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Recently, statistical models of natural images have shown the emergence
of several properties of the visual cortex. Most models have considered
the nongaussian properties of static image patches, leading to sparse cod-
ing or independent component analysis. Here we consider the basic time
dependencies of image sequences instead of their nongaussianity. We
show that simple-cell-type receptive fields emerge when temporal re-
sponse strength correlation is maximized for natural image sequences.
Thus, temporal response strength correlation, which is a nonlinear mea-
sure of temporal coherence, provides an alternative to sparseness in mod-
eling simple-cell receptive field properties. Our results also suggest an in-
terpretation of simple cells in terms of invariant coding principles, which
have previously been used to explain complex-cell receptive fields.

1 Introduction

The functional role of simple cells has puzzled scientists since the structure
of their receptive fields was first mapped by Hubel and Wiesel in the 1950s
(Palmer, 1999). The first hypothesis concerning their role was based on their
visual appearance, that is, their similarity with edges and bars. The second
major theory was the local spatial frequency analysis theory, which is based
on generally applicable signal processing principles. The current view of the
functionality of sensory neural networks emphasizes learning and the rela-
tionship between the structure of the cells and the statistical properties of
the information they process (see, e.g., Field, 1994; Simoncelli & Olshausen,
2001). A major advance was achieved when Olshausen and Field (1996)
showed that simple-cell-like receptive fields emerge when sparse coding is
applied to natural image data. Similar results were obtained with indepen-
dent component analysis (ICA) shortly after (Bell & Sejnowski, 1997; van
Hateren & van der Schaaf, 1998). In the case of image data, ICA is closely
related to sparse coding (Hyvärinen, Karhunen, & Oja, 2001; Olshausen &
Field, 1997).
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In this article, we show that an alternative principle, temporal coherence
(Becker, 1993; Földiák, 1991; Kayser, Einhäuser, Dümmer, König, & Körding,
2001; Mitchison, 1991; Stone, 1996; Wiskott & Sejnowski, 2002), leads to the
emergence of simple-cell receptive fields from natural image sequences. This
finding is significant because it means that temporal coherence provides a
complementary theory to sparse coding as a computational principle behind
the formation of simple-cell receptive fields. The results also link the theory
of achieving invariance by temporal coherence (Földiák, 1991) to real-world
visual data and measured properties of the visual system. Whereas previous
research has focused on establishing this link for complex cells, we show
that such a connection exists even on the simple-cell level.

Temporal coherence is based on the idea that when processing tempo-
ral input, the representation changes as little as possible over time. Földiák
(1991) was one of the first to suggest the usefulness of temporal coherence
in computational neuroscience. He developed a two-layer network that was
able to learn to identify a fixed feature, such as a line with a fixed orientation,
even if the way the feature was expressed in the data changed, for example,
if the line was translated. Földiák used temporal coherence as a tool to learn
translation invariances: artificially generated input data were temporally
coherent (consecutive input frames contained translated versions of a line
with the same orientation), and by using competition and short-term mem-
ory, the output was also taught to be temporally coherent. This associated
translated versions of a feature with each other.

Several other researchers have studied temporal coherence and other
forms of coherence, such as coherence with respect to different views of the
same scene. For example, in Becker and Hinton (1992) and Stone (1996), sur-
face depth was discovered from stereograms by a multiple layer nonlinear
network. In Becker and Hinton (1992), this was done by using stereograms
representing different views of the same randomly generated scene and
maximizing mutual information between outputs. In Stone (1996), learning
was achieved by using a temporal sequence of slightly different stereograms
and maximizing temporal smoothness of output while preserving variabil-
ity in output. In these studies, the input data sets were generated so that
there was an underlying coherent parameter in the data, and the objective
was to find that parameter by using coherence. Therefore, the main result
was the demonstration of the usefulness of coherence using simulated data.

The contribution of this article is to show that when the input consists
of natural image sequences, the linear filters that maximize temporal re-
sponse strength correlation are similar to simple-cell receptive fields. We
first describe temporal response strength correlation, which is a measure of
temporal coherence, and an algorithm capable of optimizing the measure.
In section 3, we apply this algorithm to natural image sequences. In addition
to the main results, we describe several control experiments that were made
to ensure the validity and novelty of our results. Finally, in section 4, we give
an intuitive explanation of why optimization of the objective function pro-
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duces such results, discuss the spatiotemporal and nonlinear (nonnegative)
extensions of the model, and conclude by discussing the implications of this
work.

2 Temporal Response Strength Correlation

In the basic model, we restrict ourselves to consider linear spatial models of
simple cells. Linear simple-cell models are commonly used in studies con-
cerning the connections between visual input statistics and simple-cell re-
ceptive fields (Bell & Sejnowski, 1997; Olshausen & Field, 1996; van Hateren
& van der Schaaf, 1998), because linearity seems to approximately character-
ize most simple cells (DeAngelis, Ohzawa, & Freeman, 1993b). Extensions
of this basic framework are discussed in sections 4.4 and 4.5.

The model uses a set of spatial filters (vectors) w1, . . . , wK to relate input
to output. Let signal vector x(t) denote the input of the system at time t. A
vectorization of image patches can be done by scanning images column-wise
into vectors. For windows of size N ×N, this yields vectors with dimension
N2. The output of the kth filter at time t, denoted by signal yk(t), is given by
the dot-product

yk(t) = wT
k x(t). (2.1)

Let matrix W = [w1, . . . , wK]T denote a matrix with all the filters as rows.
Then the input-output relationship can be expressed in vector form by

y(t) = Wx(t), (2.2)

where signal vector y(t) = [y1(t), . . . , yK(t)]T.

Temporal response strength correlation, the objective function, is def-
ined by

f (W) =
K∑

k=1

Et{g(yk(t))g(yk(t − �t))}, (2.3)

where the nonlinearity g is strictly convex, even (rectifying), and differen-
tiable. The symbol �t denotes a delay in time. The nonlinearity g measures
the strength (amplitude) of the response of the filter and emphasizes large
responses over small ones (see section 4). Examples of choices for this non-
linearity are g1(x) = x2, which measures the energy of the response, and
g2(x) = ln cosh x, which is a robust version of g1. A set of filters with a
large temporal response strength correlation is such that the same filters
often respond strongly at consecutive time points, outputting large (either
positive or negative) values. This means that the same filters will respond
strongly over short periods of time, thereby expressing temporal coherence
of a population code.
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To keep the outputs of the filters bounded, we enforce the unit variance
constraint on each of the output signals yk(t), that is, we enforce the con-
straint Et{y2

k(t)} = wT
k Cxwk = 1 for all k, where matrix Cx = Et{x(t)xT(t)}.

Additional constraints are needed to keep the filters from converging to
the same solution. Standard methods (Hyvärinen et al., 2001) are either
to force the set of filters to be orthogonal or to force their outputs to be
uncorrelated, from which we choose the latter. This introduces additional
constraints wT

i Cxwj = 0, i = 1, . . . , K, j = 1, . . . , K, j �= i. These uncorrelat-
edness constraints limit the number of filters K we can find so that K ≤ N2.

The unit variance constraints and the uncorrelatedness constraints can be
expressed by the single matrix equation,

WCxWT = I. (2.4)

Note that if we use a nonlinearity g(x) = x2 and �t = 0, the objec-
tive function becomes f (W) = ∑K

k=1 Et{y4
k(t)}. In this case, the optimiza-

tion of the objective function under the unit variance constraint is equiv-
alent to optimizing the sum of kurtoses of the outputs. Kurtosis is a com-
monly used measure in sparse coding. Similarly, in the case of nonlinearity
g(x) = ln cosh x and �t = 0, the objective function can be interpreted as a
nonquadratic measure of the nongaussianity of filter outputs. We return to
this issue in section 3.

Thus, the receptive fields are learned in our model by maximizing the
objective function 2.3 under the constraint 2.4. The optimization algorithm
used for this constrained optimization problem is a variant of the gradi-
ent projection method of Rosen (for the original algorithm, see Luenberger,
1969). The optimization approach employs whitening, that is, a temporary
change of coordinates, to transform the constraint 2.4 into an orthonor-
mality constraint. Then a gradient projection algorithm employing optimal
symmetric orthogonalization can be used. See the appendix for details.

3 Experiments on Natural Image Sequences

3.1 Data Collection. The natural image sequences used as data were
a subset of those used in van Hateren and Ruderman (1998). The original
data set consisted of 216 monochrome, noncalibrated video clips of 192
seconds each, taken from television broadcasts. More than half of the videos
feature wildlife; the rest show various topics, such as sports and movies.
Sampling frequency was 25 frames per second, and each frame was block-
averaged to a resolution of 128 × 128 pixels. For our experiments, this data
set was pruned to remove the effect of human-made objects and artifacts.
First, many of the videos feature human-made objects, such as houses and
furniture. Such videos were removed from the data set, leaving us with
129 videos. Some of these 129 videos had been grabbed from television
broadcasts, and there was a wide black bar with height 15 pixels at the
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top of each image, probably because the original broadcast had been in
wide screen format. Our sampling procedure never took samples from this
topmost part of the videos. If these artifacts were not removed from the
data set, the static ICA results computed for comparison showed longer
horizontal and vertical receptive fields than results obtained from scenes
without the artifacts. The final, preprocessed (see below) data set consisted
of 200,000 pairs of consecutive 11×11 image windows (patches) at the same
spatial position, but �t milliseconds apart from each other. Depending on
the experiment, �t varied between 40 ms and 960 ms. However, because of
the temporal filtering used in preprocessing, initially 200,000 longer image
sequences with a duration of �t+400 ms, and the same spatial size 11×11,

were sampled with the same sampling rate.
A second data set was needed for computing the corresponding (static)

ICA solution for comparison. This data set consisted of 200,000 11 × 11
images sampled from the same video data.

3.2 Preprocessing. The preprocessing in the main experiment consisted
of three steps: temporal decorrelation, subtraction of local mean, and nor-
malization. (The same preprocessing steps were applied in the control ex-
periments. Whenever preprocessing was varied in control experiments, it
is explained separately below.) Temporal decorrelation can be motivated
in two ways. First, it can be motivated biologically as a model of temporal
processing at the lateral geniculate nucleus (Dong & Atick, 1995). Second,
for �t = 0, the objective function can be interpreted as a measure of sparse-
ness. Therefore, it is important to rule out the possibility that there is barely
any change in short intervals in video data, since this would imply that our
results could be explained in terms of sparse coding or ICA. To make the
distinction between temporal response strength correlation and measures
of sparseness clear, temporal decorrelation was applied because it enhances
temporal changes. Note, however, that this still does not remove all of the
static part in the video, an issue addressed in the control experiments that
follow.

To investigate the effect of temporal decorrelation, we first examined the
histogram of the distances between subsequent image windows separated
by �t = 40 ms, shown in Figure 1A. (This histogram also shows that there
are indeed large changes between subsequent time points even without tem-
poral decorrelation.) The local mean has been removed from these windows,
and they have been normalized (see below); note that 2 is maximal distance
because of normalization. Temporal decorrelation was performed with a
temporal filter, shown in Figure 1B. The Fourier magnitude of the filter was
computed by inverting the amplitude spectrum of input data. A Wiener
filter approach was used in order not to amplify high-frequency noise. (We
determined the filter directly from data—see Dong & Atick, 1995—for an
analytic solution.) Noise power was estimated by assuming that it is equal
to signal power at 5.5 Hz, a value also used in Dong and Atick (1995). Phases
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Figure 1: Temporal decorrelation enhances temporal changes. (A) Distribution
of Euclidean distances between consecutive samples at the same spatial position,
but 40 ms apart from each other, without temporal decorrelation. Note that two is
the maximum value because of normalization. (B) The temporally decorrelating
filter. (C) Distribution of Euclidean distances between consecutive samples at
the same spatial position, but 40 ms apart from each other, after temporal decor-
relation. (D) Distribution of Euclidean distances between consecutive samples
at the same spatial position, but 120 ms apart from each other, after temporal
decorrelation. Note that removal of DC component and normalization were also
performed in all of these cases.

were determined by adding a minimum energy delay constraint on the fil-
ter (see Oppenheim & Schafer, 1975). Filter length was originally 2500 ms
but was truncated to 400 ms because this part contains over 99% of filter
energy. When short image sequences of length �t + 400 ms are filtered with
this temporal filter, the resulting sequences are of length �t. From each of
these temporally filtered short sequences, two windows separated by �t
were taken. Figure 1C shows the distribution of the distances between such
temporally decorrelated windows, after removal of local mean and normal-
ization (see below), when �t = 40 ms. This histogram shows that temporal
decorrelation enhances temporal changes in the data. Figure 1D shows the
distribution of the distances between temporally decorrelated windows, af-
ter removal of local mean and normalization, when �t = 120 ms. In this
case, consecutive windows are, on average, quite far from each other when
measured with the Euclidean norm. In fact, the peak of the histogram is
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approximately at 1.4, which for normalized vectors means that a large part
of the consecutive windows are approximately orthogonal to each other.

After temporal decorrelation, the local mean (DC component) was sub-
tracted from each window. This reduces the number of dimensions of the
data by one, so with image window size N = 11, the number of filters
K ≤ 120. Finally, the sample vectors (vectorized windows) were normalized
to have unit Euclidean norm, which can be considered a form of contrast
gain control (Carandini, Heeger, & Movshon, 1997; Heeger, 1992). Note that
no spatial low-pass filtering or dimensionality reduction was performed
during preprocessing.

In the case of the second data set, which was used to compute the cor-
responding static ICA solution, preprocessing consisted of removal of the
local mean, followed by normalization. Temporal decorrelation was not
performed here, since it has no meaning in the case of static image data.

3.3 Results: Temporally Coherent Filters of Natural Image Sequences.
The main experiment consisted of running the symmetric gradient projec-
tion algorithm 50 times using different random initial values, followed by
a quantitative analysis of these results, as well as results obtained with a
corresponding ICA algorithm. In this experiment, �t was 40 ms. The num-
ber of extracted filters was set at the maximum value K = 120. Nonlinearity
g in objective function 2.3 was chosen to be g(x) = ln cosh x because of its
robustness against outliers (Hyvärinen et al., 2001).

Figure 2 shows the resulting filters (i.e., rows of matrix W) of the first run.
The filters have been ordered according to Et{g(yk(t))g(yk(t − �t))}, that is,
according to their “contribution” into the final objective value (filters with
largest values top left). The filters resemble Gabor filters. They are localized
and oriented and have different scales. These are the main features of simple-
cell receptive fields (Palmer, 1999).

When compared qualitatively with earlier reported results, obtained with
sparse coding and independent component analysis (Bell & Sejnowski, 1997;
Olshausen & Field, 1996; van Hateren & van der Schaaf, 1998), our results
show a larger variety of different spatial scales. To compare the results quan-
titatively, we extracted a corresponding set of 50 ICA separation matrices
using the symmetric fixed-point ICA (FastICA) algorithm, with robust non-
linearity tanh (Hyvärinen et al., 2001). This algorithm is a symmetric version
of that used in van Hateren and van der Schaaf (1998). The symmetric nature
of the algorithm facilitates extracting a balanced set of filters (Hyvärinen et
al., 2001). Filters maximizing temporal response strength correlation were
compared against the rows of the separating matrix (the ICA filters), since
these filters are the natural counterparts in ICA (van Hateren & van der
Schaaf, 1998). Figure 3 shows the ICA filters obtained from the first run.

In the quantitative comparison of the results, we measured the most im-
portant properties of the receptive fields. The results are shown in Figure 4.
The measured properties were peak spatial frequency (see Figures 4A and
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Figure 2: Temporally coherent filters of natural image sequences, given by the
first run of the main experiment. The filters were estimated from natural image
sequences by optimizing temporal response strength correlation with the sym-
metric gradient projection algorithm (here nonlinearity g(x) = ln cosh x). The
filters have been ordered according to Et{g(yk(t))g(yk(t−�t))}, that is, according
to their contribution into the final objective value (filters with largest values at
top left).

4B; note the logarithmic scale and units cycles per pixel), peak orientation
(see Figures 4C and 4D), spatial frequency bandwidth (see Figures 4E and
4F), and orientation bandwidth (see Figures 4G and 4H). See van Hateren
and van der Schaaf (1998) for definitions of these measures. Although there
are some differences, the most important observation here is the similar-
ity of the histograms. This supports the idea that ICA/sparse coding and
temporal coherence are complementary theories, in that both result in the
emergence of simple-cell-like receptive fields. As for the differences, the re-
sults obtained using temporal response strength correlation have a slightly
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Figure 3: For comparison, ICA filters estimated from natural image sequences
by using the symmetric fixed-point algorithm. Note that these filters have a
much less smooth appearance than in most published ICA results; this is because
for comparison, we show here the filters and not the basis vectors, and further,
no low-pass filtering or dimension reduction was applied in the preprocessing.

smaller number of high-frequency receptive fields. Also, temporal response
strength correlation seems to produce receptive fields that are somewhat
more localized with respect to both spatial frequency and orientation.

When the results are compared against the results in van Hateren and van
der Schaaf (1998), the most important difference is the peak at zero band-
width in Figures 4E and 4F. This difference is probably a result of the fact that
no dimensionality reduction, antialiasing, or noise reduction was performed
here, which results in the appearance of very small, checkerboard-like re-
ceptive fields. This effect is more pronounced in ICA, which also explains
the stronger peak at the 45 degree angle in Figure 4D.
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Figure 4: Comparison of properties of receptive fields obtained by optimizing
temporal response strength correlation (left column, histograms A, C, E, and G)
and estimating ICA filters (right column, histograms B, D, F, and H). See the text
for details.
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3.4 Control Experiments. To ensure the novelty and validity of our re-
sults, we made eight control experiments. All other aspects, except those
specifically mentioned here, were similar in these experiments as in the
main experiment.

3.4.1 Control Experiment I: No Temporal Decorrelation. In the main ex-
periment, we used temporally decorrelated data. However, as was seen in
Figure 1, there is considerable temporal change in natural video data even
without temporal decorrelation. Therefore, it is reasonable to ask whether
temporal decorrelation is necessary for achieving results like those shown in
Figure 2. To answer this question, the algorithm was run for data that were
not temporally decorrelated. The results are shown in Figure 5A. Although
the filters with highest-frequency components seem to be somewhat less lo-
calized, the results remain qualitatively very similar to those in Figure 2 in
that they also resemble Gabor filters. This suggests that the simple-cell-like
properties of the results of the main experiment are not a consequence of
temporal decorrelation.

3.4.2 Control Experiments II–IV: Longer �t. In the main experiment, con-
secutive samples were separated by 40 ms. Does the phenomenon found in
the main experiment hold only for very small �t? To answer this question,
we examined the case �t = 120 ms in control experiment II. As can be seen
in Figure 1D, with this time separation, preprocessed consecutive sample
windows are typically much farther from each other than when �t = 40 ms.
Figure 5B shows the results of applying the symmetric gradient projection
algorithm to this data. Although the receptive fields are now larger than
in the main experiment, the results are still qualitatively similar. This im-
plies that the discovered relationship applies to short-time natural image
sequences in general, not only for some specific value of �t.

It seems natural that there would be an upper limit for which the results
are no longer qualitatively similar to those in Figure 2. This is indeed the
case. The degree of spatial localization decreases when �t increases. This
can already be seen to some degree in Figure 5B and is more pronounced in
the results of control experiment III, in which �t = 480 ms (see Figure 5C). In
the 480 ms case, most of the filters are poorly localized, resembling Fourier
basis vectors corresponding to different frequencies. As �t becomes large
enough, spatial localization disappears, and filters also start to lose their ori-
entation selectivity. This is illustrated in Figure 5D for �t = 960 ms (control
experiment IV).

3.4.3 Control Experiment V: Randomly Selected Consecutive Windows. Con-
trol experiment V was made to ensure that the results reflect the dynamics
of natural image sequences, and not just the relationship between any ar-
bitrary image patches. Instead of using samples separated by �t, random
image samples were chosen as consecutive window pairs. No temporal
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C D

Figure 5: Results of control experiments I–IV. (A) Results of control experiment
I in which no temporal decorrelation was performed. (B) Results of control
experiment II in which �t = 120 ms. (C) Results of control experiment III in
which �t = 480 ms. (D) Results of control experiment IV in which �t = 960 ms.

decorrelation was done here, since random window pairs do not have a
temporal relationship. Figure 6A shows the resulting spatial filters, which
correspond to noise patterns, indicating that the original results in Figure 2
do reflect natural image sequence dynamics.

3.4.4 Control Experiment VI: Complete Removal of the Static Part of Video.
In most experiments, the data were temporally decorrelated, leading to en-
hanced temporal change. For example, note from Figure 1D that in the case
�t = 120 ms, after preprocessing (including the normalization step), the
peak of the histogram of distances between preprocessed consecutive win-
dows is at approximately 1.4. Remembering that the samples have been
normalized, this indicates that a large part of the preprocessed sample con-
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Figure 6: Results of control experiments V–VIII. (A) Results of control experi-
ment V in which consecutive window pairs were chosen randomly. (B) Results
of control experiment VI in which the static part of natural image sequences was
removed altogether by employing Gram-Schmidt orthogonalization to consecu-
tive windows. (C) Results of control experiment VII in which observer (camera)
movement was compensated by using a tracking mechanism. (D) Results of
control experiment VIII in which ordinary linear correlation between output
values was maximized.

sists of consecutive windows that are approximately orthogonal to each
other. This supports the idea that our results are not a consequence of the
static part of natural image sequences.

However, since preprocessing does not remove the static part of the video
completely, we made another control experiment (control experiment VI),
with �t = 120 ms, in which the static part was removed altogether. This was
done by modifying the preprocessing step so that no temporal decorrelation
was done; instead, after removal of the local mean, consecutive windows
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were orthonormalized using the Gram-Schmidt procedure. This removes
the static part, the part present already at time t − �t, from the window
at time t completely. No other form of temporal filtering was performed in
this experiment.

Figure 6B shows the results of this control experiment. The resulting
filters are still localized and oriented and have different scales. This shows
that the qualitative nature of our results is not a consequence of the static
part of natural image sequences. The filters are more localized than in the
corresponding experiment with temporal decorrelation, probably because
removal of the static part is more likely to remove large features from the
data (see section 4). If the same orthogonalization procedure is applied in
the case �t = 40 ms, the results (not shown) are even more localized. This
suggests that here too, as in the case of temporally decorrelated data, the
degree of spatial localization is a function of �t.

3.4.5 Control Experiment VII: Compensation of Observer Movement. Con-
trol experiment VII was made to study the role of observer (camera) move-
ment. To compensate for this movement, a simple correlation-based tracking
mechanism was implemented into the sampling procedure. Tracking was
applied before temporal filtering (temporal decorrelation), so each 440 ms
(= �t + 400 ms) sequence was tracked. Let x1 be the first vectorized sample
window in a 440 ms sequence, and Xn be the set of candidate windows in
the nth video frame of the sequence, differing at most 10 pixels from the
spatial position of the first window x1. The nth window xn was chosen by

xn = arg maxx∈Xn

xT
n−1x

‖xn−1‖‖x‖ . The results, shown in Figure 6C, are qualitatively
similar to the original results, showing that the main results are not a con-
sequence of observer movement. The number of low-frequency receptive
fields seems to be smaller in the control results. This change is probably
caused by decreased large-scale movement (see section 4).

3.4.6 Control Experiment VIII: Ordinary Linear Correlation. Finally, the
purpose of control experiment VIII was to show that higher-order cor-
relation is indeed needed for the emergence of simple-cell-like filters. To
study this, we computed the optimal filter solutions for maximizing lin-
ear correlation f�(wk) = Et{yk(t)yk(t − �t)} (see also Mitchison, 1991).1

The unit variance constraint is used here again, so the problem is equiv-
alent to minimizing Et{(yk(t) − yk(t − �t))2} with the same constraint. A

1 Note that this objective function is defined for single filters. A similar single-unit
rule for optimizing Et{g(yk(t))g(yk(t − �t))} can be defined and optimized for temporal
response strength correlation. The optima for this objective function are similar to those in
Figure 2, but the receptive fields are more elongated. In addition, there are problems with
obtaining a complete basis because a deflationary algorithm (Hyvärinen et al., 2001), in
which first-extracted solutions dominate, has to be used. In the case of linear correlation,
we do not have this problem since a closed-form solution can be found.
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closed-form solution can be derived from necessary Karush-Kuhn-Tucker
(KKT) conditions and an additional zero DC constraint. Let Cx = EDET,

from which the DC eigenvector corresponding to zero eigenvalue has been
dropped out. The necessary conditions are fulfilled by those eigenvectors of
ED−1ETEt{(x(t) − x(t − �t))(x(t) − x(t − �t))T} that correspond to nonzero
eigenvalues. Analysis of sufficient KKT conditions reveals that the filters
fulfilling the first-order conditions behave as in the case of principal com-
ponents; that is, after the minimizing filter is found and removed from
the set of eigenvectors, another eigenvector from the set will be the next
minimum, assuming that the output of the next selected filter has to be
uncorrelated with the outputs of the previously selected ones. The eigen-
vector corresponding to the smallest eigenvalue is the global minimum, and
the next minimum is the one with the next smallest eigenvalue. Figure 6D
shows the resulting filters, sorted according to the corresponding eigen-
value (smallest eigenvalue top left). These filters resemble Fourier basis
vectors, and not simple-cell receptive fields. Thus, we see that emergence of
localized receptive fields requires the use of a nonlinear temporal correlation
measure.

4 Discussion

4.1 Temporal Coherence of Large Responses. Temporal response
strength correlation, as defined by equation 2.3, does not explicitly mea-
sure the rate of change of the output signal. Therefore, it is important to
examine what type of temporal coherence the objective function measures.
In order to do this, consider three different temporally uncorrelated signals,
y1(t), y2(t), and y3(t), depicted in Figure 7. (Note that in the main experi-
ment, the output signals yk(t) are temporally uncorrelated because they are
spatially linearly filtered from temporally decorrelated input data.) All of
these signals have unit energy and a gaussian marginal distribution. Sig-
nals y2(t) and y3(t) have been created by reordering the samples of y1(t) so
that they contain two intervals of high amplitude (see the figure caption for
details). Signal y3(t) has the largest temporal response strength correlation
of these signals, as measured by equation 2.3. This is because the objective
function emphasizes the temporal coherence of large amplitudes. This is
not true for an arbitrary measure of amplitude correlation. For example, for
g(x) = √|x| (concave on interval ]0, ∞]), signal y2(t) has a larger measure
than y3(t) ( f (y2(t)) ≈ 0.73, f (y3(t)) ≈ 0.71).

4.2 Temporal Coherence vs. Sparseness. We saw in the previous section
that our objective function gives large values when both yk(t) and yk(t−�t)
have large amplitudes, thus emphasizing the correlation of large activations.
This property must not, however, be confused with sparseness. Sparseness
of yk(t) means that very large amplitudes, as well as very small ones, are
relatively common. It is thus a property of the marginal distribution of
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Figure 7: Temporal response strength correlation emphasizes temporal coher-
ence of large amplitudes. Three temporally uncorrelated signals y(t) with unit
energy and gaussian marginal distributions (A,C,E) and their rectified magni-
tudes ln cosh y(t) (B,D,F). The signals in C and E were obtained by rearranging
the time indices of the signal in A. This was done so that the two intervals
of high amplitude in these signals contain the samples with the largest am-
plitudes, in random order. In C, the total length of the intervals is half of the
total signal length; in E, this ratio is 1

5 . The signal in E has the largest tempo-
ral response strength correlation, as measured by equation 2.3 ( f (y1(t)) ≈ 0.13,

f (y2(t)) ≈ 0.23, f (y3(t)) ≈ 0.29). This illustrates the fact that the objective func-
tion emphasizes the temporal correlation of large amplitudes. See the text for
discussion.
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A B

Figure 8: Examples of transformations inducing approximate local translations.
The local area is marked with a dashed square. (A) Planar rotation. (B) Bending.

yk(t). The temporal correlation of large amplitudes says nothing about their
frequency or any other aspect of the marginal distribution of yk(t). All the
signals in Figure 7 (on the left) have a gaussian marginal distribution, yet
the signals vary considerably in their temporal coherence, as measured by
our objective function.

Our measure of temporal coherence could indirectly measure the mar-
ginal distribution (sparseness) only where there is little change in the data,
that is, if the static part of the image sequence dominates. However, this
possibility was ruled out by the use of temporal decorrelation, which en-
sures that there is quite a large amount of change in the data, as shown in
Figure 1. Ultimately, control experiment VI showed that the use of tempo-
ral coherence produced similar results even if the static part was removed
completely, thus proving that the principle of temporal coherence is distinct
from sparse coding.

4.3 An Intuitive Explanation of Results.

4.3.1 The Importance of Translation in Natural Image Sequences. The most
universal local visual properties of objects are edges and lines, so we limit
the discussion here to their dynamic properties. Objects can undergo a num-
ber of transformations in image sequences: translation, rotation, occlusion,
and, for nonrigid objects, deformation. A transformation in the 3D space
can induce a different transformation in an image sequence. For example,
a translation toward the camera induces a change of object size in the im-
age sequence. Our hypothesis is that for local edges and lines and during
short time intervals, most 3D object transformations result in local transla-
tions of these elements in image sequences. This is, of course, true for 3D
translations of objects. Figure 8 illustrates this phenomenon for two other
transformations: a planar rotation and bending of an object. Note that the
effect illustrated in Figure 8A is even more pronounced if object rotation is
not purely planar.
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4.3.2 Why Gabor-Like Filters Maximize Correlation of Square-Rectified Re-
sponses. In order to demonstrate the correlation of square-rectified re-
sponses at consecutive time points, we will consider the interaction of
features and filters in one dimension (orthogonal to the orientation of the
filter). This allows us to consider the effect of local translations in a sim-
plified setting. Figure 9 illustrates, in a simplified case, why the tempo-
ral response strengths of lines and edges correlate positively as a result
of Gabor-like filter structure. Prototypes of two different types of image
elements—the profiles of a line and an edge—which both have a zero DC
component, are shown in the topmost row of the figure. The leftmost col-
umn shows the profiles of three different filters with unit norm and zero
DC component: a Gabor-like filter, a sinusoidal (Fourier basis–like) filter,
and an impulse filter. The rest of the figure shows the square rectified re-
sponses of the filters to the inputs as functions of spatial displacement of the
input.

Consider the rectified response of the Gabor-like filter to the line and
the edge. The squared response at time t −�t (spatial displacement zero) is
strongly positively correlated with response at time t, even if the line or edge
is displaced slightly. This shows how small local translations of basic image
elements still yield large values of temporal response strength correlation
for Gabor-like filters. If you compare the responses of the Gabor-like filter
to the responses of the sinusoidal filter, you can see that the responses to the
sinusoidal filter are typically much smaller. This leads to a lower value of our
measure of temporal response strength correlation that emphasizes large
values. Also, while the response of an impulse filter to an edge correlates
quite strongly over small spatial displacements, when the input consists of
a line, even a very small displacement will take the correlation to almost
zero.

Thus, we can see that when considering three important classes of filters—
filters that are maximally localized in space, maximally localized in fre-
quency, or localized in both—the optimal filter is a Gabor-like filter localized
in both space and frequency. If the filter is maximally localized in space, it
fails to respond over small spatial displacements of very localized image
elements. If the the filter is maximally localized in frequency, its responses
to the localized image features are not strong enough.

Figure 10 shows why we need nonlinear correlations instead of linear
ones: raw output values might correlate either positively or negatively, de-
pending on the displacement. Thus, we see why ordinary linear correlation
is not maximized for Gabor-like filters, whereas the rectified (nonlinear)
correlation is.

4.3.3 Emergence of Simple-Cell-Like Filters. Future research is needed to
provide a detailed analysis of which properties of natural image sequence
data are needed for the emergence of simple-cell-like filters. However, at
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Figure 9: A simplified illustration of why a Gabor-like filter, localized in both
space and frequency, yields larger values of temporal response strength corre-
lation than a filter localized only in space or only in frequency. Top row: cross
sections of a line (left) and an edge (right) as functions of spatial position. Left-
most column: cross sections of three filters with unit norm and zero DC compo-
nent: a Gabor-like filter (top), a sinusoidal filter (middle), and an impulse filter
(bottom). The other plots in the figure show the responses of the filters to the
inputs as a function of spatial displacement of the input. The Gabor-like filter
yields fairly large positively correlated values for both types of input. The sinu-
soidal filter yields small response values. The impulse filter yields fairly large
positively correlated values when the input consists of an edge, but when the
input consists of a line, even a small displacement yields a correlation of almost
zero.
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input
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filter raw output
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Figure 10: A simplified illustration of why nonlinear correlation is needed for
the emergence of the phenomenon. Raw response values of the Gabor-like filter
to the line and edge may correlate positively or negatively, depending on the
displacement. (See Figure 9 for an explanation of the layout of the figure.)

this point, we can provide a set of hypotheses as to why oriented, localized
filters with multiple scales emerge from the data:

Orientation. The filters are oriented because the contours (edges and lines)
in image sequences are oriented. Because our objective function empha-
sizes strong responses, the filters need to be matched to the dominant
features in the data (see Figure 9).

Localization. As illustrated in Figure 9, the features are limited in width
because lines and edges are mostly limited in width as well, and because
short-time translations are very local. This second point is supported
by the results of control experiments II through IV (see Figures 5B–5D),
which showed that when �t is increased, localization decreases. The fea-
tures are limited in length for the same reason that they are limited in
ICA or sparse coding: contours in real images have some curvature. Even
a weak curvature makes the match (dot-product) with an elongated Ga-
bor quite weak, and gives poor temporal coherence (Hoyer & Hyvärinen,
2002).

Multiple scales. The filters respond to multiple scales for two reasons. The
first reason is the scale invariance of natural image sequences. This expla-
nation is supported by the results of control experiment VI (Figure 6B), in
which the static part of image sequences was removed completely. The
results exhibit a narrower range of different scales because removal of the
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static part of the sequences is more likely to remove large features. The
second reason is that the features move with many different velocities
in the data. This is supported by the results of control experiment VII
(see Figure 6C), in which tracking was used to compensate for observer
movement. The results exhibit a narrower range of different scales, be-
cause tracking is likely to reduce the velocity of moving features in the
data.

4.4 The Case of Spatiotemporal Receptive Fields. Due to limited com-
putational resources, we are currently unable to estimate the most tem-
porally coherent spatiotemporal receptive fields. However, argumentation
similar to the intuitive explanation provided above can be given to illustrate
a similar phenomenon in the spatiotemporal case. Figure 11 illustrates a case
in which a vertical line is moving in the image sequence. The response of a
simple-cell-like motion-selective spatiotemporal filter (DeAngelis, Ohzawa,
& Freeman, 1993a), whose spatiotemporal position and orientation match
the initial position of the line and its direction of movement, is large in
magnitude at consecutive time points. This illustrates how large tempo-
ral response strength correlation could arise in the case of spatiotemporal
receptive fields.

4.5 The Case of a Nonlinear (Nonnegative) Cell Model. Linear filters
with negative coefficients or negative-valued data have signed outputs.
Their widespread use as simple-cell models is often motivated by an inter-
pretation in which the term simple cell in fact refers to a unit of two cells.
These two positive-output cells, with reversed polarities, are modeled us-
ing a single linear filter with signed output.2 This two-cell approach will
be explained in detail below. At this point, notice that this coupling is very
different from complex-cell pooling of simple cells. In complex-cell pooling,
the coupled cells respond to similar features at different spatial positions,
whereas two cells with opposite polarities respond to similar features at the
same spatial position.

For single simple cells, a more realistic basic model of the mapping from
input to output via a receptive field is a combination of linear filtering and
a nonlinearity called half-wave rectification (Heeger, 1992). Using the same
notation as above, the output of the cell, yk(t), is computed by

yk(t) = max{0, wT
k x(t)}, (4.1)

instead of the purely linear input-output relationship, equation 2.1. In this
model, the output of a cell is never negative.

2 Another possibility would be to consider the negative and positive values as changes
from maintained firing rate. However, simple cells have a low maintained firing rate,
which makes this approach undesirable (Heeger, 1992).
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Figure 11: An illustration of how temporal response strength correlation could
be exhibited by the outputs of simple-cell-like spatiotemporal receptive fields.
A phenomenon analog to translation in the spatial case can be observed in
the spatiotemporal case. Let x and y denote the horizontal and vertical spatial
coordinates, respectively, and let t denote the temporal coordinate. (A) The spa-
tiotemporal trace (solid line) of a moving vertical line is shown here in the x–t
coordinate system. The plot is similar for all y-coordinates because the moving
line is vertical. Two different overlapping spatiotemporal input windows, sep-
arated by a small time difference, are also marked: one with dashed line and
the other with dotted line. (B) A simple-cell-like spatiotemporal receptive field,
with position and orientation that match the initial position of the line and its
direction of movement, responds strongly to the moving line. Here the spa-
tiotemporal filter has been superimposed over the dashed temporal window.
White indicates large, positive values in the filter, dark indicates large negative
values, and middle gray indicates zero values. (C) When the same spatiotem-
poral receptive field, at the same spatial position, is applied to the same input a
moment later (dotted spatiotemporal input window), the response is still strong,
but the sign changes. Therefore, the temporal response strength correlation of
the outputs of the simple-cell-like spatiotemporal receptive field would be large
for this kind of input.

The purely linear model 2.1 combines the outputs of two such positive-
output simple cells with reversed polarities. This is implemented so that
the positive output values correspond to the output of one cell, and the
negative values correspond to the output of another cell, with otherwise
similar receptive field except for a change of the sign of all the connection
weights. The exact way an input pattern is mapped into a response in such a
model is as follows. Let yk,1(t) and yk,2(t) denote the outputs of two cells with
reversed polarities. Their outputs are given according to equation 4.1 by
yk,1(t) = max{0, wT

k x(t)} and yk,2(t) = max{0, −wT
k x(t)}. The overall output
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is defined as

yk(t) = yk,1(t) − yk,2(t). (4.2)

It is straightforward to show that this model is equivalent to a purely linear
model, that is, that yk,1(t) − yk,2(t) = wkx(t).

Therefore, one might interpret our model as measuring the temporal
coherence of this two-cell unit, where the cells have similar receptive fields
with reversed polarities. A large value of the objective function indicates
that either of the two cells responds strongly to the input. As mentioned
above, using the linear model is a common approach. The same model is
used, for example, in Bell and Sejnowski (1997), Olshausen and Field (1996),
and van Hateren and van der Schaaf (1998), which makes the comparison
of results obtained with these different models feasible.

However, a natural question is whether the same principle applies to the
outputs of individual, half-wave rectified simple cells. To address this issue,
we computed the optimal solution for half-wave rectified cell outputs, that
is, replaced the original linear input-output relationship (see equation 2.1)
with the half-wave rectified relationship (see equation 4.1), and computed
the optimal solution for this model. The same constraint (see equation 2.4)
was used in this case for simplicity. Instead of using the temporally decor-
related data set, we used the orthonormalized data set with �t = 120 ms,
also used in control experiment VI (see section 3.4.4). This is because by
using the orthonormalized data set, we excluded the possibility of obtain-
ing simple-cell-like receptive fields because of the static part of the video.
This is important here since the static part might yield positive responses at
consecutive time instances.

The results of this experiment are shown in Figure 12A. Although the
features are not as well defined as before, the resulting filters still show
orientation, localization, and different spatial scales.

What is the reason for the emergence of such features even in this case
when the negative part of the linear filter response has been discarded and
the static part of the video has been removed completely? First, as in the
purely linear case, the objective function emphasizes the temporal correla-
tion of large responses, and oriented and localized filters respond strongly
to lines and edges. But how does temporal correlation arise? An illustration
of a possible explanation is shown in Figure 12B. When a Gabor-like filter
is applied to a line, the half-wave rectified output still correlates positively
over time, but more weakly and over longer spatial displacements.

Finally, let us note that some form of temporal coherence of simple-cell
outputs is implicitly assumed in many studies. The firing rate of a simple
cell is typically assumed to code for the output of a linear filter, possibly after
some simple nonlinear transformations, such as half-wave rectification. This
requires that the output of the linear filter has some temporal coherence. If
the output of the linear filter changes quite randomly, the firing rate cannot
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Figure 12: Temporal response strength correlation for a half-wave rectified (non-
linear, nonnegative) cell model. (A) The results of running the algorithm for a
nonlinear cell model with half-wave rectification of cell output. (B) When a
simple-cell-like filter is applied to an input containing a moving line, the half-
wave rectified output is still correlated positively over time, but the correlation
is weaker, and the spatial displacement needed for the correlation is larger. Cross
sections of a line (left) and a filter (middle), and the half-wave rectified output
(right). See also Figure 9.

provide much information on the output, because then the firing rate is
very noisy when computed over short time intervals. Thus, maximization
of temporal coherence could have a relation to maximization of the efficiency
of a code based on firing rates.

4.6 Implications of Our Results. In this article, we have shown that
simple-cell-type receptive fields maximize temporal response strength cor-
relation at cell output when the input consists of natural image sequences.
Temporal response strength correlation, or temporal correlation of recti-
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fied cell outputs, can be considered as a measure of temporal coherence.
Our findings have several important implications. First, temporal coher-
ence provides an alternative or complementary theory to sparse coding as a
computational principle behind the formation of simple-cell receptive fields.
The application of either one of these principles results in the emergence of
simple-cell properties from natural data.

Second, Földiák and others (Földiák, 1991; Kayser et al., 2001; Kohonen,
Kaski, & Lappalainen, 1997; Wiskott & Sejnowski, 2002) have proposed that
invariant visual representations, such as those found in complex cells, can
be found by maximizing temporal coherence. (For an alternative complex-
cell model using sparse coding, see Hyvärinen & Hoyer, 2001.) Our results
show that this principle is applicable to the visual system even on the level
of simple cells, which usually are not considered as invariant detectors.
Although in some complex-cell models (Kayser et al., 2001; Kohonen et al.,
1997) simple-cell receptive fields are obtained as by-products, the learning
is strongly modulated by the complex cells and therefore is very different
from our model, which considers only the statistics of simple-cell outputs.
Moreover, the simple-cell receptive fields learned in Kayser et al. (2001) and
Kohonen et al. (1997) do not seem to have the important properties of spatial
localization and multiresolution (different scales).

Furthermore, whereas most earlier research results linking temporal co-
herence and properties of visual system have been based on theoretical
considerations and simulated data, the results published in this article have
been computed from natural image sequence data. To our knowledge, this
is the first time that localized and oriented receptive fields, with different
scales, have been shown to emerge from natural data using the principle of
temporal coherence. A step like this is important for any theory that tries
to explain the structure and functionality of sensory neural networks using
the statistical properties of natural input data.

Appendix: Details of the Symmetric Gradient Projection Algorithm

This appendix gives a detailed description of the optimization algorithm.
First, the maximization of objective function 2.3 under constraint 2.4 can be
made easier by employing whitening, a temporary change of coordinates,
so that constraint 2.4 is transformed into an orthonormality constraint. Let
equation Cx = EDET denote the eigenvalue decomposition of matrix Cx.

If an eigenvalue of Cx is zero, then that eigenvalue can be dropped out of
eigenvalue matrix D, and the corresponding eigenvector can be removed
from eigenvector matrix E. This was the case in our experiments because
preprocessing reduced the dimensionality of input data x(t) by one when
the DC component was removed from data. This dimensionality reduction
also means that the number of filters that can be extracted is K ≤ N2 − 1.
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Defining matrix

U = WED1/2, (A.1)

constraint 2.4 can be expressed as an orthonormality constraint,

UUT = I. (A.2)

This simpler constraint will be easier to handle in the optimization algorithm
below.

To express objective function 2.3 using the same transformed filter matrix
U, we have to solve equation A.1 for matrix W. This is equivalent to solving
matrix equation ETD1/2WT = UT. In the case where the DC component
has been removed, this is an underdetermined set of linear equations. By
imposing the additional zero DC constraint on the filters in rows of W, the
solution is given by

W = UD−1/2ET (A.3)

(see Hurri, 1997, for details). Substituting this into equation 2.2 gives

y(t) = UD−1/2ETx(t) = Uz(t), (A.4)

where signal vector z(t) = D−1/2ETx(t). This transformation from input
data x(t) to z(t) is called PCA whitening (Hyvärinen et al., 2001).

The above shows that after input data x(t) are whitened, we can optimize

f (U) =
K∑

k=1

Et{g(yk(t))g(yk(t − �t))}, (A.5)

where output y(t) is given by equation A.4, with respect to orthonormality
constraint A.2. When the solution to this problem is found, the solution to
the original problem is given by equation A.3.

The actual optimization algorithm used for this constrained optimiza-
tion problem is a variant of the gradient projection method of Rosen (for
the original algorithm, see Luenberger, 1969). Let α(m) be a nonnegative
decreasing sequence of real numbers, which converges to zero (initial step
length α(0) is changed adaptively to speed up convergence). Let U(0) be
a random orthonormal matrix, and let U(n) be the value of matrix U at it-
eration n. The algorithm finds a new candidate point by projecting matrix
U(n) + α(m)

df (U(n))

dU onto the constraint surface defined by equation A.2. If
the candidate point is not an improvement, m is increased by one to find a
new candidate point.

The critical step in the algorithm is the projection onto the constraint
surface. This is achieved by optimal symmetric orthogonalization. Let A
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be a square matrix with full rank. Then B = A(ATA)−1/2 is the nearest
orthonormal matrix to A with respect to Frobenius matrix norm (see Fan &
Hoffman, 1955, theorem 1, for a generalized proof of this). This is exactly
the property required to achieve the projection step.

The resulting algorithm for maximizing temporal response strength cor-
relation (TRSC) is shown below. The input arguments of the program are
whitened data vectors z(t), convergence tolerance ε, and initial step length
α(0) (in this version α(m) = α(0)

2m ). Adaptation of initial step length α(0) is
not included in this description. The algorithm assumes convergence when
the objective function changes very little between successive steps. In our
experiments, convergence tolerance ε varied between 10−3 and 10−6. Note
that denoting U = [u1 · · · uK]T, the kth row of df (U)

dU is given by the trans-
pose of

∂ f (U)

∂uk
= ∂

∂uk
Et{g(yk(t))g(yk(t − �t))}

= Et{g′(yk(t))g(yk(t−�t))z(t) + g(yk(t))g′(yk(t−�t))z(t−�t)}.

funct U = max TRSC(z(t), ε, α(0))

U(0) := rand() comment: A random initial starting point.
U(0) := symmetricOrth(U(0))

f Old := 0
n := 0
while f (U(n)) − f Old > ε

f Old := f (U(n))

m := 0

while f
(

symmetricOrth
(

U(n) + α(0)
2m

df (U(n))

dU

))
≤ f Old

m := m + 1
end

U(n + 1) := symmetricOrth
(

U(n) + α(0)
2m

df (U(n))

dU

)

n := n + 1
end
U := U(n)

.

funct B = symmetricOrth(A)

B := A(ATA)−1/2

.
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