
LETTER Communicated by Sebastian Seung

Blind Separation of Positive Sources by Globally Convergent
Gradient Search

Erkki Oja
erkki.oja@hut.fi
Neural Networks Research Centre, Helsinki University of Technology,
02015 HUT, Finland

Mark Plumbley
mark.plumbley@elec.qmul.ac.uk
Department of Electrical Engineering, Queen Mary, University of London,
London E1 4NS, U.K.

The instantaneous noise-free linear mixing model in independent com-
ponent analysis is largely a solved problem under the usual assumption
of independent nongaussian sources and full column rank mixing ma-
trix. However, with some prior information on the sources, like positivity,
new analysis and perhaps simplified solution methods may yet become
possible. In this letter, we consider the task of independent component
analysis when the independent sources are known to be nonnegative and
well grounded, which means that they have a nonzero pdf in the region
of zero. It can be shown that in this case, the solution method is basically
very simple: an orthogonal rotation of the whitened observation vector
into nonnegative outputs will give a positive permutation of the origi-
nal sources. We propose a cost function whose minimum coincides with
nonnegativity and derive the gradient algorithm under the whitening
constraint, under which the separating matrix is orthogonal. We further
prove that in the Stiefel manifold of orthogonal matrices, the cost func-
tion is a Lyapunov function for the matrix gradient flow, implying global
convergence. Thus, this algorithm is guaranteed to find the nonnegative
well-grounded independent sources. The analysis is complemented by a
numerical simulation, which illustrates the algorithm.

1 Introduction

The problem of independent component analysis (ICA) has been studied by
many authors in recent years (for a review, see Hyvärinen, Karhunen, & Oja,
2001; Amari & Cichocki, 2002). In the simplest form of ICA, we assume that
we have a sequence of observations {x(k)}, which are samples of a random
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observation vector x generated according to

x = As, (1.1)

where s = (s1, . . . , sn)T is a vector of real independent random variables (the
sources), all but perhaps one of them nongaussian, and A is a nonsingular
n × n real mixing matrix. The task in ICA is to identify A given just the
observation sequence, using the assumption of independence of the sis, and
hence to construct an unmixing matrix B = RA−1 giving y = Bx = BAs =
Rs, where R is a matrix that permutes and scales the sources. Typically, we
assume that the sources have unit variance, with any scaling factor being
absorbed into the mixing matrix A, so y will be a permutation of the s with
just a sign ambiguity.

Common cost functions for ICA are based on maximizing nongaussian-
ities of the elements of y, and they may involve approximations by higher-
order cumulants such as kurtosis. The observations x are usually assumed
to be zero mean, or transformed to be so, and are commonly prewhitened
by some matrix z = Vx so that E{zzT} = I before an optimization algorithm
is applied to find the separating matrix.

This basic ICA model can be considered to be solved, with a multitude
of practical algorithms and software. However, if one makes some further
assumptions that restrict or extend the model, then there is still ground for
new analysis and solution methods. One such assumption is positivity or
nonnegativity of the sources and perhaps the mixing coefficients. Nonneg-
ativity is a natural condition for many real-world applications, for example,
in the analysis of images (Parra, Spence, Sajda, Ziehe, & Müller, 2000; Lee,
Lee, Choi, & Lee, 2001), text (Tsuge, Shishibori, Kuroiwa, & Kita, 2001) or air
quality (Henry, 2002). The constraint of nonnegative sources, perhaps with
an additional constraint of nonnegativity on the mixing matrix A, is often
known as positive matrix factorization (Paatero & Tapper, 1994) or nonnegative
matrix factorization (Lee & Seung, 1999). A nonnegativity constraint has been
suggested for a number of other neural network models too (Xu, 1993; Fyfe,
1994; Harpur, 1997; Charles & Fyfe, 1998). We refer to the combination of
nonnegativity and independence assumptions on the sources as nonnegative
independent component analysis.

Recently, one of us considered the nonnegativity assumption on the
sources (Plumbley, 2002, 2003) and introduced an alternative way of ap-
proaching the ICA problem, as follows. We call a source si nonnegative if
Pr(si < 0) = 0, and such a source will be called well grounded if Pr(si < δ) > 0
for any δ > 0, that is, that si has nonzero pdf all the way down to zero. The
following key result was proven (Plumbley, 2002):

Theorem 1. Suppose that s is a vector of nonnegative well-grounded indepen-
dent unit-variance sources si, i = 1, . . . , n, and y = Us where U is a square
orthonormal rotation, that is, UTU = I. Then U is a permutation matrix, that is,
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the elements yj of y are a permutation of the sources si, if and only if all yj are
nonnegative.

Actually, the requirement for independence of the sources in theorem 1 is
a technicality that simplifies the proof but could be relaxed to second-order
independence or uncorrelatedness. The proof would be lengthy, however,
and we wished to rely on the existing theorem 1 in this letter.

The result of theorem 1 can be used for a simple solution of the non-
negative ICA problem. Note that y = Us can also be written as y = Wz,
with z the prewhitened observation vector and W an unknown orthogonal
(rotation) matrix. It therefore suffices to find an orthogonal matrix W for
which y = Wz is nonnegative. This brings additional benefit over other
ICA methods that we know of that, if successful, we always have a positive
permutation of the sources, since both the s and y are nonnegative. The sign
ambiguity present in usual ICA vanishes here.

Plumbley (2002) further suggested that a suitable cost function for finding
the rotation could be constructed as follows. Suppose we have an output
truncated at zero, y+ = (y+

1 , . . . , y+
n ) with y+

i = max(0, yi), and we construct
a reestimate of z = WTy given by ẑ = WTy+. Then a suitable cost function
would be given by

J(W) = E{‖z − ẑ‖2} = E{‖z − WTy+‖2}, (1.2)

because obviously its value will be zero if W is such that all the yi are
positive, or y = y+. We considered the minimization of this cost function
by various numerical algorithms in Plumbley (2003) and Plumbley and Oja
(2004). In Plumbley (2003), explicit axis rotations as well as geodesic search
over the Stiefel manifold of orthogonal matrices were used. In Plumbley
and Oja (2004), the cost function 1.2 was taken as a special case of nonlinear
PCA, for which an algorithm was earlier suggested by Oja (1997). However,
a rigorous convergence proof for the nonlinear PCA method could not be
constructed except in some special cases. The general convergence seems to
be a very challenging problem.

The new key result shown in this article is that the cost function 1.2 has
very desirable properties. In the Stiefel manifold of rotation matrices, the
function has no local minima, and it is a Lyapunov function for its gradient
matrix flow. A gradient algorithm, suggested in the following, is therefore
monotonically converging and is guaranteed to find the absolute minimum
of the cost function. The minimum is zero, giving positive components yi,
which by theorem 1 must be a positive permutation of the original unknown
sources sj. Some preliminary results along these lines were given in Oja and
Plumbley (2003).

In the next section, we present the whitening for non-zero-mean observa-
tions and further illustrate by a simple example why a rotation into positive
outputs yi will give the sources. In section 3, we consider the cost function
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1.2 in more detail. Section 4 gives a gradient algorithm, whose monotonical
global convergence is proven. Section 5 relates this orthogonalized algo-
rithm to the nonorthogonal “nonlinear PCA” learning rule previously in-
troduced by one of the authors by illustrating both algorithms in a pictorial
example. Finally, section 6 gives some conclusions.

2 Prewhitening and Axis Rotations

In order to reduce the ICA problem to one of finding the correct orthogonal
rotation, the first stage in our ICA process is to whiten the observed data x.
This gives

z = Vx, (2.1)

where the n×n real whitening matrix V is chosen so that �z = E{(z− z̄)(z−
z̄)T} = In, with z̄ = E{z}. If E is the orthogonal matrix of eigenvectors of the
data covariance matrix �x = E{(x − x̄)(x − x̄)T} and D = diag(d1, . . . , dn) is
the diagonal matrix of corresponding eigenvalues, so that �x = EDET and
ETE = EET = In, then a suitable whitening matrix is V = �

−1/2
x = ED−1/2ET

where

D−1/2 = diag(d−1/2
1 , . . . , d−1/2

n ).

�x is normally estimated from the sample covariance (Hyvärinen et al.,
2001). Note that for nonnegative ICA, we do not remove the mean of the data,
since this would lose information about the nonnegativity of the sources
(Plumbley, 2002).

Suppose that our sources sj have unit variance, such that �s = In, and
let U = VA be the s-to-z transform. Then In = �z = U�sUT = UUT so
U is an orthonormal matrix. It is therefore sufficient to search for a further
orthonormal matrix W such that y = Wz = WUs is a permutation of the
original sources s.

Figure 1 illustrates the process of whitening for nonnegative data in two
dimensions. Whitening has succeeded in making the axes of the original
sources orthogonal to each other (see Figure 1b), but there is a remaining
orthonormal rotation ambiguity. A typical ICA algorithm might search for
a rotation that makes the resulting outputs as nongaussian as possible, for
example, by finding an extremum of kurtosis, since any sum of independent
random variables will make the result “more gaussian” (Hyvärinen et al.,
2001).

However, Figure 1 immediately suggests another approach: we should
search for a rotation where all the data fit into the positive quadrant. As long
as the distribution of the original sources is “tight” down to the axes, then it is
intuitively clear that this will be a unique solution, apart from a permutation
and scaling of the axes. This explains why theorem 1 works. Note also that
after this rotation, the two sources s1 and s2 are indeed independent, even
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Figure 1: Original data (a) are whitened (b) to remove second-order correlations.

if they are not zero mean, because for their densities, it holds that the joint
density (in this case, uniform in a square) is the product of the marginal
(uniform) densities.

3 The Cost Function for Nonnegative BSS

In the following, we show that the minimum of the cost function 1.2 in the
set of orthogonal (rotation) matrices will give the sources. For brevity of
notation, let us denote the truncation nonlinearity by

g+(yi) = max(0, yi),

which is zero for negative yi and yi otherwise.
We are now ready to state and prove theorem 2:

Theorem 2. Assume the n-element random vector z is a whitened linear mixture
of nonnegative well-grounded independent unit variance sources s1, . . . , sn, and
y = Wz with W constrained to be a square orthogonal matrix. If W is obtained as
the minimum of the cost function 1.2, rewritten as

J(W) = E‖z − WTg+(Wz)‖2,

then the elements of y will be a permutation of the original sources si.

Proof. Because W is square orthogonal, we get:

J(W) = E{‖z − WTg+(Wz)‖2} (3.1)
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= E{‖Wz − WWTg+(Wz)‖2} (3.2)

= E{‖y − g+(y)‖2} (3.3)

=
n∑

i=1

E{[yi − g+(yi)]2} (3.4)

=
n∑

i=1

E{min(0, yi)
2} (3.5)

=
n∑

i=1

E{y2
i |yi < 0}P(yi < 0). (3.6)

This is always nonnegative and becomes zero if and only if each yi is
nonnegative with probability one. Thus, if W is obtained as the minimum
of the cost function, then the elements of y will be nonnegative.

On the other hand, because y = Wz with W orthogonal, it also holds
that y = Us with U orthogonal. Theorem 1 now implies that because the
elements of y are nonnegative, they must be a permutation of the elements
of s.

4 A Converging Gradient Algorithm

Theorem 2 leads us naturally to consider the use of a gradient algorithm
for minimizing equation 3.1 under the orthogonality constraint. In order
to derive the gradient, let us first write equation 3.1 in the simple form,
equation 3.5:

J(w1, . . . , wn) =
n∑

i=1

E{min(0, yi)
2}, yi = wT

i z, (4.1)

where the vectors wT
i are the rows of matrix W and thus satisfy

wT
i wj = δij. (4.2)

The gradient with respect to one of vectors wi is straightforward:

∂ J
∂wi

= E
{

min(0, yi)
2

∂yi

∂yi

∂wi

}
= 2E{min(0, yi)z}. (4.3)

A possible way to do the constrained minimization by gradient descent
is to divide each descent step into two parts: a step in the direction of the
unconstrained gradient, followed by a consequent projection of the new
point onto the constraint set 4.2. For vectors wi, this gives the update rule

w̃i = wi − γ
∂ J

∂wi
(4.4)

= wi − 2γ E{min(0, yi)z}, (4.5)
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which is the unconstrained gradient descent step with step size γ , and

W = (W̃W̃T)−1/2W̃, (4.6)

which is the projection onto the constraint set of orthonormal wT
i vectors,

because equation 4.6 implies WWT = I. Obviously, matrix W̃ is the one with
vectors w̃i

T as its rows.
This is just one of the possibilities for performing orthonormalization;

another alternative would be the Gram-Schmidt algorithm. However, we
prefer a symmetrical orthonormalization as there is no reason to order the
wi vectors in any way.

In matrix form, equation 4.5 reads

W̃ = W − 2γ E{fzT}, (4.7)

where f = f(y) is the column vector with elements min(0, yi). This is the
gradient descent step. Now, to derive the projection in equation 4.6, we have
W̃W̃T = WWT + 4γ 2E{fzT}E{zfT}− 2γ E{WzfT + fzTWT} = I − 2γ E{WzfT +
fzTWT} + O(γ 2). Thus, assuming γ small, (W̃W̃T)−1/2 = I + γ E{WzfT +
fzTWT}+ O(γ 2), and finally (W̃W̃T)−1/2W̃ = W − 2γ E{fzT}+ γ E{WzfTW +
fzT} + O(γ 2) = W − γ E{fzT} + γ E{yfTW} + O(γ 2). Omitting O(γ 2), the
change from W at the previous step to the new W = (W̃W̃T)−1/2W̃ at the
next step is therefore �W = −γ E{fzT −yfTW}, which can be further written
in the form

�W = −γ E{fyT − yfT}W. (4.8)

Substituting min(0, yi) for the elements of f(y) gives the gradient descent
algorithm for the constrained problem.

The form of the update rule 4.8 is the same as that derived by Cardoso and
Laheld (1996) (although with different notation) for minimizing a general
contrast under the orthogonality constraint. However, they are projecting
the unconstrained gradient onto the space of skew-symmetric matrices. It
seems that from our derivation, higher-order terms with respect to the step
size γ and thus a more accurate projection could be more easily obtained
by continuing the series expansion.

The skew-symmetric form of the matrix fyT − yfT in equation 4.8 en-
sures that W tends to stay orthogonal from step to step, although to fully
guarantee orthogonality in a discrete-time gradient algorithm, an explicit
orthonormalization of the rows of W should be done from time to time.

Instead of analyzing this learning rule directly, let us look at the averaged
differential equation corresponding to the discrete-time algorithm 4.8. It
becomes

dW
dt

= −MW, (4.9)
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where we have denoted the continuous-time deterministic solution also by
W, and the elements µij of matrix M = E{fyT − yfT} are

µij = E{min(0, yi)yj − yi min(0, yj)}. (4.10)

Note that M is a nonlinear function of the solution W, because y = Wz.
Yet we can formally write the solution of equation 4.9 as

W(t) = exp
[
−

∫ t

0
M(s)ds

]
W(0). (4.11)

The solution W(t) is always an orthogonal matrix if W(0) is orthogonal.
This can be shown as follows:

W(t)W(t)T =
exp

[
−

∫ t

0
M(s)ds

]
W(0)W(0)T exp

[
−

∫ t

0
M(s)Tds

]

= exp[−
∫ t

0
(M(s) + M(s)T)ds].

But matrix M is skew-symmetric; hence, M(s) + M(s)T = 0 for all s and
W(t)W(t)T = exp[0] = I.

We can now analyze the stationary points of equation 4.9 and their sta-
bility in the class of orthogonal matrices. The stationary points (for which
dW
dt = 0) are easily solved. They must be the roots of the equation MW = 0,

which is equivalent to M = 0 because of the orthogonality of W. We see that
if all yi are positive or all of them are negative, then M = 0. Namely, if yi
and yj are both positive, then min(0, yi) and min(0, yj) in equation 4.10 are
both zero. If they are both negative, then min(0, yi) = yi and min(0, yj) = yj,
and the two terms in equation 4.10 cancel out. Thus, in these two cases, W
is a stationary point. The case when all yi are positive corresponds to the
minimum value (zero) of the cost function J(W). By theorem 1, y is then a
permutation of s, which is the correct solution we are looking for. We would
hope that this stationary point would be the only stable one, because then
the ordinary differential equation (ODE) will converge to it.

The case when all the yi are negative corresponds to the maximum value
of J(W), equal to

∑n
i=1 E{y2

i } = n. As it is stationary too, we have to consider
the case when it is taken as the initial value in the ODE.

In all other cases, at least some of the yi have opposite signs. Then M is
not zero and W is not stationary, as seen from equation 4.11.

We could look at the local stability of the two stationary points. However,
we can do even better and perform a global analysis. It turns out that equa-
tion 3.1 is in fact a Lyapunov function for the matrix flow 4.9; it is strictly
decreasing always when W changes according to the ODE 4.9, except at the
stationary points. Let us prove this in the following.
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Theorem 3. If W follows the ODE 4.9, then dJ(W)

dt < 0, except at the point when
all yi are nonnegative or all are nonpositive.

Proof. Consider the ith term in the sum J(W), given in equation 3.5. De-
noting it by ei, we have ei = E{min(0, yi)

2} whose derivative with respect to
yi is 2E{min(0, yi)}. If wT

i is the ith row of matrix W, then yi = wT
i z. Thus,

dei

dt
= dei

dyi

dyi

dt
= 2E

{
min(0, yi)

(
dwT

i

dt
z
)}

. (4.12)

From the ODE 4.9, we get

dwT
i

dt
= −

n∑
k=1

µikwT
k ,

with µik given in equation 4.10. Substituting this in equation 4.12 gives

dei

dt
= −2

n∑
k=1

µikE{min(0, yi)yk}

= −2
n∑

k=1

E2{min(0, yi)yk}

+ 2
n∑

k=1

E{min(0, yk)yi}E{min(0, yi)yk}.

If we denote αik = E{min(0, yi)yk}, we have

dJ(W)

dt
=

n∑
i=1

dei

dt
= 2

[
−

n∑
i=1

n∑
k=1

α2
ik +

n∑
i=1

n∑
k=1

αikαki

]
.

By the Cauchy-Schwartz inequality, this is strictly negative unless αik = αki
for all i, k, and thus J(W) is decreasing.

We still have to look at the condition that αik = αki for all i, k and show
that this implies nonnegativity or nonpositivity for all the yi.

Now, because y = Us with U orthogonal, each yi is a projection of the
positive source vector s on one of n orthonormal rows uT

i of U. If the vectors
ui are aligned with the original coordinate axes, then the projections of
s on them are nonnegative. For any rotation that is not aligned with the
coordinate axes, one of the vectors ui (or −ui) must be in the positive octant
due to the orthonormality of the vectors. Without loss of generality, assume
that this vector is u1; then it holds that P(y1 = uT

1 s ≥ 0) = 1 (or 0). But if
P(y1 ≥ 0) = 1, then min(0, y1) = 0 and α1k = E{min(0, y1)yk} = 0 for all k.
If symmetry holds for the αij, then also αk1 = E{min(0, yk)y1} = E{y1yk|yk ≤
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0}P(yk ≤ 0) = 0. But y1 is nonnegative, so P(yk ≤ 0) must be zero too for all
k. The same argument carries over to the case when P(y1 ≥ 0) = 0, which
implies that if one yi is nonnegative, then all yk must be nonnegative in the
case of symmetrical αij.

The behavior of the learning rule 4.8 is now well understood. The func-
tion J(W) in equation 1.2 is a Lyapunov function for the averaged differential
equation 4.9, for all orthogonal matrices W except for the point with all out-
puts yi nonpositive. Therefore, recalling that if W(0) is an orthogonal matrix,
then it is constrained to remain so, W(t) converges to the minimum of J(W)

from almost everywhere in the Stiefel manifold of orthogonal matrices. For
a discussion of optimization and learning on the Stiefel manifold, see Edel-
man, Arias, and Smith (1998) and Fiori (2001). This minimum corresponds
to all nonnegative yi. By theorem 1, these must be a permutation of the
original sources sj which therefore have been found.

The result was proven only for the continuous-time averaged version of
the learning rule; the exact connection between this and the discrete-time
online algorithm has been clarified in the theory of stochastic approximation
(see Oja, 1983). In practice, even if the starting point happened to be the
“bad” stationary point in which all yi are nonpositive, then numerical errors
will deviate the solution from this point and the cost function J(W) starts to
decrease.

5 Experiments

We illustrate the operation of the algorithm using a blind image separation
problem. We use the same images and perfomance measures as in Plumbley
and Oja (2004), in which the nonlinear PCA algorithm (Oja, 1997) was used
instead to solve the nonnegative ICA problem. As performance measures,
we measure a mean squared error eMSE, an orthonormalization error eOrth,
and a permutation error ePerm, defined as follows:

eMSE = 1
np

p∑
k=1

‖zk − WTg+(yk)‖2 (5.1)

eOrth = 1
n2 ‖I − (WVA)TWVA‖2

F (5.2)

ePerm = 1
n2 ‖I − abs(WVA)Tabs(WVA)‖2

F, (5.3)

where abs(M) returns the absolute value of each element of M, so that
ePerm = 0 only for a positive permutation matrix. The parameters have been
scaled (by 1/(np) or 1/n2) to allow more direct comparison between the
result of simulations using different values for n and p.
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Four image patches of size 252 × 252 were selected from a set of images
of natural scenes and downsampled by a factor of 4 in both directions to
yield 63 × 63 pixel images. Each of the n = 4 images was treated as one
source, with its pixel values representing the p = 63 × 63 = 3969 samples.
The source image values were shifted to have a minimum of zero to ensure
they were well grounded, and the images were scaled to ensure they were
all unit variance. After scaling, the source covariance matrix was found to
be

ssT − s̄s̄T =




1.000 0.074 −0.003 0.050
0.074 1.000 −0.071 0.160

−0.003 −0.071 1.000 0.130
0.050 0.160 0.130 1.000


 , (5.4)

giving an acceptably small covariance between the images. A mixing matrix
A was generated randomly and used to construct x = As.

For the algorithm, the demixing matrix W was initialized to the identity
matrix, ensuring initial orthogonality of W. Instead of algorithm 4.8, the
theoretical expectation was replaced by a batch update method: denoting
by X the observation matrix having all the data vectors x(1), . . . , x(T) as its
columns and defining the matrix of outputs as Y = WX, we update W with
the incremental change,

�W = −µ
1
p
{f(Y)YT − Yf(Y)T}W. (5.5)

A constant update factor of µ = 0.03 was used, and W was renormalized to
an orthogonal matrix after each step using equation 4.6.

Figure 2 shows the performance of learning over 2 × 104 steps, with
Figure 3 showing the original, mixed, and separated images and their his-
tograms. After 2 × 104 iteration steps, in which each step is one update
following presentation of the batch of 3969 samples (1610s/27min of CPU
time on an 850 MHz Pentium III), the source-to-output matrix WVA was
found to be

WVA =




1.002 0.015 −0.040 0.026
−0.099 0.067 −0.111 1.007
−0.016 1.009 −0.089 0.018
0.004 −0.056 1.021 −0.058


 , (5.6)

with eMSE = 6.07 × 10−5, eOrth = 8.88 × 10−3, and ePerm = 1.07 × 10−2.
The mean squared error and orthogonalization error are slightly bet-

ter than for the nonnegative PCA algorithm, which were 9.30 × 10−5 and
9.02×10−3, respectively, for the same number of iterations. The final permu-
tation error for the same number of iterations is also smaller than the value
obtained with the nonnegative PCA algorithm, which was 1.68 × 10−2.
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Figure 2: Simulation results on image data. Performance in the lower graph is
measured as distance from permutation ePerm (upper curve) and distance from
orthogonality eOrth (lower curve). See the text for definitions.

The lower bound on eOrth and ePerm is determined by the accuracy of the
prewhitening stage: recall that prewhitening is estimated from the statistics
of the input data, without having any access to the original mixing matrix
A. Calculating the equivalent error in VA from orthonormality,

eWhite = 1
n2 ‖I − (VA)T(VA)‖2

F, (5.7)

we find eWhite = 8.88 × 10−3 = eOrth to within the machine accuracy (i.e.,
|eOrth − eWhite| < 10−15) as we might expect, since W is orthonormalized at
each iteraction, so WWT = I. Therefore, the ePerm is 20.3% above its lower
bound for this algorithm, compared to 80.3% for the nonnegative PCA al-
gorithm.

6 Discussion

We have considered the problem of nonnegative ICA, that is, independent
component analysis where the sources are known to be nonnegative. Else-
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Figure 3: Images and histograms for the image separation task, showing (a) the
original source images (b) and their histograms, (c, d) the mixed images and
their histograms, and (e, f) the separated images and their histograms.
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where, one of us introduced algorithms to solve this based on the use of or-
thogonal rotations, related to Stiefel manifold approaches (Plumbley, 2003).

In this article, we considered a gradient-based algorithm operating on
prewhitened data, related to the “nonlinear PCA” algorithms investigated
by one of the authors (Oja, 1997, 1999). We refer to these algorithms, which
use a truncation nonlinearity, as nonnegative PCA algorithms. By theoretical
analysis of algorithm 4.8, we showed the key result of the article: asymptot-
ically, as the learning rate is very small, the algorithm is guaranteed to find a
permutation of the well-grounded nonnegative sources. Such a global con-
vergence result is rather unique in ICA gradient methods. The convergence
was experimentally verified for a small learning rate using a set of positive
images as sources, with a random mixing matrix.
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