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This article addresses the relationship between long-term reward pre-
dictions and slow-timescale neural activity in temporal difference (TD)
models of the dopamine system. Such models attempt to explain how
the activity of dopamine (DA) neurons relates to errors in the predic-
tion of future rewards. Previous models have been mostly restricted to
short-term predictions of rewards expected during a single, somewhat
artificially defined trial. Also, the models focused exclusively on the pha-
sic pause-and-burst activity of primate DA neurons; the neurons’ slower,
tonic background activity was assumed to be constant. This has led to
difficulty in explaining the results of neurochemical experiments that
measure indications of DA release on a slow timescale, results that seem
at first glance inconsistent with a reward prediction model. In this article,
we investigate a TD model of DA activity modified so as to enable it to
make longer-term predictions about rewards expected far in the future.
We show that these predictions manifest themselves as slow changes in
the baseline error signal, which we associate with tonic DA activity. Using
this model, we make new predictions about the behavior of the DA sys-
tem in a number of experimental situations. Some of these predictions
suggest new computational explanations for previously puzzling data,
such as indications from microdialysis studies of elevated DA activity
triggered by aversive events.

1 Introduction

Recent neurophysiological and modeling work has suggested parallels be-
tween natural and artificial reinforcement learning (Montague, Dayan, &
Sejnowski, 1996; Houk, Adams, & Barto, 1995; Schultz, Dayan, & Montague,
1997; Suri & Schultz, 1999). Activity recorded from primate dopamine (DA)
neurons (Schultz, 1998), a system associated with motivation and addic-
tion, appears qualitatively similar to the error signal from temporal differ-
ence (TD) learning (Sutton, 1988). This algorithm allows a system to learn
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from experience to predict some measure of reward expected in the future
(known as a return).

One aspect of the TD algorithm that has received little attention in the
modeling literature is what sort of prediction the system is learning to make.
TD algorithms have been devised for learning a variety of returns, differ-
ing, for example, as to the time frame over which the predicted rewards
accumulate and whether rewards expected far in the future, if they are in-
cluded at all, are discounted with respect to more immediate rewards. The
DA models that have been the subject of simulation (Montague et al., 1996;
Schultz etal., 1997; Suri & Schultz, 1999) all assume for convenience a simple
discrete-trial setting, with returns accumulating only over the course of a
single trial. Although the modeled experiments have this structure, it is not
clear whether or how animals segment a continuous stream of experience
into a set of disjoint, repeating trials. And, as this article chiefly explores,
the focus on predictions within a single trial eliminates subtler effects that
a longer-timescale aspect to predictions would produce in the modeled
DA signal.

A second weakness of current TD models of the DA signal is that they fo-
cus entirely on phasic activity. DA neurons exhibit tonic background firing
punctuated by phasic bursts and pauses. Previous DA models explain the
locations of the phasic events but treat the background firing rate as con-
stant. Advocates of the TD models sometimes explicitly distinguish tonic
DA as a separate phenomenon to which the models do not apply (Schultz,
1998). Nonetheless, experimental methods that measure DA activity over a
very slow timescale have revealed effects that appear hard to reconcile with
the TD models. Most critically, microdialysis studies have found evidence of
elevated DA activity in response to aversive situations (see Horvitz, 2000,
for a review). That such activity seems inconsistent with an error signal
for reward prediction has fueled criticism of the TD models of DA (Red-
grave, Prescott, & Gurney, 1999; Horvitz, 2000). Another slow-timescale
effect that is not predicted by the TD models is the habituation, seen in
voltammetry recordings, of DA release over the course of about a minute of
unpredictable, rewarding brain stimulation (Kilpatrick, Rooney, Michael, &
Wightman, 2000).

This article addresses both of these weaknesses of existing TD models
together. We show that rather than being inapplicable to tonic DA, these
models have all along contained the germ of an account of it in the relation-
ship between slow-timescale DA release and long-term reward predictions.
We study the tonic behavior of TD models modified only so far as necessary
to allow them to predict alonger-term return that includes rewards expected
in future trials. When the artificial horizon on the return is removed, the TD
error includes a slowly changing background term, which we associate with
tonic DA. These slow changes suggest a new computational explanation for
the seemingly paradoxical data on DA responses to aversive events and for
the slow habituation of DA release in brain stimulation experiments. We
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also suggest a number of predictions about experiments that have not yet
been performed. Finally, we offer some thoughts about what these compu-
tational considerations suggest about the functional anatomy of DA and
related brain systems.

2 TD Models of the Dopamine System

2.1 Return Definitions for TD Models. TD learning is a reward pre-
diction algorithm for Markov decision processes (MDPs; Sutton, 1988). In
a series of discrete time steps, the process moves through a series of states,
and the goal is to learn the value of these states. (In the context of mod-
eling animal brains, time steps can be taken to correspond to intervals of
real time and states to animals’ internal representations of sensory obser-
vations.) Knowledge of values can, for instance, guide a separate action
selection mechanism toward the most lucrative areas of the environment.
More formally, systems use the TD algorithm to learn to estimate a value
function V(s(t)), which maps the state at some instant, s(t), to a measure of
the expected reward that will be received in the future. We refer to the func-
tion’s value at time ¢, V(s(t)), using the abbreviated notation V(¢). There
are a number of common measures of future reward, known as returns,
differing mainly in how rewards expected at different times are combined.

The simplest return, used in the DA models of Montague et al. (1996)
and Schultz et al. (1997), is expected cumulative undiscounted reward,

V(t)=E [Z r(r)} : @.1)

>t

where r(7) is the reward received at time 7. This return makes sense only in
finite horizon settings—those in which time is bounded. It is not informative
to sum rewards over a period without end, since V(t) can then be infinite.
To usefully measure the value of a state in an infinite horizon problem, it is
necessary either to modify the problem—by subdividing events into a series
of time-bounded episodes, with returns accumulating only within these
trials—or to introduce a different notion of value that takes into account
predictions stretching arbitrarily far into the future.

The most common return that accommodates unbounded time discounts
rewards exponentially in their delays; these discounted values can be
summed over an infinite window without diverging:

Vexp(t) =E |:Z Vr_tr(l'):| . (2.2)

>t

The parameter y < 1 controls the steepness of discounting.
The published TD models were all simulated using a return truncated on
trial boundaries (Montague et al., 1996; Schultz et al., 1997; Suri & Schultz,
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1999), except for the model of Houk et al. (1995), which included no simu-
lations. The horizon obviated the need for discounting, and indeed most of
the experiments and expositions used the undiscounted cumulative return,
equation 2.1. All of the reports also mentioned that Vexp could be used to
extend the models to a more realistic infinite-horizon situation, and Suri and
Schultz (1999) used that return in their simulations. However, since even
these investigations took place in an episodic setting, this work left unex-
amined how the behavior of the modeled DA system would be affected
by longer-term predictions about rewards expected after the trial was com-
plete. As we show here, the introduction of an infinite horizon gives rise to
long-term predictions that would produce subtle variations in DA behav-
ior, some previously puzzling indications of which have been observed in
experiment.

To demonstrate this, we examine a model based on a different return
that is closely related to equation 2.2 but makes the predictions we will
be examining more obvious. This return assumes a constant baseline ex-
pectation of p reward per time step and measures the sum of differences
between observed rewards and the baseline (Schwartz, 1993; Mahadevan,
1996; Tsitsiklis & Van Roy, 1999):

Viel() = E |:Z(I’(‘L') - ,0):| . (2.3)

>t

This relative value function is finite if p is taken to be the long-term future
average reward per time step, lim,,_. oo (1/n)E [Zi’;’;_l r(t)]. This value p, the
discrete analog of the long-term reward rate, is the same for all t under some
assumptions about the structure of the MDP (Mahadevan, 1996).

For horizonless problems, V, (rather than the standard undiscounted
return V) properly extends V.y, to the undiscounted case where y = 1.
Tsitsiklis and Van Roy (2002) prove that their TD algorithm for learning V,;
represents the limit as the discounting parameter y approaches one in a ver-
sion of exponentially discounted TD. This proof assumes V., is estimated
with a linear function approximator, using a constant bias term in the dis-
counted algorithm but not in the average reward one. Assuming function
approximators that meet these constraints, there can thus be no in-principle
difference between TD models based on lightly discounted Vexp and those
based on V., so approximate versions of the DA neuron behaviors we pre-
dictin section 3 are also expected under the exponentially discounted return
in an infinite horizon setting. We use V. throughout this article to make it
easier to examine the role of long-term predictions, since it segregates one
component of such predictions in the p term. We return to the details of the
relationship between the two models in the discussion.

2.2 Specifying a TD Model of Dopamine. In this article, we analyze
the DA model of Montague et al. (1996), modified to use the TD rule of
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Tsitsiklis and Van Roy (1999) to learn an estimate V,e1 of V, instead of V.
The TD algorithm defines an error signal by which a function approximator
can be trained to learn the value function. The model uses a linear function
approximator,

V() = w(t) - s(b),

where w is a trainable weight vector and s is a state vector.
At each time step, weights are updated according to the delta rule,

w(it+1) =w@) +v-st)-Slt),

where v is a learning rate and 4, is the average reward TD error:

Srel(t) = Vyar(t + 1) — Vi (B) 4 1(t) — p(b). (2.4)

In this equation, the average reward p () is time dependent because it must
be estimated on-line; we use an exponentially windowed running average
with learning rate ¥ <« v:

pt+1) =kr) + (A —«x)p(d).

Under the model, DA neurons are assumed to fire with a rate proportional
to 8,,(t) + b for some background rate b. Negative prediction error is thus
taken to correspond to firing at a rate slower than b.

Finally, we must define the state vector s(t). The simple conditioning
experiments we consider here involve at most a single discrete stimulus,
whose timing provides all available information for predicting rewards.
We can thus delineate all possible states of the tasks by how long ago the
stimulus was last seen. We represent this interval using a tapped delay line.
Specifically, we define the state vector’s ith element s;(f) to be one if the
stimulus was last seen at time ¢ — i, and zero otherwise. This effectively
reduces the linear function approximator to a table lookup representation
in the complete state-space of the tasks. We do not use a constant bias term,
which would be superfluous since the average reward TD algorithm learns
Vi only up to an arbitrary additive constant. For similar reasons, in the
very simple experiments we discuss where rewards or punishments are
delivered randomly without any stimuli, we leave s(t) empty, which means
that all predictions learned in this context reside in p(t) rather than w(t).
(This is reasonable since reward delivery in these tasks can be viewed as
controlled by a one-state Markov process whose V,, is arbitrary.)

Representation of state and timing is one of the more empirically under-
constrained aspects of DA system models, and we have elsewhere suggested
an alternative scheme based on semi-Markov processes (Daw, Courville, &
Touretzky, 2002). We use the tapped delay line architecture here for its sim-
plicity, generality, and consistency with previous models. In particular, this
is essentially the same stimulus representation used by Montague et al.
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(1996), following the suggestion of Sutton and Barto (1990). The one impor-
tant difference between the representational scheme we use here and that of
Montague et al. is in the length of s(t). In their experiments, this vector was
shorter than the interval between trials (which they took to be constant).
The effect was that at some point during the intertrial interval, s(t) became
a vector of all zeros, and so the prediction V(t) = w(t) - s(t) was also nec-
essarily zero until the next stimulus occurred. This prevented predictions
of rewards in subsequent trials from backing up over the intertrial interval,
effectively enforcing a horizon of a single trial on the learned value func-
tion. (Backups might still have occurred had the model contained either a
constant bias term in s(t) or eligibility traces in the learning rule, but it did
not.) In the Montague et al. (1996) model, then, the learned value function
had a finite horizon as a side effect of the state representation and learning
rule being used, even though it was exposed to a continuous series of trials.
In our model, we instead take s(f) to be long enough that it never emp-
ties out between trials. This requires us to randomize the interval between
trials (which was done in most studies of DA neurons but not in previ-
ous models), since otherwise, stimulus delivery would itself be predictable
from events in the previous trial, and a reward-predicting stimulus would
not, after learning, continue to evoke prediction error. In fact, supporting
our view that predictions should encompass more than a single trial, in
highly overtrained monkeys performing a task with minimal variability in
the intertrial interval, DA neurons ceased responding to reward-predicting
stimuli (Ljunbgerg, Apicella, & Schultz, 1992).

3 Results

We first verify that the average reward TD version of the DA model we
examine here preserves the ability of previous models to capture the basic
phasic response properties of DA neurons. Figure 1 shows the modeled
DA signal (as the points of the discrete signal connected by lines) for three
trials during the acquisition and extinction of a stimulus-reward association,
reproducing some key qualitative properties of phasic DA neuron responses
(Schultz, 1998). The results are not visibly different from those reported by
Montague et al. (1996) and others, which is to be expected given the close
relationship of the models.

In the rest of this section, we examine how long-term reward predictions
would affect DA system behavior, by finding differences between the undis-
counted TD model (which is useful only in an episodic setting and was the
basis of most previous investigations) and the average reward TD model
(which learns to predict an infinite-horizon return; we show later that all
of the same properties are expected under an exponentially discounted TD
model). The undiscounted TD error signal, used by Montague et al. (1996)
to model the DA response, is §(t) = V(t + 1) — V(t) 4 r(t). This differs from
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Figure 1: Error signal 8, () from an average reward TD model, displaying basic
phasic properties of DA neurons. S: stimulus, R: reward. (a) Before learning,
activation occurs in response to a reward but not to the stimulus that precedes
it. (b) After learning, activation transfers to the time of the stimulus, and there
is no response to the reward. (c) When a predicted reward is omitted, negative
prediction error, corresponding to a pause in background firing, occurs at the
expected time of the reward.

8re1 (see equation 2.4) only in that p(t) is subtracted from the latter. The extra
effect of learning this infinite horizon return is to depress the TD error signal
by the slowly changing long-term reward estimate p(t). Manifestations of
this effect would be most noticeable when p(?) is large or changing, neither
of which is true of the experiment modeled above.

The average reward TD simulations pictured in Figures 2 through 4
demonstrate the predicted behavior of the DA response in situations where
the effect of p(t) should be manifest. Figure 2 depicts the basic effect, a de-
crease in the DA baseline as the experienced reward rate increases. Empir-
ically, DA neurons respond phasically to randomly delivered, unsignaled
rewards; the figure shows how the tonic inhibitory effect of p(t) on the
error signal should reduce DA activity when such rewards are delivered
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Figure 2: Tonic effects in modeled DA signal. Increasing the rate of randomly
delivered, unsignaled rewards should depress baseline neuronal activity, an
effect that is also visible as a lower peak response to rewards. (Left) Modeled
DA response to rewards delivered at a low rate. (Right) Modeled DA response to
rewards delivered at a higher rate, showing depressed activity. These snapshots
are from the end of a long sequence of rewards delivered at the respective rates.
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Figure 3: Tonic effects in modeled DA signal after conditioning and extinction.
S: stimulus, R: reward. (a) After conditioning, value prediction Vo) jumps
when the stimulus is received, ramps up further in anticipation of reward, and
drops back to baseline when the reward is received. (b) The corresponding TD
error signal—the modeled DA response—shows the classic phasic burst to the
stimulus and is then zero until the reward is received. Between trials, the error
signal is negative, corresponding to a predicted tonic depression in DA firing be-
low its normal background rate. (c) After extinction by repeated presentation of
stimuli alone, the tonic depression disappears (along with the phasic responses)
and the error signal is zero everywhere. (d) If extinction is instead accomplished
by presenting unpaired rewards and stimuli, the error signal remains tonically
depressed to a negative baseline between phasic responses to the unpredicted
rewards.

at a fast Poisson rate compared to a slow one. If the experienced reward
rate changes suddenly, the estimate p(f) will slowly adapt to match it, and
DA activity will smoothly adapt accordingly; we show the system’s stable
behavior when this adaptation asymptotes. (Note that although the predic-
tion parameters have reached asymptotic values, the rewards themselves
are unpredictable, and so they continue to evoke phasic prediction error.) In
Figure 2, the inhibition resulting from a high average reward estimate p(t)
can be seen in both the level of tonic background firing between rewards
and the absolute peak magnitude of the phasic responses to rewards. Below,
we discuss some evidence for the latter seen in voltammetry experiments
measuring DA concentrations in the nucleus accumbens.

A more complex effect emerges when randomly delivered rewards are
signaled by a stimulus preceding them by a constant interval. In this case,
the phasic DA response is known from experiment to transfer to the predic-
tive stimulus. In addition, according to the average reward TD model, the
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Figure 4: Tonic effects in modeled DA signal in an aversive situation. Receipt of
primary punishment (such as shock) decreases the average reward rate estimate,
producing a small but long-lasting elevation in modeled DA activity. (Left)
The reward rate estimate p(t) responding to three punishments. (Right) The
corresponding TD error signal—the modeled DA response—shows a phasic
depression followed by a prolonged excitation.

inhibitory effect of p(t) should manifest itself as before in a sustained nega-
tive prediction error (i.e., a reduced baseline firing rate) between trials (see
Figure 3b). During the fixed interval between stimulus onset and reward, the
learning algorithm can eliminate this prediction error by smoothly ramping
up Ve (B (see Figure 3a), so that Ve (t+1) = Vi () exactly cancels the —p (t)
term in equation 2.4 (see Figure 3b). But outside the stimulus-reward inter-
val, the algorithm cannot predict events, since the interval between trials
is random, so it cannot similarly compensate for the negative prediction
error due to p(t). Hence, p(t) drives 8,,(t) slightly negative between trials.
The predicted pattern of results—a jump in the DA baseline on stimulus
presentation, followed by a drop when the reward is received—would be
noticeable only when the rate of reward delivery is high enough to make
its inhibitory effect between trials visible. For instance, it cannot be seen in
Figure 1b, which was produced using the same task but at a much lower
reward rate. This may be why, to our knowledge, it has not so far been
observed in experiments.

Another experimental situation involving a change of reward rate is the
extinction of a stimulus-reward association. Previous TD models suggest
that when a stimulus-reward association is extinguished by repeatedly pre-
senting the stimulus but omitting the reward, the phasic DA response to
the formerly predictive stimulus should wane and disappear. The concomi-
tant reduction of the experienced reward rate means that under the average
reward model, the inhibition of the DA baseline by p(t) should also ex-
tinguish, slowly increasing the baseline firing rate between trials until it
matches that within trials (see Figure 3c). Were extinction instead accom-
plished while preserving the reward rate—by presenting both stimuli and
rewards, but unpaired—the reinforcers, now unpredictable, would trigger
phasic excitation, but the tonic inhibitory effect of p(t) would remain (see
Figure 3d).
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A final prediction about DA activity in an infinite horizon model emerges
if we treat aversive stimuli such as shock as equivalent to negative re-
ward. This is an oversimplification, but some behavioral evidence that it is
nonetheless reasonable comes from animal learning experiments in which a
stimulus that predicts the absence of an otherwise expected reward (a con-
ditioned inhibitor for reward) can, when subsequently presented together
with a neutral stimulus and a shock, block the learning of an association be-
tween the neutral stimulus and the aversive outcome (Dickinson & Dearing,
1979; Goodman & Fowler, 1983). This is presumably because the conditioned
inhibitor, predictive of a different but still aversive outcome, is assumed to
account for the shock. If aversive stimuli are treated as negative rewards,
their appearance will decrease the predicted reward rate p (t), causing a pro-
longed increase in the tonic DA baseline. This effect is shown in Figure 4. In
the simulations, phasic negative error is also seen to the negative rewards.
As we discuss below, there is some experimental evidence for both sorts of
responses.

4 Discussion

Previous models of the DA system were exercised in a fairly stylized set-
ting, where events were partitioned into a set of independent trials and the
system learned to predict rewards only within a trial. Though it is compu-
tationally straightforward to extend these models to a more realistic setting
with longer-term predictions and no such partitions, and indeed the orig-
inal articles all suggested how this could be done, no previous work has
examined how such an improvement to the model would affect its predic-
tions about the behavior of the DA system. By using a version of the TD
algorithm that explicitly segregates long-term average reward predictions,
we show here that such an extension suggests several new predictions about
slow timescale changes in DA activity. Some of these predictions have never
been tested, while others explain existing data that had been puzzling under
older trial-based models.

In our model, the long-term reward predictions that are learned if re-
turns are allowed to accumulate across trial boundaries would manifest
themselves largely as slow changes in the tonic DA baseline. Though little
attention has been paid to tonic firing rates in the electrophysiological stud-
ies that the DA models address—and so the predictions we suggest here
have for the most part not been addressed in this literature—a related ex-
perimental technique may offer some clues. Microdialysis studies examine
chemical evidence of DA activity in samples taken very slowly, on the order
of once per 10 minutes. Itis likely that at least part of what these experiments
measure is tonic rather than phasic activity.

A key mystery from the microdialysis literature that has been used to
criticize TD models of DA is evidence of increased DA activity in target
brain areas, such as the striatum, in response to aversive events such as foot
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shocks (reviewed by Horvitz, 2000). Were this activity phasic, it would con-
tradict the notion of DA as an error signal for the prediction of reward. But
we show here that the slower tonic component of the modeled DA signal
should indeed increase in the face of aversive stimuli, because they should
reduce the average reward prediction p (see Figure 4). This may explain
the paradox of an excitatory response to aversive events in a putatively
appetitive signal. In the model as presented here, to be fair, the small and
slow positive error would on average be offset by a larger but shorter dura-
tion burst of negative error, timelocked to the aversive stimulus. However,
what microdialysis actually measured in such a situation would depend
on such vagaries as the nonlinearities of transmitter release and reuptake.
Also, instead of being fully signaled by DA pauses, phasic information
about aversive events may partially be carried by excitation in a parallel,
opponent neural system (Kakade, Daw, & Dayan, 2000; Daw, Kakade, &
Dayan, in press). All of these ideas about the nature of the dopaminergic
response to aversive stimuli would ideally be tested with unit recordings of
DA neurons in aversive paradigms; the very sparse and problematic set of
such recordings so far available reveals some DA neurons with excitatory
and some with inhibitory responses (Schultz & Romo, 1987; Mirenowicz &
Schultz, 1996; Guarraci & Kapp, 1999). In accord with our explanation, there
is some evidence that the excitatory responses tend to last longer (Schultz
& Romo, 1987).

Another set of experiments used a much faster voltammetry technique to
measure DA release in the striatum with subsecond resolution, in response
to bursts of rewarding intracranial stimulation (Kilpatrick et al., 2000). In
these experiments, no phasic DA release is measured when stimulation is
triggered by the animal’s own lever presses, but DA responses are seen to
(presumably unpredictable) stimulation bouts delivered on the schedule of
lever presses made previously by another animal. In this case, transmitter
release habituates over time, gradually reducing the magnitude of the pha-
sic DA responses to stimulations over the course of a train lasting about a
minute. This is essentially a dynamic version of the experiment shown in
Figure 2, where a sudden increase in the delivered reward rate gives rise
to a gradual increase in p(f) and a corresponding decrease in modeled DA
activity. Under a TD model involving only short-term predictions, it would
be difficult to find any computational account for this habituation, but it is
roughly consistent with what we predict from the average-reward model.
However, the effect seen in these experiments seems to be mainly identi-
fiable with a decline in the peak phasic response to the rewards (which is
only part of what is predicted in Figure 2); the corresponding decline in
tonic baseline DA levels, if any, is exceedingly small. This may also have to
do with the nonlinearity of transmitter release, or with a floor effect in the
measurements or in extracellular DA concentrations.

The interpretation of this experiment points to an important and to-
tally unresolved issue of timescale in the model presented here. Voltam-
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metry experiments reveal information about DA activity on an intermedi-
ate timescale—slower than electrophysiology but faster than microdialysis.
Voltammetry is inappropriate for monitoring the kind of long-term changes
in basal DA concentrations measured by microdialysis; perhaps for this rea-
son, the two methodologies give rather different pictures of DA activity
during intracranial stimulation, with microdialysis suggesting a very long-
lasting excitation (Kilpatrick et al., 2000; Fiorino, Coury, Fibiger, & Phillips,
1993). We have argued that understanding DA responses to aversive stimuli
requires distinguishing between phasic and tonic timescales, but in reality
there are surely many timescales important to the DA system and at which
the system might show distinct behaviors. The model we have presented
here is too simple to cope with such a proliferation of timescales; it works by
contrasting predictions learned at only two fixed timescales: quickly adapt-
ing phasic reward predictions that vary from state to state, against a slowly
changing average reward prediction that is the same everywhere. The speed
at which the average reward estimate p(f) adapts controls the timescale of
tonic effects in the model; it is unclear to exactly what real-world timescale
this should correspond. A more realistic model might learn not just a single
“long-term” average reward prediction, but instead predictions of future
events across a spectrum of different timescales. We speculate that in such
a model, the opponent interactions between fast and slow predictions that
we study in this article could survive as competition to account for the
same observations between predictions with many different characteristic
timescales.

The rigidity of timescale in our model (and other TD models) also makes
it an unsatisfying account of animal learning behavior, since animals seem
much more flexible about timescales. Not only can they cope with events
happening on timescales ranging from seconds to days, but their learning
processes, as exhibited behaviorally, are often invariant to a very wide range
of dilations or contractions of the speed of events (Gallistel & Gibbon, 2000).
These considerations again suggest a multiscale model.

The idea that animals are learning to predict a horizonless return rather
than just the rewards in the current trial has also appeared in the behav-
ioral literature. Kacelnik (1997) uses this idea to explain animals’ choices
on experiments designed to measure their discounting of delayed rewards
(Mazur, 1987). Under Kacelnik’s model, however, it is necessary to assume
that animals neglect the intervals between trials in computing their long-
term expectations, an assumption that would be difficult to incorporate
convincingly in a TD model like the one presented here. Results like this
suggest that the notion of a trial is not as behaviorally meaningless as we
treat it here. More work on this point is needed.

We have presented all of our results in terms of the average reward TD
algorithm, because it is easiest to see how long- and short-term predictions
interact in this context. However, with some caveats, all of these effects
would also be seen in the more common exponentially discounted formu-
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lation of TD learning, which was used for at least one previously published
DA model (Suri & Schultz, 1999). This will be true if the algorithm is used
in an infinite horizon setting and with discounting light enough to allow
rewards expected in future trials to contribute materially to value estimates.
We briefly sketch here why this holds asymptotically (i.e., when the value
functions are well learned, so that V = V) using a table representation for
the value function; Tsitsiklis and Van Roy (2000) give a more sophisticated
proof that the algorithms are equivalent on an update-by-update basis in the
limit as y — 1, assuming linear value function approximation and that the
state vector in the discounted case contains a constant bias element whose
magnitude is chosen so that its learned weight plays a role similar to that
of p in the average reward model.

The key point is that with an infinite horizon, Ve, grows as the re-
ward rate increases, since it sums all discounted future rewards; a por-
tion of the value of each state thus encodes the long-term future reward
rate, weighted by the degree of discounting. In particular, the exponen-
tially discounted value function Ve, can be viewed as the sum of a state-
dependent term that approximates V,, (better as y increases) and a state-
independent baseline magnitude p/(1 — y) that encodes the long-term fu-
ture reward rate expected everywhere. All of the DA behaviors we con-
sider depend on p being subtracted in the error signal 8,.(t). Though this
term seems to be missing from the exponentially discounted error sig-
nal deyy(t) = yVexp(t +1) — Vexp(t) + r(t), it is actually implicit: the state-
independent portions of Vgxp(t) and Vexp(t + 1) are equal to p/(1 — y) , so
the state-independent portion of yVexp(t +1) — Vexp(t) in the error signal is
equalto (y — 1) - p/(1 — y), which is —p.

This is easiest to see when rewards are Poisson with rate p, as in Figure 2.
In this case, Veyy(t) is exactly p/(1—y) for all t. The exponentially discounted
TD error signal is

Bexp(t) = r(H) + VVexp(t +1) - Vexp(t)
= 1) + (y = DVexp(®)
=r() —p,

just as in the average reward case. While this example holds for any y, in
more structured state-spaces, the value of y can matter. For the predicted
DA behaviors described in this article, the effect of steep discounting would
be to modulate the tonic inhibition depending on proximity to reward; the
correspondence between discounted and average reward models improves
smoothly as y increases.

In summary, the introduction of an infinite horizon increases the value
of Vixp at all states, leading to the subtraction of approximately p from the
error signal and to just the sort of tonic behaviors we have discussed in this
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article. Note that the equivalence between the models depends on the expo-
nentially discounted model having a sufficient state representation; as we
have discussed, the model of Montague et al. (1996) effectively had a finite
horizon due to gaps in its state representation and the lack of a bias term.

One significant model of DA neurons that is physiologically more de-
tailed than the TD models is that of Brown, Bullock, and Grossberg (1999).
Though this is an implementational model and not grounded in reinforce-
ment learning theory, it actually has much the same computational struc-
ture as a TD model. In particular, the DA response is modeled as the sum
of a phasic primary reward signal like r(t) and the positively rectified time
derivative of a striatal reward anticipation signal that, like V(t), shows sus-
tained elevation between the occurrence of a stimulus and the reward it
predicts. The chief structural elaboration of this model over the TD models
is that it separates into a distinct pathway the transient inhibitory effects on
DA that result, in TD models, from the negatively rectified portion of the
time difference V(t + 1) — V(#). This distinction vanishes at the more algo-
rithmic level of analysis of this article, but the Brown et al. model provides a
detailed proposal for how the brain may implement TD-like computations.

The average reward TD model presented here would require additional
physiological substrates. In particular, the DA system would need the av-
erage reward estimate p(t) to compute the error signal. One candidate sub-
strate for this signal is serotonin (5HT), a neuromodulator that seems to act
as an opponent to DA. Kakade et al. (2000) and Daw et al. (in press) detail
this proposal under the assumption that 5HT reports p(t) directly to DA
target structures rather than (as we envision here) channeling this portion
of the error signal through DA. Since 5HT is known to oppose DA not only
at the level of target structures but also by inhibiting DA firing directly
(reviewed by Kapur & Remington, 1996), it seems likely that any effects
of the average reward would be visible in the DA system as well, as we
predict here.

Alternatively, the average reward could be computed entirely within the
DA system, through activity habituation mechanisms in DA neurons. In a
habituation model, some variable internal to DA neurons, such as calcium
concentration or autoreceptor activation, could track p(t) (by accumulating
with neuronal firing) and inhibit further spiking or transmitter release. In-
triguingly, if the inhibition worked at the level of transmitter release, the
effects of the average reward signal predicted in this article might be visible
only using methods that directly measured transmitter release rather than
spiking. Such is the case for the two pieces of experimental evidence so far
best consistent with our predictions: dialysis studies showing elevated DA
activity in aversive situations (Horvitz, 2000) and voltammetry measure-
ments of DA release habituating to high rates of intracranial stimulation
(Kilpatrick et al., 2000).

These considerations about how the DA system computes the hypoth-
esized error signal could be tested by direct comparison of voltammetric
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and electrophysiological measurements of DA activity. More generally, our
modeling suggests that greater attention should be paid to DA activity over
slower timescales, in electrophysiological as well as neurochemical record-
ings. We particularly suggest that this would be useful in experiments that
manipulate the rates of delivery of reward or punishment since these, in the
model, control tonic DA release.
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