ1
(σ2 + ǫ0)2

)(

∂ǫ0
∂v

+ δ
∂ǫ1
∂v

)

Comparing the coefficients of the O(δ0) terms gives us back (15) for ǫ0, while from the O(δ) terms
we get

∂ǫ1
∂n

− 1

σ2 + ǫ0

∂ǫ1
∂v

= −1

2

∂2ǫ0
∂n2

− ǫ1
(σ2 + ǫ0)2

∂ǫ0
∂v

(27)

This can again be solved using characteristics (see App. A), with the result

ǫ1 = (σ2 + ǫ0)
n(a22 − a3)

(1− na2)2
, ak = (σ2 + ǫ0)

−k tr

(

Λ−1 +
n

σ2 + ǫ0
I

)−k

(28)

Setting δ back to 1 to have the case of discrete n in (26), we then have

ǫLC1 = ǫ0 + ǫ1 ≡ ǫLC + ǫ1

as the improved LC approximation that takes into account the effects of discrete n (up to linear
order in a perturbation expansion in δ). We see that the correction term (28) is zero at n = 0 as it
must since ǫLC gives the exact result ǫ = trΛ there. It can also be shown that ǫ1 < 0 for all nonzero
n. This can be understood as follows: The decrease of ǫ(n) becomes smaller (in absolute value)
as n increases. Comparing (15) and (25), we see that the continuous n-approximation effectively
averages the decrease term over the range n . . . n+1 rather than evaluating it at n itself; it therefore
produces a smaller decrease in ǫ(n). The true decrease for discrete n is larger, and so one expects
the correction ǫ1 to be negative, in agreement with our calculation.

In Figure 8 we show ǫLC and ǫ1 for one of the scenarios considered earlier; the results are typical
also of what we find for other cases. The most striking observation is the smallness of ǫ1: Its absolute
value is of the order of 1% of ǫLC or less, and consequently ǫLC and ǫLC1 are indistinguishable on the
scale of the plot. On the one hand, this is encouraging: Given that ǫ1 is already so small, one would
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Figure 8: Solid line: LC approximation ǫLC for the learning curve of a GP with RBF covariance
function and Gaussian inputs. Parameters are as in Figure 7(left): Dimension d = 4, length scale
l = 0.3, noise level σ2 = 0.05. Dashed line: First order correction ǫ1 arising from the discrete nature
of the number of training examples n. Note that ǫ1 has been multiplied by -100 to make it positive
and visible on the scale of the values of ǫLC.

expect higher orders in a perturbation expansion in δ to yield even smaller corrections. Thus ǫLC1

is likely to be very close to the result that one would find if the discrete nature of n was taken into
account exactly. On the other hand, we also conclude that treating n as discrete is not sufficient
to turn the LC approximation into a lower bound on the learning curve; in Fig 6, for example, the
curve for ǫLC1 would lie essentially on top of the one for ǫLC and so still be significantly above the
true learning curve for small n.

It is clear at this stage that in order to improve the LC approximation significantly one would
have to address the decoupling of the numerator and denominator averages in (10). Generally, if a
and b are random variables, one can evaluate the average of their ratio perturbatively as

〈a

b

〉

=

〈 〈a〉+∆a

〈b〉+∆b

〉

=
〈a〉
〈b〉 +

〈a〉
〈b〉3

〈

(∆b)2
〉

− 1

〈b〉2
〈∆a∆b〉+ . . .

up to second order in the fluctuations. (This idea was used in (Sollich, 1994) to calculate finite
N -corrections to the N → ∞ limit of a linear learning problem.) To apply this to the average of
the right hand side of (10) over the new training input xn+1 and all previous ones, one would set

a = G(n)ψψTG(n), b = σ2 +ψTG(n)ψ

One then sees that averages such as 〈ab〉, required in 〈∆a∆b〉 = 〈ab〉 − 〈a〉 〈b〉, involve fourth-
order averages 〈φi(x)φj(x)φk(x)φl(x)〉x of the components of ψ. In contrast to the second-order
averages 〈φi(x)φj(x)〉 = δij , such fourth-order statistics of the eigenfunctions do not have a simple,
covariance function-independent form. Even if they were known, however, one would end up with
averages over the entries of the matrix G which cannot be reduced to ǫ = tr 〈G〉 (e.g. by derivatives
with respect to auxiliary parameters). Separate equations for the change of these averages with n
would then be required, generating new averages and eventually an infinite hierarchy which cannot
be closed. We thus conclude that a perturbative approach is of little use in improving the LC
approximation beyond the decoupling of averages. The approach of (Malzahn and Opper, 2001)
thus looks more hopeful as far as the derivation of systematic corrections to the approximation is
concerned.
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5 How good can bounds and approximations be?

In this final section we ask whether there are limits of principle on the quality of theoretical predic-
tions (either bounds or approximations) for GP learning curves. Of course this question is mean-
ingless unless we specify what information the theoretical curves are allowed to exploit. Guided by
the insight that all predictions discussed above depend (at least for uniform covariance functions)
on the eigenvalues of the covariance function only (and of course the noise level σ2), we ask: How
tight can bounds and approximations be if they use only this eigenvalue spectrum as input?

To answer this question, it is useful to have a simple scenario with an arbitrary eigenvalue
spectrum for which learning curves can be calculated exactly. Consider the case where the input
space consists of N discrete points xα; the input distribution is arbitrary, P (xα) = pα with

∑

α pα =
1. Take the covariance function to be degenerate in the sense that there are no correlations between
different points: C(xα, xβ) = cαδαβ . The eigenvalue equation (6) then becomes simply

∑

β

C(xα, xβ)φ(xβ)pβ = cαpαφ(x
α) = λφ(xα)

so that the N different eigenvalues are λα = cαpα. The eigenfunctions are φα(x
β) = p

−1/2
α δαβ ,

where the prefactor follows from the normalization condition
∑

γ pγφα(x
γ)φβ(x

γ) = δαβ . Note
that by choosing the cα and pα appropriately, the λα can be adjusted to any desired value in this
setup. The same still holds even if we require the covariance function to be uniform, i.e., cα to be
independent of α.

A set of n training inputs is, in this scenario, fully characterized by how often it contains each
of the possible inputs xα; we call these numbers nα. The generalization error is easy to work out
from (8), using

(ΨTΨ)αβ =
∑

γ

nγφα(x
γ)φβ(x

γ) = (nα/pα)δαβ .

This shows that ΨTΨ is a diagonal matrix, and thus from (8)

ǫ(D) = tr (Λ−1 + σ−2ΨTΨ)−1 =
∑

α

(

λ−1
α + σ−2nα/pα

)−1
=
∑

α

λα
σ2

σ2 + nαλα/pα
(29)

This has the expected form: The contribution of each eigenvalue is reduced according to the ratio
of the noise level σ2 and the signal nαλα/pα = nαcα received at the corresponding input point. To
average this over all training sets of size n, one notices that nα has a binomial distribution, so that

ǫ(n) =
∑

α

λα

n
∑

nα=0

(

n
nα

)

pnα

α (1− pα)
n−nα

σ2

σ2 + nαλα/pα

Writing (σ2 + nαλα/pα)
−1 = σ−2

∫ 1

0
dr rnαλα/pασ2

, we can perform the sum over nα and obtain

ǫ(n) =

∫ 1

0

dr
∑

α

λα

(

1− pα + pαr
λα/pασ2

)n

(30)

as the final result; the integral over r can easily be performed numerically for given set of eigenvalues
λα and input probabilities pα. Note that, having done the calculation for a finite number N
of discrete inputs points (and therefore of eigenvalues), we can now also take N to infinity and
therefore analyse scenarios (such as the ones studied in Sec. 3) with an infinite number of nonzero
eigenvalues.

A simple limiting case will now tell us about the quality of eigenvalue-dependent upper bounds
on learning curves. Assume that one of the pα is close to 1, whereas all the other ones are close
to 0. From (30), one then sees that only the contribution from the eigenvalue λα with pα ≈ 1 is
reduced as n increases9 while all other ones remain unaffected, so that

ǫ(n) ≈ trΛ− λα +
λασ

2

σ2 + nλα
= trΛ− nλ2

α

σ2 + nλα
≥ trΛ− λα (31)

9This holds if n is not too large, more precisely if npβ ≪ 1 for all the ‘small’ pβ (β 6= α).
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Figure 9: Learning curve for a GP with RBF covariance function and inputs uniformly drawn from
x ∈ [0, 1]d. Parameters are as in Figure 5(left): Dimension d = 4, length scale l = 0.3 and noise
level σ2 = 0.05. The curves Sim (true learning curve, from numerical simulations), UC, LC and
TWO are also as in Figure 5(left). The curve labelled “Deg” shows the exact learning curve for the
degenerate scenario (outputs for different inputs are uncorrelated) with exactly the same spectrum
of eigenvalues λi of the covariance function (and uniform prior variance C(x, x)). The curves Sim
and Deg differ significantly, showing that learning curves cannot be predicted reliably based on
eigenvalues alone.

If λα ≪ trΛ, then we can make the reduction in generalization error arbitrarily small. It thus
follows that there is no non-trivial upper bound on learning curves that takes only the eigenvalue
spectrum of the covariance function as input. [Accordingly, the two non-asymptotic upper bounds
(WV and TWO) discussed in Sec. 3 both contain other information, via the weighted averages
of C2

s (x) = C2(0, x) in (21) and the average of C(x, x)φ2
i (x) in (24).] In particular, this implies

that our UC approximation cannot be an upper bound (even though the results for all scenarios
investigated above suggested that it might be). Furthermore, our result shows that lower bounds
on the generalization error (e.g. the OV or Plaskota bounds) can be arbitrarily loose. A similar
observation holds for upper bounds on the (data set-averaged) training error ǫt: Opper and Vivarelli
showed (Opper and Vivarelli, 1999) that their ǫOV actually also provides an upper bound for this
quantity (so that the two errors ‘sandwich’ the bound, ǫt ≤ ǫOV ≤ ǫ). In the present case it is easy
to calculate ǫt explicitly; we omit details and just quote the result

ǫt ≈
λασ

2

σ2 + nλα
≤ λα

By taking λα ≪ trΛ, one then sees that the upper bound ǫOV can be made arbitrarily loose for
any fixed n (and that the ratio of training and generalization error can be made arbitrarily small).

One may object that the above limit of most of the pα tending to zero is unrealistic because it
implies that the corresponding prior variances cα = λα/pα would become very large. Let us therefore
now restrict the prior variance to be uniform, cα = c. It then follows that λα = c/pα and hence
pα = λα/trΛ. With this assumption, only the λα and σ2 remain as parameters affecting the learning
curve (30). The results for an eigenvalue spectrum from one of the situations covered in Sec. 3 are
shown in Figure 9. The main conclusion to be drawn is that the learning curves for the present
scenario are quite different from the ones we found earlier, even though the eigenvalue spectra and
noise levels are, by construction, precisely identical. This demonstrates that theoretical predictions
for learning curves which only take into account the eigenvalue spectrum of a covariance function
cannot universally match the true learning curves with a high degree of accuracy; the quality of
approximation will vary depending on details of the covariance function and input distribution that
are not encoded in the spectrum. Note that Figure 9 also provides a concrete example for the fact
that the UC approximation is not in general an upper bound on the true learning curve; in fact, it
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Figure 10: Comparison of the Plaskota bound (solid lines) and the lowest generalization error
achievable for single data sets of size n within the degenerate scenario (dashed lines). The eigenvalue
spectra used to construct the curves are those for an RBF covariance function with length scale
l = 0.3, in d = 4 dimensions, and for the input distributions (uniform over [0, 1]d, or Gaussian)
shown in the legend; the noise level σ2 is also given there. Note that for a given n, the curves become
closer for lower σ2; this is as expected since for σ2 → 0 the Plaskota bound can be saturated for a
specific data set (see text).

here underestimates the true ǫ(n) quite significantly.
We can also use the present scenario to assess whether, as a bound on the generalization error

resulting from a single training set, the Plaskota bound (19) could be significantly improved. We
focus on the case of uniform covariance functions, where (29) becomes

ǫ(D) =
∑

α

λα
σ2

σ2 + nαtrΛ
(32)

For any assignment of the nα there is at least one training set of size n =
∑

α nα for which the
generalization error is given by (32). Minimizing numerically over the nα for each given n, we
find the curves shown in Figure 10, where the Plaskota bounds for the same eigenvalue spectra are
also shown. The curves are quite close to each other, implying that the Plaskota bound cannot
be significantly tightened as a single data set bound (assuming, as throughout, that the improved
bound would again only be based on the covariance function’s eigenvalue spectrum). In the limit
σ2 → 0, the bound—which then reduces to the MW bound (18)—cannot be tightened at all, as
setting nα = 1 for α = 1 . . . n and nα = 0 for α ≥ n+ 1 in (32) shows.

Within the simple degenerate scenario introduced in this section, we finally comment briefly on
a universal relation recently proposed by Malzahn and Opper (Malzahn and Opper, 2001). They
suggest considering an empirical estimate of the (Bayes) generalization error, which is obtained by
replacing the average over all inputs x by one over the n training inputs xi:

ǫemp(D) =
1

n

n
∑

i=1

ǫ(xi, D)

Within the approximations of their calculation, the data set average of this quantity is then uni-
versally linked to a modified version of the true generalization error:

〈ǫemp(D)〉D =

〈

ǫ(x)

σ2 + ǫ(x)

〉

x

(33)

Note that the average over data sets is on the ‘inside’ of the fraction on the right hand side, through
the definition of ǫ(x) = 〈ǫ(x,D)〉D. Within our degenerate scenario, we can calculate both sides
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of (33) explicitly, but find no obvious relation between the two sides. However, if we move the data
set average on the right hand side to the outside, we do (after a brief calculation, the details of
which we omit) find a simple result:

〈ǫemp(Dn+1)〉Dn+1
=

〈〈

ǫ(x,Dn)

σ2 + ǫ(x,Dn)

〉

x

〉

Dn

(34)

As indicated by the subscripts, the left hand side of this relation is to be evaluated for data sets of
size n+1 rather than n. The result (34) is remarkable in that it holds for any eigenvalue spectrum
and any input distribution (within the degenerate scenario considered here). We take this as a
hopeful sign that some universal link between true and empirical generalization errors, along the
lines derived by (Malzahn and Opper, 2001) within their approximation, may indeed exist.

6 Conclusion

In summary, we have derived an exact representation of the average generalization ǫ error of Gaus-
sian processes used for regression, in terms of the eigenvalue decomposition of the covariance func-
tion. Starting from this, we obtained two different approximations (LC and UC) to the learning
curve ǫ(n). Both become exact in the large noise limit; in practice, one generically expects the
opposite case (σ2/C(x, x) ≪ 1), but comparison with simulation results shows that even in this
regime the new approximations perform well.

The LC approximation in particular represents the overall shape of the learning curves very
well, both for ‘rough’ (OU) and ‘smooth’ (RBF) Gaussian priors, and for small as well as for large
numbers of training examples n. It is not perfect, but does generally get substantially closer to
the true learning curves than existing bounds (two of which, due to Plaskota and to Williams and
Vivarelli, we generalized to a wider range of scenarios). For situations with non-uniform input
distributions the predictions of the LC approximation tend to be less accurate, and we linked this
observation to recent work by Malzahn and Opper (Malzahn and Opper, 2001) on the effects of non-
uniformity across input space. Their result, which reduces to the LC approximation for sufficiently
uniform scenarios, may in other cases provide better approximations, but this has to be traded off
against the higher computational cost that would be involved in actually evaluating the predictions.

We then discussed how the LC approximation could be improved. The effects of discrete n can
be incorporated to leading order, but were seen to be relatively minor; on the other hand, the second
approximation involved in the derivation (decoupling of averages) appears difficult to improve on
within our framework.

Finally, we investigated a simple “degenerate” Gaussian process learning scenario, where the
outputs corresponding to different inputs are uncorrelated. This provided us with a means of
assessing whether there are limits on the quality of approximations and bounds that take into
account only the eigenvalue spectrum of the covariance function. We found indeed that such
limits exist: There can be no nontrivial upper bound on the learning curve of this form, and
approximations are necessarily of limited quality because different covariance functions with the
same eigenvalue spectrum can produce rather different learning curves. We also found that as a
bound on the generalization error for single data sets (rather than its average over data sets) the
Plaskota bound is close to being tight. Whether a tight lower bound on the average learning curve
exists remains an open question; one plausible candidate worth investigating would be the average
generalization error of our degenerate scenario, minimized over all possible input distributions for
a fixed eigenvalue spectrum.

There are a number of open problems. One is whether a sub-class of GP learning scenarios
can be defined for which the covariance function’s eigenvalue spectrum is sufficient to predict the
learning curves accurately. Alternatively, one could ask what (minimal) extra information beyond
the eigenvalue spectrum needs to be taken into account to arrive at accurate learning curves for all
possible GP regression problems. Finally, one may wonder whether the eigenvalue decomposition
we have chosen, which explicitly depends on the input distribution, is really the optimal one. On
the one hand, recent work (see e.g. (Williams and Seeger, 2000)) appears to answer this question
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in the affirmative. On the other hand, the variability of learning curves among GP covariance
functions with the same eigenvalue spectrum suggests that the eigenvalues alone do not provide
sufficient information for accurate predictions. One may therefore speculate that eigendecomposi-
tions with respect to other input distributions (e.g., maximum entropy ones) might not suffer from
this problem. We leave these challenges for future work.

Acknowledgements: We would like to thank Chris Williams, Manfred Opper and Dörte
Malzahn for stimulating discussions, and the Royal Society for financial support through a Dorothy
Hodgkin Research Fellowship.

A Solving for the LC approximation

In this appendix we describe how to solve eqns. (15,27) for the LC approximation and its first order
correction, using the method of characteristic curves. The method applies to partial differential
equations of the form a ∂f/∂x+b ∂f/∂y = c, where f = f(x, y) and a, b, c can be arbitrary functions
of x, y, f . Viewing the solution as a surface in x, y, f -space, one can then show (John, 1978) that
if the point (x0, y0, f0) belongs to the solution surface then so does the entire characteristic curve
(x(t), y(t), f(t)) defined by

dx

dt
= a,

dy

dt
= b,

df

dt
= c, (x(0), y(0), f(0)) = (x0, y0, f0)

The solution surface can then be recovered by combining an appropriate one-dimensional family of
characteristic curves.

Denote the generalization error predicted by the LC approximation as ǫ0(n, v), with v the
auxiliary parameter introduced in (13,14). It is the solution of the equation (15)

∂ǫ0
∂n

− 1

σ2 + ǫ0

∂ǫ0
∂v

= 0

subject to the initial conditions ǫ0(n = 0, v) = tr (Λ−1 + vI)−1. These give us a family of solution
points which the characteristic curves have to pass through, namely (n(0) = 0, v(0) = v0, ǫ0(0) =
tr (Λ−1 + v0I)

−1). The equations for the characteristic curves are

dn

dt
= 1,

dv

dt
= − 1

σ2 + ǫ0
,

dǫ0
dt

= 0

and can be integrated to give

n = n(0) + t = t, v = v(0)− t

σ2 + ǫ0
= v0 −

t

σ2 + ǫ0
, ǫ0 = ǫ0(0) = tr (Λ−1 + v0I)

−1 (35)

Eliminating t (the curve parameter) and v0 (which parameterizes the family of initial points) gives
the required solution ǫ0 = tr {Λ−1 + [v+n/(σ2 + ǫ0)]I}−1. The LC approximation (16) is obtained
by setting v = 0.

For the first order correction ǫ1, we have to solve the equation (27)

∂ǫ1
∂n

− 1

σ2 + ǫ0

∂ǫ1
∂v

= −1

2

∂2ǫ0
∂n2

− ǫ1
(σ2 + ǫ0)2

∂ǫ0
∂v

with the initial condition (explained in the main text) ǫ1(n = 0, v) = 0. Hence a suitable family of
initial solution points is (n(0) = 0, v(0) = v0, ǫ1(0) = 0). The characteristic curves must obey

dn

dt
= 0,

dv

dt
= − 1

σ2 + ǫ0
,

dǫ1
dt

= −1

2

∂2ǫ0
∂n2

− ǫ1
(σ2 + ǫ0)2

∂ǫ0
∂v

The solutions for the n(t) and v(t)-dependence are therefore the same as before, and as a result ǫ0
is again constant along the characteristic curves. For the derivatives of ǫ0 that appear, one finds
after some algebra

∂ǫ0
∂v

= −(σ2 + ǫ0)
2 a2
1− na2

,
∂2ǫ0
∂n2

= −2(σ2 + ǫ0)
a22 − a3

(1− na2)3
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Here we have used the definitions from (28); because both a2 and a3 only depend on n and v in
the combination v + n/(σ2 + ǫ0), they are also constant along the characteristic curves. Using also
that n = t from (35), the equation for ǫ1 becomes

dǫ1
dt

= (σ2 + ǫ0)
a22 − a3

(1− ta2)3
+ ǫ1

a2
1− ta2

This linear differential equation is easily integrated; using the initial condition ǫ1(0) = 0 one finds

ǫ1 = (σ2 + ǫ0)
t(a22 − a3)

(1 − ta2)2

Eliminating t again via t = n finally gives the solution (28).

B The Plaskota bound and its extension

To summarize the proof of Plaskota’s lower bound on learning curves (Plaskota, 1990) and generalize
it to non-uniform covariance functions, we find it most convenient to work with a discrete space
of inputs xα, α = 1 . . .N , with input probabilities P (xα) = pα. (The case where inputs can vary
continuously can be approximated arbitrarily well by such a scenario, either by discretizing the
input space on a sufficiently fine grid or by taking the xα as a large number N of samples from
the input distribution and setting pα = 1/N .) A function θ on these inputs can then be thought
of as a vector θ with elements θ(xα); similarly, the covariance function C(xα, xβ) ≡ Cαβ becomes

an N ×N matrix C =
〈

θθT
〉

. The eigenvalue equation (6) and the corresponding normalization

condition then read
∑

β

Cαβpβφi(x
β) = λiφi(x

α),
∑

α

φi(x
α)φj(x

α)pα = δij

We can write these in a more compact form: If we set Λ = diag(λ1 . . . λN ) and P = diag(p1 . . . pN),
denote φi the vector with entries φi(x

α) and Φ the N ×N matrix whose columns are the φi, we
have

CPΦ = ΦΛ, ΦTPΦ = I

and hence
C = ΦΛΦT

One can also write this in the form of a more conventional matrix diagonalization:

P1/2CP1/2 = (P1/2Φ)Λ(P1/2Φ)T, (P1/2Φ)T(P1/2Φ) = I

It follows that the λi are the eigenvalues of the matrix P1/2CP1/2 and that

〈C(x, x)〉x ≡ trPC = trP1/2CP1/2 = trΛ (36)

in agreement with (7).
Plaskota now considers the case of generalized training sets consisting of n generalized obser-

vations yl = LT
l θ + ηl. Each yl is a linear combinations of the values of the function θ(x), with

coefficients specified by the vector Ll, corrupted by additive Gaussian noise ηl which as before we
take to be of variance σ2. The conventional scenario, where each training point contains a (cor-
rupted) observation of θ(x) at a single point x = xα(l), corresponds to Ll = eα(l). Here we denote
eα the α-th unit vector (with the α-th component equal to one and all others zero) and write the
l-th training input as xα(l), with α(l) ∈ {1 . . .N}.

After the observation of the yl, we will have some posterior covariances
〈

∆θ(xα)∆θ(xβ)
〉

. Col-
lecting these into an N ×N matrix V one can write them explicitly as

V = C−CL(LTCL+ σ2I)−1LTC = (C−1 + σ−2LLT)−1 (37)
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where L is an N×n matrix whose columns are the Ll. The first version of this result can be seen as
a generalization of (2); the second version is the corresponding generalization10 of (8) in a different
guise. It then follows that the generalization error is given by

ǫ(D) =
∑

α

pα
〈

(∆θ(xα))2
〉

= trPV = trPC− tr [LTCPCL(M + σ2I)−1] (38)

where we have defined the n × n matrix M = LTCL. Its trace (which will become important
shortly) is trM =

∑

l LlCLl; for a conventional training set with training inputs xα(l) this becomes
trM =

∑

l e
T
α(l)Ceα(l) =

∑

l C(xα(l), xα(l)).
So far everything is exact. The idea behind Plaskota’s bound is now as follows: For any given

conventional training set with n training inputs, minimize ǫ(D) over all generalized training sets of
size n which have the same value of trM. The result then clearly gives a lower bound on ǫ(D) for
the given training set.

To carry out this minimization, one can proceed as follows. The matrix M is symmetric and can
be diagonalized, so that M = OηOT where O is an orthogonal n × n matrix and η is a diagonal
matrix whose entries ηi are the eigenvalues of M. Since M is positive semi-definite, the ηi are
non-negative11; we also assume them to be ordered in descending order, η1 ≥ . . . ≥ ηN . It then
follows that (M + σ2I)−1 = O(η + σ2I)−1OT, so that

ǫ(D) = trΛ− tr [OTLTCPCLO(η + σ2I)−1]

where we have also used that trPC = trΛ from (36). Now, if we define the N × n matrix
Q = C1/2LOη−1/2 and write C̃ = C1/2PC1/2, then η1/2QTC̃Qη1/2 = OTLTCPCLO and so

ǫ(D) = trΛ− tr [QTC̃Qη(η + σ2I)−1] = trΛ−
n
∑

i=1

(QTC̃Q)ii
ηi

ηi + σ2
(39)

To minimize ǫ(D), we need to make the sum over i maximal. If we write the n columns of Q
as vectors Qi then (QTC̃Q)ii = QT

i C̃Qi; also, from the definition of Q we have QTQ = I,
implying that the Qi are orthonormal. Now it is easy to see that C̃ = C1/2PC1/2 has the same
eigenvalues as P1/2CP1/2, namely, the λi. Assuming these to be ordered in a descending sequence,
the largest value that QT

i C̃Qi can take is therefore λ1. Because of the orthonormality of the Qi,
one has similarly that

∑

i≤k Q
T
i C̃Qi ≤

∑

i≤k λi for all k ≤ n. Since the terms ηi/(ηi + σ2) form
a descending sequence (due to our assumed ordering of the ηi), it is then clear that the optimal
situation is the one where QT

1 C̃Q1, multiplying the largest value η1/(η1 + σ2), has the largest
possible value λ1, Q

T
2 C̃Q2 has the largest possible value subject to this, which is λ2, and so on.

Plaskota indeed proved formally that

ǫ(D) ≥ trΛ−
n
∑

i=1

λiηi
ηi + σ2

Finally, one can now optimize over the ηi, subject to the constraint that we imposed initially, i.e.,
that trM =

∑

i ηi equals the sum S =
∑

l C(xα(l), xα(l)). This gives the final Plaskota bound

ǫ(D) ≥ trΛ−max
{ηi}

n
∑

i=1

λiηi
ηi + σ2

= min
{ηi}

(

n
∑

i=1

λiσ
2

ηi + σ2

)

+
∑

i≥n+1

λi (40)

as given in (19). Plaskota also proved this bound to be realizable by an appropriate choice of the
generalized observations Ll. His original derivation only applied to uniform covariance functions,
but the above proof sketch shows that this restriction is not in fact necessary.

10Note that the matrices V and G are related in the same way as C and Λ; explicitly, one has V = ΦGΦT.
11 We actually assume, for simplicity of presentation, that all the ηi are nonzero. Equation (39) still holds if some

ηi vanish, but the derivation is then slightly more complicated: One has to replace η by a smaller diagonal matrix
which contains only the positive eigenvalues and O by the matrix whose columns are the corresponding eigenvectors
of M.
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To evaluate the Plaskota bound in practice it is desirable to have a more explicit expression for
the minimum over the ηi. Introducing a Lagrange multiplier α for the constraint

∑

i ηi = S, one
finds by differentiation of (40) that each positive ηi must satisfy

− λiσ
2

(ηi + σ2)2
+ α = 0 (41)

while for the vanishing ηi the quantity on the left hand side has to be positive, i.e., λi ≤ ασ2.
Due to the ordering of the λi, one sees from this that at the minimum the first k of the ηi will be
nonzero and the rest will be zero, with k ≤ n a number to be determined. Assume we know k.
Then from (41) the nonzero ηi are given by

ηi =

(

λiσ
2

α

)1/2

− σ2

Using that
∑

i≤k ηi = S, one then finds α−1/2 = (S + kσ2)/(σ
∑

j≤k λ
1/2
j ) and hence

ηi = λ
1/2
i

S + kσ2

∑

j≤k λ
1/2
j

− σ2 (42)

In order for the value of k that we assumed to be the correct one, this expression needs to be positive
for i = 1 . . . k, while for i = k + 1 . . . n it must be zero or negative (as follows from λi ≤ ασ2). Due
to the ordering of the λi, it is sufficient to check whether (42) gives ηk > 0 and ηk+1 ≤ 0. The
k that satisfies these conditions12 gives the minimum in (40); using (42), the bound can then be
simplified to

ǫ(D) ≥ σ2

S + kσ2





∑

i≤k

λ
1/2
i





2

+
∑

i≥k+1

λi

In the example scenarios for which we evaluated the bound, we found that k = n in the vast majority
of cases. A sensible numerical procedure is therefore to check first whether for k = n equation (42)
gives ηn > 0. If yes, then k = n gives the required optimum; if no, then k should be decreased until
the conditions ηk > 0 and ηk+1 ≤ 0 are met.

C Eigenvalue spectra for the example scenarios

We explain first how the covariance functions with periodic boundary conditions for x ∈ [0, 1]d are
constructed. Consider first the case d = 1. The periodic RBF covariance function is defined as

C(x, x′) =

∞
∑

r=−∞

c(x− x′ − r) (43)

where c(x− x′) = exp[−|x− x′|2/(2l2)] is the original covariance function; for the periodic OU case
we use instead c(x− x′) = exp(−|x− x′|/l). One sees that for sufficiently small l (l ≪ 1), only the
r = 0 term makes a significant contribution, except when x and x′ are within ≈ l of opposite ends
of the input space (so that either x − x′ + 1 or x − x′ − 1 are of order l). We therefore expect the
periodic covariance functions and the conventional non-periodic ones to yield very similar learning
curves, as long as the length scale of the covariance function is smaller than the size of the input
domain.

The advantage of having a periodic covariance function is that its eigenfunctions are simple
Fourier waves and the eigenvalues can be calculated by Fourier transformation. This can be seen

12 There is a unique k with this property; this follows because the minimum in (40) is over a convex function of
the ηi and therefore unique.
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as follows. For the assumed uniform input distribution on [0, 1], the defining equation for an
eigenfunction φ(x) with eigenvalue λ is, from (6)

〈C(x, x′)φ(x′)〉x′ =

∫ 1

0

dx′ C(x, x′)φ(x′) = λφ(x).

Inserting (43) and assuming that φ(x) is continued periodically outside the interval [0, 1], this
becomes

∞
∑

r=−∞

∫ 1

0

dx′ c(x−x′−r)φ(x′) =
∞
∑

r=−∞

∫ r+1

r

dx′ c(x−x′)φ(x′−r) =

∫ ∞

−∞

dx′ c(x−x′)φ(x′) = λφ(x)

It is well known that the solutions of this eigenfunction equation are Fourier waves φq(x) = e2πiqx

for integer (positive or negative) q, with corresponding eigenvalues

λq =

∫ ∞

−∞

dx c(x)e−2πiqx

The eigenvalues λq are real since c(x) = c(−x) (this follows from the requirement that the covariance
function C(x, x′) must be symmetric). The eigenfunctions for q 6= 0 are complex in the form
given but can be made explicitly real by linearly transforming the pair φq(x) and φ−q(x) into
(1/

√
2) cos(2πqx) and (1/

√
2) sin(2πqx).

All of the above generalizes immediately to higher input dimension d. One defines

C(x, x′) =
∑

r

c(x− x′ − r)

where r now runs over all d-dimensional vectors with integer components; the argument x− x′ − r
of c(·) is now a d-dimensional real vector. The eigenvalues of this periodic covariance function are
then given by

λq =

∫

dx c(x)e−2πiq·x

They are indexed by d-dimensional integer vectors q; the integration is over all real-valued d-
dimensional vectors x, and q · x is the conventional dot product between vectors. Explicitly, one
derives that for the periodic RBF covariance function

λq = (2π)d/2lde−(2πl)2||q||2/2

For the periodic OU covariance function, on the other hand, one has

λq = κdl
d[1 + (2πl)2||q||2]−(d+1)/2 (44)

with κd = 2, 2π, 8π for d = 1, 2, 3, respectively; for general d, κd = π(d−1)/22dΓ((d + 1)/2) where
Γ(z) = (z − 1)! is the Gamma function.

All the bounds and approximations in principle require traces over the whole eigenvalue spec-
trum, corresponding to sums over an infinite number of terms. Numerically, we perform the sums
over all eigenvalues up to some suitably large maximal value qmax of ||q||. The remaining small
eigenvalue tail of the spectrum is then treated by approximating ||q|| as a continuous variable q̃ and
integrating over it from qmax to infinity, with the appropriate weighting for the number of vectors q
in a shell q̃ ≤ ||q|| ≤ q̃ + dq̃. To check that this procedure gave accurate results, we always verified
that the numerically calculated trΛ agreed with the known value of C(x, x).

The third scenario we consider is that of a conventional RBF kernel C(x, x′) = exp[−||x −
x′||2/(2l2)] with a nonuniform input distribution which we assume to be an isotropic zero mean
Gaussian, P (x) ∝ exp[−||x||2/(2σ2

x)]. The eigenfunctions and eigenvalues are worked out in (Zhu
et al., 1998) for the case d = 1; the eigenvalues are labelled by a non-negative integer q and given
by

λq = (1− β)βq
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where
β−1 = 1+ r/2 +

√

r2/4 + r, r = l2/σ2
x.

As expected, only the ratio r of the length scales l and σx enters since the overall scale of the inputs
is immaterial. (To avoid this trivial invariance we fixed σ2

x = 1/12; this specific value gives the
same variance for each component of x as for the uniform distribution over [0, 1]d used in the other
scenarios.) For d > 1, this result generalizes immediately because both the covariance function and
the input distribution factorize over the different input components (Opper and Vivarelli, 1999;
Williams and Seeger, 2001). The eigenvalues are therefore just products of the eigenvalues for each
component, and indexed by a d-dimensional vector q of non-negative integers:

λq = (1 − β)dβs, s =

d
∑

i=1

qi (45)

One sees that the eigenvalues will come in blocks: All vectors q with the same s =
∑

i qi give
the same λq. Numerically, we therefore only have to store the different eigenvalues and their
multiplicities, which can be shown to be13 (d+s−1)!/[s!(d−1)!]. With this trick so many eigenvalues
can be treated by direct summation that a separate treatment of the neglected eigenvalues (via an
integral, as above) is unnecessary.
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