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Cortical neurons are predominantly excitatory and highly interconnected.
In spite of this, the cortex is remarkably stable: normal brains do not ex-
hibit the kind of runaway excitation one might expect of such a system.
How does the cortex maintain stability in the face of this massive exci-
tatory feedback? More importantly, how does it do so during computa-
tions, which necessarily involve elevated �ring rates? Here we address
these questions in the context of attractor networks—networks that ex-
hibit multiple stable states, or memories. We �nd that such networks can
be stabilized at the relatively low �ring rates observed in vivo if two
conditions are met: (1) the background state, where all neurons are �ring
at low rates, is inhibition dominated, and (2) the fraction of neurons in-
volved in a memory is above some threshold, so that there is suf�cient
coupling between the memory neurons and the background. This allows
“dynamical stabilization” of the attractors, meaning feedback from the
pool of background neurons stabilizes what would otherwise be an unsta-
ble state. We suggest that dynamical stabilization may be a strategy used
for a broad range of computations, not just those involving attractors.

1 Introduction

Attractor networks—networks that exhibit multiple stable states—have
served as a key theoretical model for several important computations, in-
cluding associative memory (Hop�eld, 1982, 1984), working memory (Amit
& Brunel, 1997a; Brunel & Wang, 2001), and the vestibular-ocular re�ex
(Seung, 1996), and determining whether these models apply to real bio-
logical networks is an active area of experimental research (Miyashita &
Hayashi, 2000; Aksay, Gamkrelidzek, Seungk, Baker, & Tank, 2001; Oje-
mann, Schoen�eld-McNeill, & Corina, 2002; Naya, Yoshida, & Miyashita,
2003). A de�nitive determination, however, has been dif�cult, mainly be-
cause attractors cannot be observed directly; instead, inferences must be
made about their existence by comparing experimental data with model
prediction.
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To make these comparisons, it is necessary to have realistic models. Con-
struction of such models has proved dif�cult because of what we refer to as
the stability problem. The stability problem arises primarily because corti-
cal networks are highly recurrent—a typical neuron in the cortex receives
input from 5,000 to 10,000 others, most of which are nearby (Braitenberg &
Schüz, 1991). While this high connectivity undoubtedly provides immense
computational power, it also has a downside: it can lead to instabilities in
the form of runaway excitation. For example, even mild electrical stimula-
tion applied periodically can eventually lead to seizures (McIntyre, Poulter,
& Gilby, 2002), and epilepsy, a sign of intrinsic instability, occurs in 0.5 to
1% of the human population (Bell & Sander, 2001; Hauser, 1997).

The severity of the stability problem lies in the fact that recurrent connec-
tions in attractor networks have to be strong enough to allow activity in the
absence of input, but not so strong that the activity can occur spontaneously.
Moreover, in areas where attractor networks are thought to exist, such as
prefrontal cortex (Fuster & Alexander, 1971; Wilson, Scalaidhe, & Goldman-
Rakic, 1993; Freedman, Riesenhuber, Poggio, & Miller, 2001) and inferior
temporal cortex (Fuster & Jervey, 1982; Miyashita & Chang, 1988), the �ring
rates associated with attractor states are not much higher than those associ-
ated with background activity. The two differ by only a few Hz, with typical
background rates ranging from 1 to 10 Hz and attractor rates ranging from
10 to 20 Hz (Fuster & Alexander, 1971; Miyashita & Chang, 1988; Nakamura
& Kubota, 1995). This small difference makes a hard stability problem even
harder, as there is almost no barrier preventing spontaneous jumps to at-
tractors. Indeed, in previous attempts to build realistic models of attractor
networks (Amit & Brunel, 1997a; Wang, 1999; Brunel, 2000; Brunel & Wang,
2001), �ne-tuning of parameters was required to support attractors at the
low rates seen in vivo. This was mainly because �ring rates in those models
were effectively set by single neuron saturation—by the fact that neurons
simply cannot �re for extended periods above a maximum rate.

Here we propose a solution to the �ne-tuning problem, one that allows
attractors to exist at low rates over a broad range of parameters. The basic
idea is to use natural interactions between the attractors and the background
to limit �ring rates, so that rates are set by network rather than single neuron
properties. Limiting �ring rates in this way may be a general computational
strategy, not one used just by attractor networks. Thus, quantifying this
mechanism in the context of attractor networks may serve as a general
model for how cortical circuits carry out a broad range of computations
while avoiding instabilities.

2 Reduced Model System

To understand qualitatively the properties of attractor networks, we ana-
lyze a model system in which the neurons are described by their �ring rates.
For simplicity, we start with a network that exhibits two stable equilibria: a
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background state, where all neurons �re at low rates, and a memory state,
where a subpopulation of neurons �res at an elevated rate. Our results,
however, apply to multiattractor networks—networks that exhibit multi-
ple memories—and we will consider such networks below. The goal of the
analysis in this section is to obtain a qualitative understanding of attractor
networks, in particular, how they can �re at low rates without destabilizing
the background. We will then use this qualitative understanding to guide
network simulations of multiattractor networks with spiking neurons (con-
taining up to 50 attractors), and use those simulations to verify the results
obtained from the reduced model.

We construct our reduced model attractor network in two steps. First, we
build a randomly connected network of excitatory and inhibitory neurons
that �re at a few Hz on average. Second, we pick out a subpopulation of the
excitatory neurons (which we refer to as memory neurons) and strengthen
the connections among them (see Figure 1). If the parameters are chosen
properly, this strengthening will produce a network in which the memory
neurons can �re at either an elevated rate or the background rate, resulting
in a bistable network.
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Figure 1: Schematic of network architecture. Excitatory and inhibitory neurons
are synaptically coupled via the connectivity matrix J. The inhibitory neurons
are homogeneous; the excitatory neurons break into two populations, memory
and nonmemory. The coupling among memory neurons is higher than among
nonmemory neurons by a factor of ¯.1 ¡ f /; the coupling from nonmemory
to memory neurons is lower by a factor of ¯ f . The memory neurons make
up a fraction f of the excitatory population, so the decrease in coupling from
nonmemory to memory neurons ensures that the total synaptic drive to both
memory and nonmemory neurons is the same.
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To analyze the stability and computational properties of this network,
we assume that, in equilibrium, the �ring rate of a neuron is a function of
only the �ring rates of the neurons presynaptic to it. Then, near equilib-
rium, we expect Wilson and Cowan–like equations (Wilson & Cowan, 1972)
in which the �ring rates obey �rst-order dynamics. Augmenting the stan-
dard Wilson and Cowan equations to allow increased connectivity among
a subpopulation of neurons (see Figure 1 and appendix A), we have

¿E
dºEi

dt
C ºEi D ÁE

0

@JEEºE ¡ JEIºI C ¯

NE f .1 ¡ f /

X

j

»i.»j ¡ f /ºEj

1

A (2.1a)

¿I
dºI

dt
C ºI D ÁI.JIEºE ¡ JIIºI/: (2.1b)

Here, ¿E and ¿I are the excitatory and inhibitory time constants, ºEi is the �r-
ing rate of the ith excitatory neuron (i D 1; : : : ; NE), ºE and ºI are the average
�ring rates of the excitatory and inhibitory neurons, respectively, the Js are
the average coupling coef�cients among the excitatory and inhibitory pop-
ulations, ÁE and ÁI are the average excitatory and inhibitory gain functions,
respectively, ¯ is the effective strength of the coupling among the memory
neurons, NE is the number of excitatory neurons, and » is a random binary
vector: »i D 1 with probability f and 0 with probability 1¡ f . The factor »j ¡ f
ensures postsynaptic normalization: on average, the total synaptic strength
to both memory and nonmemory neurons is the same. The » -dependent
term in equation 2.1a is a standard one for constructing attractor networks
(Hop�eld, 1982; Tsodyks & Feigel’man, 1988; Buhmann, 1989).

The gain functions, ÁE and ÁI , play a key role in this analysis. These
functions, which hide all the single neuron properties, have a natural inter-
pretation: each one corresponds to the average �ring rate of a population of
neurons as a function of the average �ring rates of neurons presynaptic to it.
They thus have standard shapes when plotted versus ºE: they look like f -I
curves—�ring rate versus injected current (McCormick, Connors, Lighthall,
& Prince, 1985)—that have been smoothed at low�ring rates (Brunel & Sergi,
1998; Tiesinga, José, & Sejnowski, 2000; Fourcaud & Brunel, 2002; Brunel &
Latham, 2003). A generic gain function is shown in Figure 2. This curve
does not correspond to any particular neuron or class of neurons—it is just
illustrative. There are two important aspects to its shape: (1) it has a convex
region, and (2) the transition from convex to concave occurs at �ring rates
well above 10 to 20 Hz on the output side (that is, the transition occurs
when Á À 10–20 Hz). These properties are typical of both model neurons
(Brunel & Sergi, 1998; Tiesinga et al., 2000; Fourcaud & Brunel, 2002; Brunel
& Latham, 2003) and real neurons (McCormick et al., 1985; Chance, Abbott,
& Reyes, 2002), and in the next two sections we will see how they connect
to the problem of robust, low �ring-rate attractors.
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Figure 2: Generic gain function versus average excitatory �ring rate, ºE. There
are three distinct regimes: First, at small ºE, the mean current induced by pre-
synaptic �ring is too low to cause a postsynaptic neuron to �re, so postsynaptic
activity is due to �uctuations in the current. This is the noise-dominated regime,
and here Á is convex. Second, for slightly larger ºE , Á becomes approximately
linear or slightly concave. Finally, for large enough ºE , the �ring rate saturates—
at around 100 Hz for typical cortical pyramidal cells (McCormick et al., 1985).
This gain function is a schematic and does not correspond to any particular
neuron model.

Although equations 2.1a and 2.1b have a fairly broad range of applicabil-
ity, they are not all encompassing. In particular, they leave out the possibility
of instability via synchronous oscillations (Abbott & van Vreeswijk, 1993;
Gerstner & van Hemmen, 1993; Hansel & Mato, 2001), and they ignore the
effects of higher-order moments of the �ring rate (Amit & Brunel, 1997a;
Latham, 2002). We thus verify all predictions using large-scale simulations
of synaptically coupled neurons.

As indicated in Figure 1, the network described by equations 2.1a and
2.1b contains a preferentially connected subpopulation. We are interested
in determining under what conditions the network supports two states: a
“memory” state in which this subpopulation �res at elevated rate compared
to the background, and a background state in which the subpopulation
�res at the same rate as the background. Since it is the difference between
the attractor and background �ring rates that is important, we de�ne a
variable, m, that is proportional to this difference; for convenience, we let
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the proportionality constant be 1=.1 ¡ f /,
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: (2.2)

The �rst expression inside the angle brackets is the average �ring rate of the
subpopulation; the second is the average �ring rate of the whole population,
ºE. Thus, the average �ring rate of the subpopulation is ºE C .1 ¡ f /m, and
the background state corresponds to m D 0.

Intuitively, we expect that network dynamics should be governed by
three variables: the �ring rate associated with the memory state, m, the av-
erage excitatory �ring rate, ºE, and the average inhibitory rate, ºI. In fact,
if we average equations 2.1a and 2.1b over index, i, we can derive differen-
tial equations for these variables. As shown in appendix A, the averaged
equations are

¿E
dm
dt

C m D ÁE.JEEºE ¡ JEIºI C ¯m/ ¡ ÁE.JEEºE ¡ JEIºI/ (2.3a)

¿E
dºE

dt
C ºE D .1 ¡ f /ÁE.JEEºE ¡ JEIºI/

C fÁE.JEEºE ¡ JEIºI C ¯m/ (2.3b)

¿I
dºI

dt
C ºI D ÁI.JIEºE ¡ JIIºI/: (2.3c)

To simplify our analysis, we adopt the the effective response function
approach of Mascaro and Amit (1999), which can be implemented by taking
the limitof fast inhibition, ¿I ! 0. The main caveat to this limitis that we may
overestimate the stability of equilibria: equilibria can be stable when ¿I D 0
but unstable when ¿I is above some threshold (Wilson & Cowan, 1972; van
Vreeswijk & Sompolinsky, 1996; Latham, Richmond, Nelson, & Nirenberg,
2000a; Hansel & Mato, 2001). With ¿I D 0, we can solve equation 2.3c for ºI
in terms of ºE. This allows us to write ºI D ºI.ºE/, where the function ºI.ºE/

is determined implicitly from equation 2.3c with ¿I D 0. Replacing ºI with
ºI.ºE/ in equations 2.3a and 2.3b, we �nd that all the ºE-dependence on the
right-hand side of these equations can be lumped into the single expression,
JEEºE ¡ JEIºI.ºE/. We denote this ¡° .ºE/, so that

° .ºE/ ´ ¡JEEºE C JEIºI.ºE/: (2.4)

With ºI eliminated, we are left with just two equations:

¿E
dm
dt

C m D ÁE.¡° .ºE/ C ¯m/ ¡ ÁE.¡° .ºE// ´ 1ÁE.ºE; m/ (2.5a)

¿E
dºE

dt
C ºE D ÁE.¡° .ºE// C f 1ÁE.ºE; m/: (2.5b)
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These equations are similar to ones derived previously by Brunel and col-
leagues (Amit & Brunel, 1997a; Brunel, 2000; Brunel & Wang, 2001).

2.1 The Sparse Coding Limit. The question we are interested in is: un-
der what conditions do equations 2.5a and 2.5b admit two stable solutions—
one with m D 0 (the background state) and one with m 6D 0 (the memory
state)? Before we answer this question in general, let us consider the sparse
coding limit, f ! 0, as this limit is relatively simple and it allows us to
make contact with previous work.

When f D 0, equations 2.5a and 2.5b decouple. In this regime, we can
solve equation 2.5b for the excitatory �ring rate, then solve equation 2.5a
for m. Let us assume that equation 2.5b has a stable solution, meaning the
network admits a stable background state, and focus on equation 2.5a. This
equation is best solved graphically, by plotting 1ÁE.ºE; m/ versus m and
looking for intersections of this plot with the 45 degree line; those intersec-
tions correspond to equilibria (see Figure 3). Stability can be read off the
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Figure 3: Gain functions and m-equilibria. (A). 1ÁE.ºE; m/ versus m for different
values of ¯ . Points where the curves cross the 45 degree line are equilibria. In the
sparse coding limit, f ! 0, an equilibrium is stable if the slope of the curve is
less than one and unstable otherwise. Dotted line: weak coupling (small ¯). The
only equilibrium is at the background, and it is stable. Solid line: intermediate
coupling. Two more equilibria have appeared. The one with intermediate m is
unstable; the one with large m is stable. Dashed line: large coupling. The back-
ground has become destabilized, and the memory is easily activated without
input. Since 1ÁE.ºE; m/ is essentially an average single-neuron f -I curve, it sat-
urates at the maximum �ring rate of single neurons, »100 Hz. Thus, the upper
equilibrium occurs at high rate. (B). To reduce the �ring rate of the upper equi-
librium, one must operate in a very narrow parameter regime: small changes
in network parameters would either rotate the curve counterclockwise, which
would destabilize the background and/or move the equilibrium to high rate,
or rotate it clockwise, which would eliminate the memory state. (C). Blowup of
the region below 15 Hz in B.
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plots by looking at the slope: an equilibrium with slope less than 1 is stable
and one with slope greater than 1 is unstable.

The number and stability of the equilibria are determined by ¯ . If ¯ is
small—weak coupling among the neurons in the subpopulation—there is
only one equilibrium, at m D 0, and it is stable (see Figure 3A, dotted line).
This makes sense, as weak couplingshould not have much effect on network
behavior. As ¯ increases, so does the slope of 1ÁE.ºE; m/, and eventually a
new pair of equilibria appear (see Figure 3A, solid line). Of these, the one
at higher �ring rate (larger m) is stable, since its slope is less than 1, and
the one at lower, but nonzero, rate is unstable, since its slope is greater than
1. Finally, for large enough ¯ , the unstable equilibrium slides past zero, at
which point the equilibrium at m D 0, and thus the background, becomes
unstable (see Figure 3A, dashed line).

The intermediate ¯ regime, where the network can support both a mem-
ory and a stable background, is of the most interest to us. It is in this regime
that the network can actually compute, in the sense that input to the net-
work controls which state it is in (memory or background). The low and
high ¯ regimes are not so interesting, however, at least if the goal is to con-
struct a network that can store memories. If ¯ is too low, the network is
stuck in the background state; if it is too high, the network can easily jump
spontaneously from the background to the memory state.

As Figure 3A shows, it is not hard to build a network that can exhibit
two states—so long as one is willing to allow �ring rates near saturation,
meaning at a healthy fraction of 100 Hz. It is much more dif�cult to build
a network in which the memory state exhibits low �ring rates—in the 10
to 20 Hz range, as is observed experimentally (Fuster & Alexander, 1971;
Miyashita & Chang, 1988; Nakamura & Kubota, 1995). This is because low
�ring rates require too many bends in 1ÁE.ºE; m/ in too small a �ring-rate
range, where “too small” is relative to the saturation �ring rate of »100 Hz
(see Figures 3B and 3C).

These qualitative arguments were quanti�ed in networks of leaky inte-
grate-and-�re neurons using both analytic techniques and numerical sim-
ulations (Brunel, 2000; Brunel & Wang, 2001). For attractors that �red at
about 15 Hz, the coupling, ¯ , among the subpopulations had to be tuned to
within 1% to ensure that both the background and memories were stable.
At slightly higher �ring rates of 25 to 40 Hz, the tuning was somewhat more
forgiving, 3% to 5%. It should be pointed out, however, that these networks
were more robust to other parameters: multiple attractors were supported
at reasonably low rates (20–40 Hz) when external input varied over a 40%
range and the strengths of different receptor types (AMPA, NMDA, and
GABA) were varied over range of 5% to 15%.

2.2 Beyond the Sparse Coding Limit. What these results indicate is
that parameters need to be �nely tuned for attractor networks to exist at
low rates, at least in the f ! 0 limit. When f is �nite, however, the picture
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changes, since the memories (m) and background (ºE) couple (see equa-
tion 2.5). This means that the slope of 1ÁE.ºE; m/ with respect to m is no
longer the sole factor determining stability; instead, stability depends on
the interaction between m and ºE. Consequently, an equilibrium in which
the slope of 1ÁE.ºE; m/ is greater than 1 can be stable. For example, the equi-
librium on the solid curve in Figure 3A that occurs at about 15 Hz, which is
unstable in the f ! 0 limit, could become stable when f > 0. If this were
to happen, attractors could exist robustly at low rate.

We refer to the regime in which the attractors are stable even though the
slope of 1ÁE.ºE; m/ is greater than 1 as the dynamically stabilized regime.
This is because an equilibrium that would be unstable when one consid-
ers only the time evolution of the memory is dynamically stabilized by
feedback from the background. Networks that operate in this regime have
been investigated by Sompolinsky and colleagues (Rubin & Sompolinsky,
1989; Golomb, Rubin, & Sompolinsky, 1990). Although the �ring rates of
the attractors in those networks were low, the networks were not realistic
in an important respect: they did not exhibit a background state in which
all neurons �red at about the same rate; instead, the only stable states were
ones in which a subpopulation of the neurons was active. Our goal here
is to overcome this problem and build a network that both operates in the
dynamically stabilized regime, and thus at low rates, and supports a low
�ring-rate background. To do this, we must evaluate the stability of the
equilibria in m-ºE space.

The network equilibria are found by setting dm=dt and dºE=dt in equa-
tions 2.5a and 2.5b and solving the resulting algebraic equations. With the
time derivatives set to zero, the solutions to these equations are curves in
m-ºE space. These curves are referred to as nullclines, and their intersections
correspond to equilibria. Constructing nullclines from the propertiesof ÁE is
straightforward (Latham et al., 2000a) but tedious. We thus skip the details
and simply plot them; once we have made the plots, it is relatively easy to
see that they have the correct qualitative shape.

One possible set of nullclines is shown in Figure 4A, with the black
curve corresponding to the ºE-nullcline (the solution to equation 2.5b with
dºE=dt D 0) and the gray curves corresponding to the m-nullcline (the so-
lution to equation 2.5a with dm=dt D 0; note that there are two pieces—a
smooth curve and a vertical line). The shape of the ºE-nullcline is relatively
easy to understand: it is an increasing function of m, re�ecting the fact that
as m gets larger, there is more excitatory drive to the network. This can
also be seen from equation 2.5b, where ºE is coupled to m through the term
f 1ÁE.ºE; m/, and 1ÁE.ºE; m/ is an increasing function of m.

The m-nullcline is a little more complicated, primarily because it consists
of two pieces rather than one. To understand its shape, we must reexamine
Figure 3A. This �gure shows three plots of 1ÁE.ºE; m/ versus m. These plots
correspond to three values of ¯ ; however, because ºE as well as ¯ affects
1ÁE.ºE; m/, they could just as easily have corresponded to three values of
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ºE. In fact, had we �xed ¯ and varied ºE, we would have obtained a set of
curves qualitatively similar to the ones shown in Figure 3A. In other words,
depending on the value of ºE, we would have seen three distinct regimes:
(1) one equilibrium at m D 0 (dotted line in Figure 3A), (2) one equilibrium
at m D 0 and two at m > 0 (solid line), and (3) one equilibrium at m D 0, one
at m < 0, and one at m > 0 (dashed line). These three regimes are re�ected in
the m-nullcline in Figure 4A: when ºE is large, there is a single equilibrium
at m D 0 (regime 1); when ºE is intermediate, there is an additional pair of
equilibria at m > 0 (regime 2); and when ºE is small, one of the equilibria in
that pair becomes negative (regime 3).

The order in which the regimes appear in Figure 4A—one equilibrium
at zero when ºE is large, two positive ones when ºE is slightly smaller,

m0

E E

EE
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m0m0
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Figure 4: Nullclines in various parameter regimes. The gray curve, including
the vertical line, is the nullcline for equation 2.5a; the black curve is the nullcline
for equation 2.5b. The solid branches of the gray curves are stable at �xed ºE ;
the dashed branches are unstable at �xed ºE. The black arrows indicate typical
trajectories; they are derived from equation 2.5. (A) 1ÁE.ºE; m/ is a decreasing
function of ºE; f is reasonably large. (B) 1ÁE.ºE; m/ is an increasing function of
ºE ; f is reasonably large. (C) 1ÁE.ºE; m/ is a decreasing function of ºE; f ¿ 1.
(D) 1ÁE.ºE; m/ is an increasing function of ºE; f ¿ 1.
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and a negative one when ºE is smaller still—corresponds to a particular
dependence of 1ÁE.ºE; m/ on ºE. Examining Figure 3A, we see that this
progression corresponds to a dependence in which 1ÁE.ºE; m/ decreases as
ºE increases. Thus, for Figure 4A to correctly describe the m-nullcline, the
network parameters must be such that 1ÁE.ºE; m/ is a decreasing function
of ºE. Below, we derive explicit conditions under which this happens. First,
however, we examine its consequences.

The black and gray nullclines in Figure 4 intersect in three places, and
thus exhibit three equilibria. One is at m D 0, and two are at m > 0. The
equilibrium at m D 0 corresponds to the background state; the other two
are candidates for memory states. To determine which are stable, we have
plotted a few typical trajectories (black arrows), which are derived from
equation 2.5. These trajectories tell us that the stable equilibria occur at
m D 0 and at the right-most intersection. Importantly, the stable equilibrium
at m > 0 occurs on the unstable branch of the m-nullcline, in the dynamically
stabilized regime. (We can tell that this branch isunstable because at �xed ºE,
the trajectories point away from it; �ow is to the right below the m-nullcline
and to the left above it. The ºE-nullcline, on the other hand, consists of one
stable branch, since �ow is toward it at �xed m. This re�ects the fact that
the background is always stable at �xed m, independent of the �ring rate
of the memory state.)

The unstable branches, which are drawn with dashed lines, correspond
to points where the slope of 1ÁE.ºE; m/ is greater than one. That the memory
state lives on the unstable branch of the m-nullcline is important, because
the unstable branch corresponds to the intermediate equilibrium shown in
Figure 3A and can thus occur at low �ring rate. All previous work in realistic
networks that we know of (Amit & Brunel, 1997a; Brunel, 2000; Brunel &
Wang, 2001) puts the memory state on the stable branch of the m-nullcline—
the part with slope less than one. The stable branch corresponds to the upper
equilibrium in Figure 3A, and so tends to occur at high �ring rate—at some
reasonable fraction of the saturation �ring rate for single neurons.

It may seem counterintuitive to have a stable equilibrium on the unsta-
ble branch, but it is well known that this can happen (Rinzel & Ermen-
trout, 1989). The only caveat is that there is no guarantee of stability: the
equilibrium may become unstable via a Hopf bifurcation (Marsden & Mc-
Cracken, 1976), leading to oscillations. In fact, oscillations were occasionally
observed—mainly near or above the stability boundary in Figure 7. The fact
that the network did not oscillate in most of the parameter regime explored
was, we believe, because the background is strongly stable (there is strong
attraction to the ºE-nullcline in Figure 4).

What this analysis shows is that two conditions are necessary forbuilding
an attractor network in which the memory states occur on the unstable
branch of the m-nullcline, and thus �re at low rates: 1ÁE.ºE; m/ must be
a decreasing function of ºE, and the fraction, f , of neurons involved in a
memory must be large enough to give the ºE-nullcline signi�cant curvature.
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What happens if either of these conditions is violated? Figure 4B shows the
nullclines when 1ÁE.ºE; m/ is an increasing function of ºE; in this regime,
the m-nullcline turns upside down. A low-�ring-rate equilibrium still exists,
but it is unstable, as indicated by the black arrows. The stable memory state
in this regime is at high �ring rate, near single-neuron saturation—too high
to be consistent with experiment. Figures 4C and 4D show nullclines when
f ¿ 1. Again, the only stable memory states are near saturation, and thus
at high rate.

Is the condition that 1ÁE.ºE; m/ be a decreasing function of ºE satis�ed for
realistic networks? In other words, is it reasonable to expect
@1ÁE.ºE; m/=@ºE < 0? To answer this, we use equation 2.5a to write

@1ÁE.ºE; m/

@ºE
D ¡° 0.ºE/[Á0

E.¡° .ºE/ C ¯m/ ¡ Á 0
E.¡° .ºE//]; (2.6)

where a prime after a function denotes a derivative with respect to its argu-
ment. The term in brackets on the right-hand side of equation 2.6 is typically
positive for a memory lying on the unstable branch of the m-nullcline; this is
because the unstable branch corresponds to the intermediate equilibrium in
Figure 3A, where ÁE is generally convex. Thus, the sign of @1ÁE.ºE; m/=@ºE
is determined solely by the sign of ° 0.ºE/. For typical cortical networks, it is
likely that ° 0.ºE/ > 0. That is because cortical networks operate in the high-
gain regime, in which one excitatory action potential is capable of causing
more than one excitatory action potential somewhere else in the network
(Abeles, 1991; Matsumura, Chen, Sawaguchi, Kubota, & Fetz, 1996). The
only way to stabilize such a system is to provide strong feedback from
excitatory to inhibitory neurons, so that the inhibitory response to small
increases in excitation dominates over the excitation (van Vreeswijk & Som-
polinsky, 1996; Amit & Brunel, 1997b; Brunel & Wang, 2001). In terms of our
network variables, this means that d.JEIºI.ºE//=dºE must be greater than
d.JEEºE/=dºE, which implies, via equation 2.4, that ° 0.ºE/ > 0. Thus, the
condition @1ÁE.ºE; m/=@ºE < 0 is naturally satis�ed in cortical networks.

Finally, we pointout that a necessary condition fora low-�ring-rate mem-
ory and a stable background state is that the ºE-nullcline intersect the m D 0
line above the exchange-of-stability point (the point where the two branches
of the m-nullcline intersect), and then intersect twice more on the unstable
branch of the m-nullcline. A suf�cient condition for this to happen is that
the slope of the ºE-nullcline is less than the slope of the m-nullcline at m D 0.
If that condition is satis�ed, then ¯ can be increased until the ºE-nullcline
is suf�ciently far above the exchange-of-stability point to guarantee two
intersections on the unstable branch.

The slopes of the two nullclines, which can be determined by implicitly
differentiating equations 2.5a and 2.5b, are given by

dºE

dm

­­­­
m¡nullcline

D
1
° 0

¯Á 0
E.¡° C ¯m/ ¡ 1

Á0
E.¡° C ¯m/ ¡ Á 0

E.¡° /
(2.7a)
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dºE

dm

­­­­
ºE¡nullcline

D
¯ fÁ 0

E.¡° C ¯m/

1 C ° 0[.1 ¡ f /Á0
E.¡° / C f Á0

E.¡° C ¯m/]
: (2.7b)

To calculate the slope of the m-nullcline at m D 0, it is necessary to take
the m ! 0 limit of equation 2.7a; that will ensure that we do not pick up
the vertical piece of the m-nullcline, which has in�nite slope. Using the
fact that ¯Á0

E.¡° C ¯m/ D 1 at the exchange-of-stability point and Taylor
expanding the numerator and denominator in equation 2.7a around m D 0,
we see that the slope of the m-nullcline is equal to ¯=° 0 at m D 0. A simple
calculation then tells us that the slope of the ºE-nullcline at m D 0 is a factor
of f=.1C1=° 0Á0

E/ smaller. This ensures that for some range of ¯ , the nullclines
will exhibit the set of equilibria shown in Figure 4C.

We can now use Figure 4 to understand why the two features listed
in the beginning of section 2 (convexity over some range and transition
to concavity at �ring rates well above 10–20 Hz) are necessary if attractor
networks are to exhibit robust, low-�ring-rate equilibria in the dynamically
stabilized regime. First, if gain functions are not convex over some �nite
range of m, then they will intersect the 45 degree line with a slope that is less
than 1 (disregarding the trivial intersection at m D 0), which eliminates the
possibility of operating in the dynamically stabilized regime (see Figure 5).
Second, if the transition from a convex to a concave gain function occurs at
an output rate that is less than, say, 20 Hz, then it would be possible for the
equilibria in Figures 4B to 4D to occur at �ring rates less than 20 Hz, which
would imply that a stable, low-�ring-rate equilibrium can exist on the stable
branch of the m-nullcline, and thus not in the dynamically stabilized regime.

E
E

(
,

)
m

m

Figure 5: Concave gain functions. When the gain functions have no convex
region, they intersect the 45 degree line (marked with arrows) with slope less
than one, indicating that the network operates on the stable branch of the m-
nullcline. Thus, the only way for the network to operate in the dynamically
stabilized regime is for the gain functions to be convex for some range of m (see
Figure 3).
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The above analysis tells us what is possible in principle; to see what
is possible in practice, and to determine whether attractor networks can
operate at low rates in a reasonably large parameter range, we now turn to
simulations.

3 Simulations

To verify the reduced model described above and to determine the range
of parameters that supports multiple attractors, we performed simulations
with a large network of synaptically coupled, spiking neurons. Network
connectivity was based on the �ring-rate model given in equation 2.1, with
two enhancements to make it more realistic. First, we used random, sparse
background connectivity rather than uniform, all-all connectivity. Second,
we allowed multiple attractors—multiple memories—rather than just a sin-
gle memory. To implement multiple memories, we included in the connec-
tivity matrix a term proportional to ¯

Pp
¹D1 »

¹
i .»

¹

j ¡ f /, where p is the num-
ber of memories and the »¹ are uncorrelated, random binary vectors with
a fraction f of their components equal to one (Hop�eld, 1982; Tsodyks &
Feigel’man, 1988; Buhmann, 1989). This term is a natural extension of the
one given in equation 2.1a. A detailed description of the network is provided
in appendix B.

We are interested not only in whether the network can exhibit memories
at low rates, but also if it can do so without �ne-tuning parameters. Ideally,
we would like to explore the whole parameter space. However, there are
17 parameters (see Table 1 in appendix B), making this prohibitively time-
consuming. Instead, we chose a network with reasonable parameters (e.g.,
synaptic and membrane time constants and PSP size; Table 1), and then var-
ied two parameters over a broad range. The ones we varied were VPSPEE , the
excitatory-to-excitatory EPSP (excitatory postsynaptic potential) size, and ¯ ,
the increase in EPSP size among the neurons contained in each of the p mem-
ories. At a range of points in this two-dimensional space, we checked how
many memories could be embedded out of the p memories we attempted
to embed and whether any memories were spontaneously activated.

A run—a simulation at a particular set of parameters—lasted 12 seconds.
The �rst 5 seconds consisted of background activity, in which the neurons
�red at low average rate. At 5 seconds, all neurons in one of the memo-
ries received a 100 ms barrage of EPSPs. After 2 seconds, the same neurons
received a second 100 ms barrage, this time of inhibitory postsynaptic po-
tentials. The network then ran for another 5 seconds at background.

A successful run—one in which the desired memory was activated and
deactivated at the right times, and no other memories were spontaneously
activated—is shown in Figure 6A. Note that the �ring rate during a memory
is relatively low, about 14 Hz. Thus, for at least one set of parameters, an
attractor can exist at low rate.
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Figure 6: Simulations in which a set of memory neurons (black line) was acti-
vated at t D 5 seconds (�rst vertical dashed line) and deactivatedat t D 7 seconds
(second vertical dashed line). The gray line in all plots is the background �ring
rate. (A) The activated memory is successfully embedded for the full 2 seconds.
(B) The activated memory lasts for only 1.5 seconds, indicating that the attractor
is not stable. (C) A spurious memory (dashed line) is spontaneously activated,
indicating that the background is not stable. Parameters are given in Table 1,
with VPSPEE D 0:48 mV, ¯ D 0:21 mV, and f D 0:1. Onset times for the memories
were 50 to 100 ms, consistent with what is observed in vivo (Wilson et al., 1993;
Tomita, Ohbayashi, Nakahara, Hasegawa, & Miyashita, 1999; Naya et al., 2003).
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Figure 7: Summary of simulations. (A) Number of memories successfully em-
bedded out of 50, the number attempted. (B) Average �ring rate of memory
neurons. The black line in both plots is the stability boundary: below it, the
background is stable, meaning no spurious memories were activated; above it,
the background is unstable. For EPSPs ranging from 0.2 to 0.5 mV, the network
supports multiple attractors and a stable background for values of ¯ varying
over a 15% to 25% range. Scale bar is shown to the right. Parameters are given
in Table 1, with f D 0:1.

Not all runs were successful, of course. Two things can go wrong: the de-
sired memory might not stay active for the whole 2 seconds (see Figure 6B),
or a spurious memory might become spontaneously active (see Figure 6C).
To determine whether a particular set of parameters can support multiple
memories without any of them becoming unstable, we activated and deac-
tivated, one at a time, each of the p memories. A particular memory was
considered to be successfully embedded if it stayed active for the requisite
2 seconds, and a particular set of parameters was considered to be stable if
no spurious memories were activated in any of the p runs.

The results of simulations with p D 50 are summarized in Figure 7.
Figure 7A shows the number of memories that were successfully embedded
versus VPSPEE and ¯ . The black line in this �gure is the stability boundary:
the background state is stable in the region below it, meaning no spurious
memorieswere activated (see Figure 6A); it is unstable in the region above it,
meaning at least one spurious memory was activated (see Figure 6C). Figure
7B shows the average �ring rate of the memory neurons for those memories
that were successfully embedded. As predicted by the reduced model, the
�ring rate is uniformly low, never exceeding 15 Hz in the stable regime. The
background rate (not shown) was »0.1 to 0.2 Hz, lower than what is seen
in vivo. For these network parameters, 50 memories was close to capacity:
increasing p to 75 drastically reduced the size of the stable regime.
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Consistent with the analysis of the reduced model, the parameter regime
that supports multiple memories and a stable background is large: for
EPSPs ranging from 0.2 to 0.5 mV, the region with multiple (> 45/ memories
extended about 0.04 mV below the stability boundary. If we consider the
dynamic range of ¯ to lie between zero and the stability boundary, then this
corresponds to a parameter range for ¯ of 15% to 25%.

Although the low �ring rates of the memory neurons and the large pa-
rameter regime that supports multiple memories are consistent with the
reduced model introduced above, they are not a direct con�rmation of it.
What we would like to know is whether the equilibria we observed in the
simulations really do lie on the unstable branch of the m-nullcline, as in
Figure 4A, or whether they in fact lie on the stable one, as in Figures 4B
to 4D. One way to �nd out is to manipulate the nullclines, and thus the
equilibrium �ring rates, and then check to see if the �ring rates change as
predicted by the reduced model.

A convenient manipulation is one in which the ºE-nullcline is raised or
lowered while the m-nullcline remains �xed. This is because raising the ºE-
nullcline lowers the average �ring rate during the activation of a memory
only when the equilibrium is on the unstable branch of the m-nullcline (see
Figure 4A and the inset in Figure 8); if the equilibrium is on the stable
branch, raising the ºE-nullcline increases the average �ring rate (see Figures
4B–4D). Examining equation 2.5, we see that the ºE-nullcline can be raised
without affecting the m-nullcline by increasing f , the fraction of neurons
involved in a memory. The prediction from the reduced model, then, is
that the background �ring rate during the activation of a memory should
decrease as f increases. This prediction is veri�ed in Figure 8, thus providing
strong evidence that the reduced model really does explain the simulations
and that the simulations operate in a regime corresponding to the nullclines
shown in Figure 4A. Note also that the range of f that supports stable
memories is large, » 30%, providing further evidence for the robustness of
the network.

4 Discussion

The question we address in this article is: how can cortical networks, which
are highly interconnected and dominated by excitatory neurons, carry out
computations and yet maintain stability? We answered this question in the
context of attractor networks—networks that support multiple stable states,
or memories. We chose attractor networks for two reasons. First, they are
thought to underlie several computations in the brain, including associative
memory (Hop�eld, 1982, 1984), working memory (Amit & Brunel, 1997a;
Brunel & Wang, 2001), and the vestibular-ocular re�ex (Seung, 1996). Con-
sequently, they are an active area of experimental research (Miyashita &
Hayashi, 2000; Aksay et al., 2001; Ojemann et al., 2002; Naya et al., 2003).
Second, the stability problem in attractor networks is especially severe, so
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Figure 8: Average �ring rate during the activation of a memory, ºE, as a function
of the fraction of neurons involved in a memory, f , for two parameter sets. Black
curve: VPSPEE D 0:40 mV, ¯ D 0:18 mV; gray curve: VPSPEE D 0:20 mV, ¯ D 0:21
mV; other parameters are given in Table 1. Averages are over all 50 memories;
error bars are standard deviations. As indicated in the inset, the prediction of
our model is that the �ring rate, ºE , should drop as f increases and drives the
ºE-nullcline up (the upper ºE-nullcline corresponds to larger f ; see the text). This
prediction is veri�ed by the decreasing �ring rate versus f .

if we can solve this problem for attractor networks, we should be able to
solve it for networks implementing other kinds of computations.

In previous models of realistic attractors networks, the strategy was to
operate on the stable branch of the m-nullcline (Amit& Brunel, 1997a; Wang,
1999; Brunel, 2000; Brunel & Wang, 2001), where �ring rates are set essen-
tially by the saturation rates of single neurons (see Figure 4C). Those rates
are »100 Hz, making the experimentally observed 10 to 20 Hz (Fuster &
Alexander, 1971; Miyashita & Chang, 1988; Nakamura & Kubota, 1995)
hard to reach without �ne-tuning parameters. Here we showed, using a
reduced, two-variable model and simulations with large networks of spik-
ing neurons, that attractor networks can operate on the unstable branch of
the m-nullcline, and thus at low rates.

There are two key components to this model. The �rst is strong coupling
between excitatory and inhibitory cells. This coupling, which is essential in
networks with strong recurrent excitatory connections like those found in
the cortex, means that any upward �uctuation in excitatory �ring rate is
matched by a larger upward �uctuation in inhibitory rate. (Here “larger”
has a technical de�nition: it means that ° 0.ºE/ > 0; see equations 2.4 and 2.6.)
This makes the background state effectively inhibitory, a fact that is some-
what counterintuitive but extremely valuable, as it allows the background to
act as a stabilizing pool. The second component is strong coupling between
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the attractors and the background state. Since the background is effectively
inhibitory, this coupling can dynamically stabilize what would otherwise
be an unstable state, and thus allow operation on the unstable branch of the
m-nullcline.

The approach we used, in which the network operates on the unstable
branch of the m-nullcline, is fundamentally different from approaches in
which networks operate on the stable branch. In particular, the latter re-
quire �ne-tuning of network parameters to keep neurons from �ring near
saturation (see Figure 3C); the former does not. Importantly, the �ne-tuning
problem associated with operation on the stable branch cannot be elimi-
nated simply by including effects like synaptic and spike-frequency adap-
tion, or by adding inhibition. This is because the �ne-tuning problem is
associated with the structure of the nullclines in Figure 4 and the fact that
neurons saturate at about 100 Hz (even with spike frequency adaptation
taken into account), neither of which is changed by these manipulations.

To verify the predictions of the reduced model, we performed large-scale
simulations with networks of spiking neurons. We found that »50 overlap-
ping memories could be embedded in a network of 10,000 neurons. As
predicted, the �ring rates of the neurons in the attractor were low, between
10 and 15 Hz on average—approximately what is seen in vivo. More impor-
tant, the network was stable over a broad range of parameters: background
EPSP amplitude could vary by »100%, the connection strength among the
neurons involved in a memory could vary by »25%, and the fraction of
neurons involved in a memory could vary by »30%, all without degrading
network operation (see Figures 7 and 8).

4.1 Implications for Memory Storage. An important outcome of our
model is that it predicts that the fraction of neurons involved in a memory,
f , must be above some threshold. Otherwise, the feedback between the
memory and the background would be too weak to stabilize activity at low
rates, as can be seen by comparing Figures 4A and 4C. As shown by Gardner
(1988), Tsodyks and Feigel’man (1988), Buhmann (1989), and Treves, Skaggs,
and Barnes (1996), the maximumnumber ofmemories that can be embedded
in a network is » 0:2K=j f log f j where K is the number of connections per
neuron. This relation, combined with our result that f must be above some
minimum, means that there is a limit to the number of memories that can
be stored in any one network. This precludes the possibility of increasing
the number of memories by adding neurons to a network while keeping the
number of neurons in a memory �xed: this manipulation would decrease
f and thus increase the maximum number of allowed memories, but as f
becomes too small, it would ultimately make the network unable to operate
at low rates.

If we take f D 0:1 (Fuster & Jervey, 1982) and K D 5000 (Braitenberg &
Schüz, 1991), then the maximum number of memories that can be stored
in any strongly interconnected network in the brain is »4000. This has ma-
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jor implications for how we store memories. Humans, for example, can
remember signi�cantly more than 4000 items, even within a particular cat-
egory (words, for example). Thus, our model implies that memory must be
highly distributed: localnetworks store at most thousands of itemseach, and
during recall, those items must be dynamically linked to form a complete
memory.

4.2 Biological Plausibility of Our Model. Our simulations contained
garden-variety neurons and synapses—simple point neurons and fast
synapses. This allowed us to cleanly separate behavior due to collective
interactions from behavior due to single-neuron properties. However, it
leaves open the possibility that more realistic neurons and synapses might
change our �ndings, especially the size of the parameter range in which the
network is stable. Probably the most important parameters for stability are
the excitatory and inhibitory synaptic time constants, with long excitatory
time constants being stabilizing and long inhibitory time constants destabi-
lizing (Tegner, Compte, & Wang, 2002). In our networks, we used the same
time constant for both (3 ms). More realistic would be a longer inhibitory
time constant (Salin & Prince, 1996; Xiang, Huguenard, & Prince, 1998) and
a mix of long (NMDA) and short (AMPA) excitatory time constants (An-
drasfalvy & Magee, 2001). Fortunately, such a mix has an overall stabilizing
effect (Wang, 1999). Thus, we expect that with more realistic synapses, the
parameter regime that supports a large number of memories should, in fact,
be larger than the one we found.

Because slow excitatory synapses reduce �uctuations, they may increase
the number of memories that can be embedded. This is important, since the
number of memories in our network, 50, was smaller than what we expect
of realistic networks, and much smaller than the theoretical maximum of
2000 for our network (derived using the above formula, 0:2K=j f log f j, with
K D 2500 and f D 0:1).

The background �ring rate in our simulations was »0.1 to 0.2 Hz, lower
than the 1 to 10 Hz observed in vivo (Fuster & Alexander, 1971; Miyashita
& Chang, 1988; Nakamura & Kubota, 1995). These low rates can be traced
to the fact that our network consisted of two pools of neurons, one near
threshold and one well below threshold, with the latter pool �ring at a very
low rate. The below-threshold pool was needed to ensure that the average
gain function, ÁE, was convex at the background �ring rate, which is nec-
essary for memories to exist (see Figure 3). With other methods for achiev-
ing convex gain functions, such as coherent external input or nonlinear-
ities in the current-to-�ring-rate transformation (especially the nonlinear-
ity provided by persistent neurons; Egorov, Hamam, Fransen, Hasselmo, &
Alonso, 2002), it is likely that a larger background rate could be supported. A
nonlinear current-to-�ring-rate transformation is especially helpful: when
we included even a slight nonlinearity, the background rate increased to
about 1 Hz and the capacity of the network increased to 100 memories (data
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not shown). Alternatively, it is possible that our network was consistent
with real cortex, and the �ring rates in vivo are overestimated. This could
happen because experimental recordings are, by necessity, biased toward
neurons that �re at detectable rates, whereas we averaged �ring rates over
all neurons in the network, some of which rarely �red. This possibility is
strengthened by the recent �nding that, based on energy considerations,
average �ring rates in the cortex are likely to be less than 1 Hz (Lennie,
2003).

4.3 Summary. These results demonstrate that dynamical stabilization
can be used to embed multiple, overlapping, low-�ring-rate attractors over
a broad range of network parameters. This opens the door to detailed com-
parison between theory and experiment, and should help resolve the ques-
tion of whether attractor networks really do exist in the brain. In addition,
dynamical stabilization can be used for all kinds of networks, not just those
involving attractors, and may turn out to be a general computational prin-
ciple.

Appendix A: Derivation of Reduced Model Equations

In large neuronal networks in which neurons are �ring asynchronously, it
is reasonable to model neurons by their �ring rates (Amit & Brunel, 1997a).
While this approach is unlikely to capture the full temporal network dy-
namics (Treves, 1993), it is useful for studying equilibria. Moreover, near an
equilibrium, we expect the �ring rates to obey �rst-order dynamics. Thus,
a �ring-rate model that uses linear summation followed by a nonlinearity
would be described by the equations

¿E
dºEi

dt
C ºEi D ÁEi

0

@
X

j

JEE
ij ºEj ¡

X

j

JEI
ij ºIj

1

A (A.1a)

¿I
dºIi

dt
C ºIi D ÁIi

0

@
X

j

JIE
ij ºEj ¡

X

j

JII
ij ºIj

1

A ; (A.1b)

where ºEi and ºIi are the �ring rates of individual excitatory and inhibitory
neurons, respectively, ÁEi and ÁIi are their gain functions, and Jij determines
the connection strength from neuron j to neuron i.

The behavior of the network described by equation A.1 depends criti-
cally on connectivity. If the connectivity is purely random, then the network
can be described qualitatively by the Wilson and Cowan model (Wilson &
Cowan, 1972). However, if the connectivity among a subpopulation of ex-
citatory neurons is strengthened, as it is in this study, we need to augment
the Wilson and Cowan model. Ignoring �ring-rate �uctuations, an approx-
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imation that is valid qualitatively (Amit & Brunel, 1997a; Latham, 2002), we
can construct heuristically such an augmented model by letting

JEE
ij ! N¡1

E JEE C ¯[NE f .1 ¡ f /]¡1»i.»j ¡ f / (A.2a)

JLM
ij ! N¡1

M JLM; LM D EI; IE; II: (A.2b)

In these expression, NE and NI are the number of excitatory and inhibitory
neurons, respectively, and » is a random binary vector: »i is 1 with proba-
bility f and 0 with probability 1 ¡ f . If we apply the replacements given in
equation A.2 to equation A.1, average equation A.1b over index, i, de�ne
ÁI.x/ ´ N¡1

I
P

i ÁIi.x/, and let ÁEi ! ÁE, then equation A.1 turns into equa-
tion 2.1. Replacing ÁEi with ÁE was done for convenience only: it simpli�es
the resulting equations without detracting from the main result.

To derive equations 2.3a and 2.3b from equation 2.1, we must average ÁE
and »iÁE over index. To perform these averages, we �rst use the de�nition
of m, equation 2.2, to simplify the argument of ÁE; this de�nition implies
that ÁE D ÁE.JIEºE ¡ JIIºI C ¯m»i/. We then note that for any function F.»i/,

N¡1
E

X

i
F.»i/ D N¡1

E

X

i
.1 ¡ »i/F.»i/ C N¡1

E

X

i
»iF.»i/

D N¡1
E

X

i
.1 ¡ »i/F.0/ C N¡1

E

X

i
»iF.1/ (A.3)

D .1 ¡ f /F.0/ C f F.1/:

The second line follows because »i is either 0 or 1; the third (which is strictly
valid only in the NE ! 1 limit) because »i averages to f . Similarly,

. fNE/¡1
X

i
»iF.»i/ D . f NE/¡1

X

i
»iF.1/ D F.1/: (A.4)

Equations A.3 and A.4, along with the de�nition of m given in equation 2.2,
can be used to derive equations 2.3a and 2.3b.

Appendix B: Simulation Details

The network we simulate consists of NE excitatory and NI inhibitory quad-
ratic integrate-and-�re neurons (Ermentrout & Kopell, 1986; Ermentrout,
1996; Gutkin & Ermentrout, 1998; Brunel & Latham, 2003). The membrane
potential of the ith neuron, Vi , and the conductance change at neuron i in
response to a spike at neuron j, sij, evolve according to

¿
dVi

dt
D .Vi ¡ Vr/.Vi ¡ Vt/

Vt ¡ Vr
C V0i ¡ .Vi ¡ EE/

X

j2E

Jijsij.t/
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¡ .Vi ¡ EI/
X

j2I

Jijsij.t/ (B.1a)

dsij

dt
D ¡

sij

¿s
C

X

l

±.t ¡ tl
j/: (B.1b)

Here ¿ is the cell time constant, Vr and Vt are the nominal resting and thresh-
old voltages, V0i is the product of the applied current and the membrane
resistance (in units of voltage), Jij is the (dimensionless) connection strength
from cell j to cell i, EE and EI are the excitatory and inhibitory reversal po-
tentials, respectively, the notation j 2 M means sum over only those cells of
type M, ±.¢/ is the Dirac ±-function, and tl

j is the lth spike emitted by neuron
j.

To mimic the heterogeneity seen in cortical neurons, we let Voi, which
determines the distance from resting membrane potential to threshold, have
a range of values. This range is captured by the distributions

PE.V0/ D 0:75
exp[¡.V0 ¡ 1:5/2=2.0:5/2]

[2¼.0:5/2]1=2

C 0:25
exp[¡.V0 ¡ 3:75/2=2.1:0/2]

[2¼.1:0/2]1=2

PI.V0/ D
1

4:5
£

»
1 0:5 < V0 < 5:0
0 otherwise ;

where PE.V0/ and PI.V0/ are the distributions for excitatory and inhibitory
neurons, respectively. In the absence of synaptic drive, the distance between
resting membrane potential and threshold is .Vt ¡ Vr/[1 ¡ 4V0=.Vt ¡ Vr/]1=2

(see equation B.1a). Since we use Vt ¡ Vr D 15 mV (see Table 1), V0 D 3:75
corresponds to a resting membrane potential that is equal to threshold while
V0 D 1:5 corresponds to a resting membrane potential about 12 mV below
threshold. Neurons for which V0 > 3:75 are endogenously active—they �re
repeatedly without input.

The distribution PE.V0/ tells us that the excitatory neurons consist of two
pools: one with resting membrane potential well below threshold, and one
with resting membrane potential near threshold. About half the neurons in
the latter pool are above threshold, and thus endogenously active. In re-
alistic networks, this endogenous activity could be due to external input,
intrinsic single-neurons properties (Latham, Richmond, Nirenberg, & Nel-
son, 2000b), or a combination of the two. While endogenously active cells
greatly facilitate the existence of a low-�ring-rate background state (Latham
et al., 2000a), they are not absolutely necessary for it (Hansel & Mato, 2001).

A spike is emitted from neuron j whenever Vj reaches C1, at which point
it is reset to ¡1. To attain the values §1 in our numerical integration, we
make the change of variables V D .Vr C Vt/=2C .Vt ¡Vr/ tan µ and integrate
µ instead of V.
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The connectivity matrix, Jij, consists of two parts. One is random, cor-
responding to background connectivity before learning; the other is struc-
tured, corresponding to memories. In addition, we impose sparse connec-
tivity by making the connection probability less than 1. We thus write

Jij D g.cij.Wij C Aij//;

where cij is 1 with probability cconnect and zero otherwise, Wij corresponds
to the background connectivity, Aij corresponds to the structured connec-
tivity, and g is a clipping function chosen so that 0 · g.x/ · gmax; for
convenience, we choose g.x/ to be threshold linear and truncated at gmax:
g.x/ D max.x; 0/ ¡ max.x ¡ gmax; 0/. The clipping function ensures that a
particular connection strength neither violates Dale’s law by falling below
zero nor exceeds physiological levels by becoming too large.

The random part of the connectivity matrix, W, is chosen to produce
realistic postsynaptic potentials. Speci�cally, we let

Wij D wij
VPSPLM

VM
;

where neuron i is of type L, neuron j is of type M (L; M D E; I), wij is a
random variable uniformly distributed between 1 ¡

p
31 and 1 C

p
31 (so

that its variance is 12), and

VM ´ EM ¡ Vr

.¿=¿s/ exp[ln.¿=¿s/=.¿=¿s ¡ 1/]
:

With this choice for the connection matrix, a neuron of type L will exhibit
postsynaptic potentials on the order of VPSPLM when a neuron of type M
�res, assuming that V0 D 0 for the neuron of type L (Latham et al., 2000a).

The structured partof the connectivity matrix is the natural multimemory
extension of the matrix given inequation 2.1a, except with a slightly different
normalization,

Aij D ¯=VE

NE f .1 ¡ f /

pX

¹D1

»
¹
i .»

¹
j ¡ f /;

where p is the number of memories and the »¹ are uncorrelated, random
binary vectors: »

¹
i is 1 with probability f and 0 with probability 1 ¡ f . Only

excitatory neurons participate in the memories. The factor 1=VE is included
so that ¯ has units of voltage.

The parameters in the model are listed in Table 1. All were �xed through-
out the simulation except for ¯ and VPSPEE , which were varied to explore
robustness (see Figure 7), and f , which was 0.1 except in Figure 8, where it
ranged from 0.085 to 0.115.



Computing and Stability in Cortical Networks 1409

Table 1: Parameters Used in the Simulations.

Excitatory neurons 8000
Inhibitory neurons 2000
cconnect 0.25
1 0.25
¿ 10 ms
¿s 3 ms
Vr ¡65 mV
Vt ¡50 mV
E E 0 mV
E I ¡80 mV
VEPSP (E ! E) 0.2–0.8 mV
VEPSP (E ! I) 1.0 mV
VIPSP (I ! E, I ! I) ¡1:5 mV
gmax 2.5 mV
¯ 0.08–0.28 mV
p 50
f 0.085–0.115
Time step 0.5 ms
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