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In this letter, we show that decomposition methods with alpha seeding are
extremely useful for solving a sequence of linear support vector machines
(SVMs) with more data than attributes. This strategy is motivated by
Keerthi and Lin (2003), who proved that for an SVM with data not linearly
separable, after C is large enough, the dual solutions have the same free
and bounded components. We explain why a direct use of decomposition
methods for linear SVMs is sometimes very slow and then analyze why
alpha seeding is much more effective for linear than nonlinear SVMs. We
also conduct comparisons with other methods that are efficient for linear
SVMs and demonstrate the effectiveness of alpha seeding techniques in
model selection.

1 Introduction

Solving linear and nonlinear support vector machines (SVM) has been con-
sidered two different tasks. For linear SVM without too many attributes in
data instances, people have been able to train millions of data (e.g. Man-
gasarian & Musicant, 2000), but for other types of problems, in particular,
nonlinear SVMs, the requirement of huge memory as well as computational
time has prohibited us from solving very large problems. Currently, the de-
composition method, a specially designed optimization procedure, is one
of the main tools for nonlinear SVMs. In this letter, we show the draw-
backs of existing decomposition methods, in particular, sequential minimal
optimization (SMO)–type algorithms, for linear SVMs. To remedy these
drawbacks, using theorem 3 of Keerthi and Lin (2003), we develop effective
strategies so that decomposition methods become efficient for solving linear
SVMs.
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First, we briefly describe linear and nonlinear SVMs. Given training vec-
tors xi ∈ Rn, i = 1, . . . , l, in two classes, and a vector y ∈ Rl such that
yi ∈ {1, −1}, the standard SVM formulation (Cortes & Vapnik, 1995) is as
follows:

min
w,b,ξ

1
2

wTw + C
l∑

i=1

ξi

subject to yi(wTφ(xi) + b) ≥ 1 − ξi, (1.1)

ξi ≥ 0, i = 1, . . . , l.

If φ(x) = x, usually we say equation 1.1 is the form of a linear SVM. On
the other hand, if φ maps x to a higher-dimensional space, equation 1.1 is a
nonlinear SVM.

For a nonlinear SVM, the number of variables depends on the size of
w and can be very large (even infinite), so people solve the following dual
form:

min
α

1
2
αTQα − eTα

subject to yTα = 0, (1.2)

0 ≤ αi ≤ C, i = 1, . . . , l,

where Q is an l × l positive semidefinite matrix with Qij = yiyjφ(xi)
Tφ(xj),

e is the vector of all ones, and K(xi, xj) = φ(xi)
Tφ(xj) is the kernel function.

Equation 1.2 is solvable because its number of variables is the size of the
training set, independent of the dimensionality of φ(x).

The primal and dual relation shows

w =
l∑

i=1

αiyiφ(xi), (1.3)

so

sgn(wTφ(x) + b) = sgn

(
l∑

i=1

αiyiK(xi, x) + b

)

is the decision function.
Unfortunately, for a large training set, Q becomes such a huge, dense ma-

trix that traditional optimization methods cannot be directly applied. Cur-
rently, some specially designed approaches, such as decomposition meth-
ods (Osuna, Freund, & Girosi, 1997; Joachims, 1998; Platt, 1998) and finding
the nearest points of two convex hulls (Keerthi, Shevade, Bhattacharyya, &
Murthy, 2000), are major ways of solving equation 1.2.
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On the other hand, for linear SVMs, if n � l, w is not a huge vector vari-
able, so equation 1.1 can be solved by many regular optimization methods.
As at the optimal solution ξi = max(0, 1−yi(wTxi +b)), in a sense we mainly
have to find out w and b. Therefore, if the number of attributes n is small,
there are not many main variables w and b in equation 1.1, no matter how
large the training set is. Currently, people have been able to train a linear
SVM with millions of data (e.g. Mangasarian & Musicant, 2000); but for a
nonlinear SVM with many fewer data, we need more computational time
as well as more computer memory.

Therefore, it is natural to ask whether in SVM software, linear and non-
linear SVMs should be treated differently and solved by two methods. It is
also interesting to see how capable nonlinear SVM methods (e.g., decompo-
sition methods) are for linear SVMs. By linear SVMs, we mean those with
n < l. If n ≥ l, the dual form, equation 1.2, has fewer variables than w of the
primal, a situation similar to nonlinear SVMs. As the rank of Q is less than
or (usually) equal to min(n, l), the linear SVMs we are interested in here are
those with low-ranked Q.

Recently, in many situations, linear and nonlinear SVMs have been con-
sidered together. Some approaches (Lee & Mangasarian, 2001; Fine &
Scheinberg, 2001) approximate nonlinear SVMs by different problems,
which are in the form of linear SVMs (Lin & Lin, in press; Lin, 2002) with
n � l. In addition, for nonlinear SVM model selection with gaussian kernel,
Keerthi and Lin (2003) proposed an efficient method, which has to con-
duct linear SVMs model selection first (i.e., linear SVMs with different C).
Therefore, it is important to discuss optimization methods for linear and
nonlinear SVMs at the same time.

In this letter, we focus on decomposition methods. In section 2, we show
that existing decomposition methods are inefficient for training linear SVMs.
Section 3 demonstrates theoretically and experimentally that the alpha seed-
ing technique is particularly useful for linear SVMs. Some implementation
issues are discussed in section 4. The decomposition method with alpha
seeding is compared with existing linear SVM methods in section 5. In
section 6, we apply the new implementation to solve a sequence of linear
SVMs required for the model selection method in Keerthi and Lin (2003).
The discussion and concluding remarks are in section 7.

2 Drawbacks of Decomposition Methods for Linear SVMs with n � l

The decomposition method is an iterative procedure. In each iteration, the
index set of variables is separated into two sets B and N, where B is the work-
ing set. Then in that iteration, variables corresponding to N are fixed while a
subproblem on variables corresponding to B is minimized. If q is the size of
the working set B, in each iteration, only q columns of the Hessian matrix Q
are required. They can be calculated and stored in computer memory when
needed. Thus, unlike regular optimization methods, which usually require
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access of the whole Q, here, the memory problem is solved. Clearly, decom-
position methods are specially designed for nonlinear SVMs. Throughout
this article, we use DSVM to refer to the solver of SVM that adopts the de-
composition method, such as LIBSVM (Chang & Lin, 2001b) and SVMlight

(Joachims, 1998). When the size of its working set is two, we say it is of the
SMO type (Platt, 1998).

Unlike popular optimization methods such as Newton or quasi-Newton,
which enjoy fast convergence, decomposition methods converge slowly, as
in each iteration only very few variables are updated. We will show that the
situation is even worse when solving linear SVMs.

It has been demonstrated (Hsu & Lin, 2002b) by experiments that if C
is large and the Hessian matrix Q is not well conditioned, decomposition
methods converge very slowly. For linear SVMs, if n � l, then Q is a low-
rank and hence ill-conditioned matrix. In Figure 1, we demonstrate a simple
example by using the problem heart from the statlog database (Michie,
Spiegelhalter, & Taylor, 1994). Each attribute is scaled to [−1, 1]. We use
LIBSVM (Chang & Lin, 2001b) to solve linear and nonlinear (RBF kernel,
e−‖xi−xj‖2/(2σ 2) with 1/(2σ 2) = 1/n) SVMs with C = 2−8, 2−7.5, . . . , 28 and
present the number of iterations. Though two different problems are solved
(in particular, their Qij’s are in different ranges), Figure 1 clearly indicates
the huge number of iterations for solving the linear SVMs. Note that for
linear SVMs, the slope is greater than that for nonlinear SVMs and is very
close to one, especially when C is large. This means that a doubled C leads
to a doubled number of iterations.
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Figure 1: Number of decomposition iterations for solving SVMs with linear (the
thick line) and RBF (the thin line) kernel.
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The following theorems that hold only for linear SVMs help us to realize
the difficulty the decomposition methods suffer from. Theorem 2 can further
explain why the number of iterations is nearly doubled when C is doubled.

Theorem 1 (Keerthi & Lin, 2003). The dual linear SVM has the following
properties:

• There is C∗ such that for all C ≥ C∗, there are optimal solutions at the same
face.

• In addition, for all C ≥ C∗, the primal solution w is the same.

By the “face” of α, we mean three types of value of each αi: (1) lower-
bounded, that is, αi = 0, (2) upper-bounded, that is, αi = C, and (3) free, that
is, 0 < αi < C. More precisely, the face of α can be represented by a length l
vector whose components are in {lower-bounded, upper-bounded, free}.

This theorem indicates that after C ≥ C∗, exponentially increased num-
bers of iterations are wasted in order to obtain the same primal solution w.
Even if we could detect C∗ and stop training SVMs, for C not far below C∗,
the number of iterations may already be huge. Therefore, it is important to
have an efficient linear SVM solver that could handle both large and small
C.

Next, we try to explain the nearly doubled iterations by the difficulty of
locating faces of the dual solution α.

Theorem 2. Assume that any two parallel hyperplanes in the feature space do
not contain more than n + 1 points of {xi} on them. We have:1

1. For any optimal solution of equation 1.2, it has no more than n + 1 free
components.

2. There is C∗ such that after C ≥ C∗, all optimal solutions of equation 1.2 share
at least the same l − n − 1 bounded α variables.

The proof is available in Kao, Chung, Sun, and Lin (2002). This result
indicates that when n � l, most components of optimal solutions are at
bounds. Furthermore, dual solutions at C and 2C share at least the same
l − 2(n − 1) upper- and lower-bounded components. If upper-bounded αi
at C remains upper-bounded at 2C, a direct use of decomposition methods
means that αi is updated from 0 to C and from 0 to 2C, respectively. Thus, we
anticipate that the efforts are roughly doubled. We confirm this explanation

1 Note that a pair of parallel hyperplanes is decided by n + 1 numbers (the n num-
ber decides one hyperplane in the feature space Rn, and another one decides the other
hyperplane parallel to it). So the assumption of theorem 2 would be violated if m linear
equations in n + 1 variables, where m > n + 1, have solutions. The occurrence of this
scenario is of measure zero. This explains that the assumption of theorem 2 is generic.
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Figure 2: The error face rate (i.e., the difference between the current face and
the one at the final solution) for solving linear SVM with C = 128 and C = 256.

by comparing the error face rate (i.e., the difference between the current
face and the one at the final solution) with C = 27 and C = 28. As shown in
Figure 2, two curves are quite similar except that the scale of x-axis differs by
twice. This indicates that α travels similar faces for C = 27 and C = 28, and
the number of iterations spent on each face with C = 28 is roughly doubled.

3 Alpha Seeding for Linear SVMs

Theorem 2 implies that for linear SVMs, dual solutions may share many
upper- and lower-bounded variables. Therefore, we conjecture that if α1 is
an optimal solution at C = C1, then α1C2/C1 can be a very good initial point
for solving equation 1.2 with C = C2. The reason is that α1C2/C1 is at the
same face as α1, and it is likely to be at a similar face of one optimal solution
of C = C2. This technique, called alpha seeding, was originally proposed for
SVM model selection (DeCoste & Wagstaff, 2000) where several problems
(see equation 1.2) with different C have to be solved. Earlier work that
focuses on nonlinear SVMs mainly uses alpha seeding as a heuristic. For
linear SVMs, the speed could be significantly boosted due to the above
analysis.

The following theorem further supports the use of alpha seeding:

Theorem 3. There are two vectors A, B, and a number C∗ such that for any
C ≥ C∗, AC + B is an optimal solution of equation 1.2.

The proof is in Kao et al. (2002). If Ai > 1, AiC + B > C after C is large
enough, and this violates the bounded constraints in equation 1.2. Similarly,
Ai cannot be less than zero, so 0 ≤ Ai ≤ 1. Therefore, we can consider the
following three situations of vectors A and B:

1. 0 < Ai ≤ 1
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Table 1: Comparison of Iterations (Linear Kernel), With and Without Alpha
Seeding.

α-Seeding Without α-Seeding

Number of Number of
Number of Iterations Iterations

Problem Iterations C∗ wTw Total Iterations (C = 27.5) (C = 28)

heart 27,231 23.5 5.712 2,449,067 507,122 737,734
australian 79,162 22.5 2.071 20,353,966 3,981,265 5,469,092
diabetes 33,264 26.5 16.69 1,217,926 274,155 279,062
german 277,932 210 3.783 42,673,649 6,778,373 14,641,135
web 24,044,242 Unstable Unstable ≥ 108 74,717,242 ≥ 108

adult 3,212,093 Unstable Unstable ≥ 108 56214289 84,111,627
ijcnn 590,645 26 108.6 41,440,735 8,860,930 13,927,522

2. Ai = 0, Bi = 0

3. Ai = 0, Bi > 0

For the second case, α1
i

C2
C1

= AiC2 +Bi = 0, and for the first case, AiC � Bi

after C is large enough. Therefore, α1
i

C2
C1

= AiC2 +Bi
C2
C1

≈ AiC2 +Bi. For both
cases, alpha seeding is very useful. On the other hand, using theorem 2,
there are few (≤ n + 1) components satisfying the third case.

Next, we conduct some comparisons between DSVM with and without
alpha seeding. Here, we consider two-class problems only. Some statistics of
the data sets used are in Tables 1 and 2. The four small problems are from the
statlog collection (Michie et al., 1994). The problem adult is compiled by Platt
(1998) from the UCI “adult” data set (Blake & Merz, 1998). Problem web is
also from Platt. Problem ijcnn is from the first problem of IJCNN challenge
2001 (Prokhorov, 2001). Note that we use the winner’s transformation of the
raw data (Chang & Lin, 2001a).

We train linear SVMs with C ∈ {2−8, 2−7.5, . . . , 28}. That is, [2−8, 28] is
discretized to 33 points with equal ratio. Table 1 presents the total number

Table 2: Comparison of Iterations (RBF Kernel), With and Without Alpha Seed-
ing.

Problem l n α-Seeding Without α-Seeding

heart 270 13 43,663 56,792
australian 690 14 230,983 323,288
diabetes 768 8 101,378 190,047
german 1000 24 191,509 260,774
web 49,749 300 633,788 883,319
adult 32,561 123 2,380,265 4,110,663
ijcnn 49,990 22 891,563 1,968,396
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of iterations of training 33 linear SVMs using the alpha seeding approach. We
also individually solve them by LIBSVM and list the number of iterations
(total, C = 27.5, and C = 28). The alpha seeding implementation will be
described in detail in section 4. We also list the approximate C∗ for which
linear SVMs with C ≥ C∗ have the same decision function. In addition, the
constant wTw after C ≥ C∗ is also given. For some problems (e.g., web and
adult), wTw has not reached a constant until C is very large, so we indicate
them as “unstable” in Table 1.

To demonstrate that alpha seeding is much more effective for linear than
nonlinear SVMs, Table 2 presents the number of iterations using the radial
basis function (RBF) kernel K(xi, xj) = e−‖xi−xj‖2/(2σ 2) with 1/2σ 2 = 1/n. It is
clear that the number of iterations saved by using alpha seeding is marginal.
In addition, comparing to the “Total Iterations” column in Table 1, we con-
firm again the slow convergence for linear SVMs without alpha seeding.

The alpha seeding approach performs so well that its total number of
iterations is much fewer than solving one single linear SVM with the original
decomposition implementation. Therefore, if we intend to solve one linear
SVM with a particular C, it may be more efficient to solve one with small
initial C0 and then use the proposed alpha seeding method by gradually
increasing C.

Furthermore, since we have solved linear SVMs with different C, model
selection by cross validation is already done. From the discussion in sec-
tion 2, solving several linear SVMs without alpha seeding is time-consuming
and model selection is not easy.

Note that in Table 1, web is the most difficult problem and requires the
largest number of iterations. Theorem 2 helps to explain this: since web’s
large number of attributes might lead to more free variables during itera-
tions or at the final solution, alpha seeding is less effective.

4 Implementation

Though the concept is so simple, an efficient and elegant implementation
requires considerable thought.

Most DSVM implementations maintain the gradient vector of the dual
objective function during iterations. The gradient is used for selecting the
working set or checking the stopping condition. In the nonlinear SVM, cal-
culation of the gradient Qα − e requires O(l2n) operations (O(n) for each
kernel evaluation), which are expensive. Therefore, many forms of DSVM
software use α = 0 as the initial solution, which makes the initial gradient
−e immediately available. However, in DSVM with alpha seeding, the ini-
tial solution is obtained from the last problem, so the initial gradient is not
a constant vector. Fortunately, for linear SVMs, the situation is not as bad
as that in the nonlinear SVM. In this case, the kernel matrix is of the form
Q = XTX, where X = [y1x1, . . . , ylxl] is an n by l matrix. We can calculate
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the gradient by Qα − e = XT(Xα)− e, which requires only O(ln) operations.
The first decomposition software that used this for linear SVMs is SVMlight

(Joachims, 1998).
Similarly, if α is changed by �α between two consecutive iterations, then

the change of gradient is Q(�α) = XT(X�α). Since there are only q nonzero
elements in �α, the gradient can be updated with O(nq) + O(ln) = O(ln)

operations, where q is the size of working set. Note that because l � q,
increasing q from 2 to some other small constant will not affect the time of the
updating gradient. In contrast, for nonlinear SVMs, if Q is not in the cache,
the cost for updating the gradient is by computing Q(�α), which requires
q columns of Q and takes O(lnq)-time. Thus, while the implementation of
nonlinear SVMs may choose SMO-type implementation (i.e., q = 2) for a
lower cost per iteration, we should use a larger q for linear SVMs because
the gradient update is independent of q and the number of total iterations
may be reduced.

In the nonlinear SVM, constructing the kernel matrix Q is expensive, so
a cache for storing recently used elements of Q is necessary. However, in
linear SVM, either the kernel matrix Q or the cache is no longer needed.

5 Comparison with Other Approaches

It is interesting to compare the proposed alpha seeding approach with ef-
ficient methods for linear SVMs. In this section, we consider active SVM
(ASVM) (Mangasarian & Musicant, 2000) and Lagrangian SVM (LSVM)
(Mangasarian & Musicant, 2001).

DSVM, ASVM, and LSVM solve slightly different formulations, so a fair
comparison is difficult. However, our goal here is only to demonstrate that
with alpha seeding, decomposition methods can be several times faster and
competitive with other linear SVM methods. In the following, we briefly
describe the three implementations.

DSVM is the standard SVM, which uses the dual formulation, equa-
tion 1.2. ASVM and LSVM both consider a square error term in the objective
function:

min
w,b,ξ

1
2
(wTw + b2) + C

l∑
i=1

ξ2
i . (5.1)

Then, the dual problem of equation 5.1 is

min
α

1
2
αT
(

Q + yyT + I
2C

)
α − eTα (5.2)

subject to 0 ≤ αi, i = 1, . . . , l,

where I is the identity matrix. The solution of equation 5.2 has far more
free components than that of equation 1.2 as upper-bounded variables of
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Table 3: Comparison of Different Approaches for Linear SVMs.

Decomposition Methods (LIBSVM) Methods for Linear SVMs

With α Seeding Without α Seeding ASVM LSVM

Problem Acc. Time: C ≤ 28(C ≤ 23) Time: C ≤ 23 Acc. Time Time

australian 85.51 4.1 (3.6) 7.0 88.70 8.1 2.3
heart 85.56 1.4 (0.9) 1.0 85.56 5.8 1.8
diabetes 79.69 2.4 (2.3) 1.6 81.64 6.2 2.0
german 73.65 10.2 (6.2) 18.2 73.95 16.4 9.0
ijcnn 92.65 981.9 (746.0) 3,708.6 92.51 725.2 17,496.4
adult 85.02 1065.9 (724.8) 12,026.8 84.90 3,130.7 13,445.4
web 98.67 18,035.3 (1738.2) 7,035.6 98.63 10,315.9 43,060.1

Notes: Acc.: test accuracy using the parameter obtained from cross validation. Time (in
seconds): total training time of five-fold cross validation by trying C = 2−10, 2−9.5, . . . , 28

(or 23 if specified).

this equation are likely to be free now. With different formulations, their
stopping conditions are not exactly the same. We use conditions from similar
derivations; details are discussed in Kao et al. (2002).

In this experiment, we consider LIBSVM for DSVM (with and without
alpha seeding). For ASVM, we use the authors’ C++ implementation avail-
able on-line at http://www.cs.wisc.edu/dmi/asvm. The authors of LSVM
provide only MATLAB programs, so we implement it by modifying LIB-
SVM. The experiments were done on an Intel Xeon 2.8 GHz machine with
1024 MB RAM using the gcc compiler.

Using the same benchmark problems as in section 3, we perform com-
parisons in Table 3 as follows: for each problem, we randomly select two-
thirds of the data for training and leave the remaining for testing. For algo-
rithms except DSVM without alpha seeding, five-fold cross validation with
C = 2−10, 2−9.5, . . . , 28 on the training set is conducted. For DSVM without
alpha seeding, as the training time is huge, only C up to 23 is tried. Then
using the C that gives the best cross-validation rate, we train a model and
predict the test data. Both testing accuracy and the total computational time
are reported.

In Table 3, alpha seeding with C up to 28 is competitive with solving C up
to only 23 without alpha seeding. For these problems, considering C ≤ 23

is enough, and if alpha seeding stops at 23 as well, it is several times faster
than without alpha seeding.

Since alpha seeding is not applied to ASVM and LSVM, we admit that
their computational time can be further improved. Results here also serve
as the first comparison between ASVM and LSVM. Clearly ASVM is faster.
Moreover, due to the huge computational time, we set the maximal iterations
of LSVM at 1000. For problems adult and web, after C is large, the iteration
limit is reached before stopping conditions are satisfied.

In addition to comparing DSVM with ASVM and LSVM, we compare
the performance of SMO type (q = 2) and that with a larger working set
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Table 4: Comparison of Different Subproblem Size in Decomposition Methods
for Linear SVMs.

Decomposition Methods with Alpha Seeding

q = 2 (SVMlight) q = 30 (SVMlight)

Problem Total Iterations Time Total Iterations Time

australian 50,145 0.71 6533 1.19
heart 25,163 0.21 1317 0.33
diabetes 30,265 0.4 5378 0.31
german 182,051 2.9 6006 3.68
ijcnn 345,630 185.85 79847 115.03
adult 1,666,607 1455.2 414,798 516.71
web NAa NAa 2,673,578 1885.1

Notes: Time in seconds; q: size of the working set. The time here is shorter
than that in Table 3 because we do not perform cross validation. aSVMlight

faced numerical difficulties.

(q = 30) for DSVM with alpha seeding in Table 4 by modifying the software
SVMlight, which allows adjustable q. All default settings of SVMlight are used.
In this experiment, we solve linear SVMs with C = 2−8, 2−7.5, . . . , 28 and
report their computational time and total number of iterations. Note that
when q is two, SVMlight and LIBSVM use the same algorithm and differ only
in some implementation details.

The results in Table 4 show that the implementation with a larger working
set takes less time than that with a smaller one. This is consistent with our
earlier statement that for linear SVMs, SMO-type decomposition methods
are less favorable.

Regarding the computational time reported in this section, we must cau-
tion that quite a few implementation details may affect it. For example,
each iteration of ASVM and LSVM involves several matrix vector multi-
plications. Hence, it is possible to use finely tuned dense linear algebra
subroutines. For the LSVM implementation here, by using ATLAS (Whaley,
Petitet, & Dongarra, 2000), for large problems, the time is reduced by two-
thirds. Thus, it is possible to further reduce the time of ASVM in Table 3,
though we find it too complicated to modify the authors’ program. Using
such tools also means X is considered as a dense matrix. In contrast, X is
currently treated as a sparse matrix in both LIBSVM and SVMlight, where
each iteration requires two matrix vector multiplications X(XT(αk+1 − αk)).
This sparse format creates some overhead when data are dense.

6 Experiments on Model Selection

If the RBF kernel

K(xi, xj) = e−‖xi−xj‖2/(2σ 2)
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is used, Keerthi and Lin (2003) propose the following model selection pro-
cedure for finding good C and σ 2:

Algorithm 1. Two-line model selection

1. Search for the best C of linear SVMs and call it C̃.

2. Fix C̃ from step 1 and search for the best (C, σ 2) satisfying log σ 2 = log C−
log C̃ using the RBF kernel.

That is, we solve a sequence of linear SVMs first and then a sequence of
nonlinear SVMs with the RBF kernel. The advantage of algorithm 1 over
an exhaustive search of the parameter space is that only parameters on
two lines are considered. If decomposition methods are directly used for
both linear and nonlinear SVMs here, due to the huge number of itera-
tions, solving the linear SVMs becomes a bottleneck. Our goal is to show
that by applying the alpha seeding technique to linear SVMs, the computa-
tional time spent on the linear part becomes similar to that on the nonlinear
SVMs.

Earlier, in Keerthi and Lin (2003), due to the difficulty of solving linear
SVMs, algorithm 1 was tested on only small two-class problems. Here, we
would like to evaluate this algorithm on large multiclass data sets. We con-
sider the problems dna, satimage, letter, and shuttle, which were originally
from the statlog collection (Michie et al., 1994) and were used in Hsu and Lin
(2002a). Except dna, which takes two possible values 0 and 1, each attribute
of all training data is scaled to [−1, 1]. Then test data are adjusted using the
same linear transformation.

Since LIBSVM contains a well-developed cross-validation procedure, we
use it as the DSVM solver in this experiment. We search for C̃ by five-fold
cross validation on linear SVMs using uniformly spaced log2 C̃ value in
[−10, 10] (with grid space 1). As LIBSVM considers γ = 1/2σ 2 as the kernel
parameter, the second step is to search for good (C, γ ) satisfying

− 1 − log2 γ = log2 C − log2 C̃. (6.1)

We discretize [−10, 4] as values of log2 γ and calculate log2 C from equa-
tion 6.1. To avoid log2 C locating in an abnormal region, we consider only
points with −2 ≤ log2 C ≤ 12, so the second step may solve fewer SVMs
than the first step. The same computational environment as that for section
3 is used.

Since this model selection method is based on the analysis of binary
SVMs, a multiclass problem has to be decomposed to several binary SVMs.
We employ the one-against-one approach: if there are k classes of data,
all k(k − 1)/2 two-class combinations are considered. For any two classes
of data, the model selection is conducted to have the best (C, σ 2). With
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Table 5: Comparison of Different Model Selection Methods.

Complete Grid Search Algorithm 1

1 (C, σ 2) k(k − 1)/2 (C, σ 2) Time Time Time Accuracy
Problem Accuracy Time Accuracy (linear) (nonlinear)

dna 95.62 4945 95.11 202 123 79 94.86 (94.77)
satimage 91.9 7860 92.2 1014 743 271 91.55 (90.55)
letter 97.9 56,753 97.72 5365 3423 1942 96.54 (95.9)
shuttle 99.92 104,904 99.94 4196 2802 1394 99.81 (99.7)

Notes: Accuracies of algorithm 1 enclosed in parentheses are the accuracies if we search
log2 C̃ ∈ [−10, 3] in step 1 of algorithm 1. Time is in seconds.

the k(k − 1)/2 best (C, σ 2) and corresponding decision functions, a voting
strategy is used for the final prediction. In Table 5, we compare this approach
with two versions of complete grid searches. First, for any two classes of
data, five-fold cross validation is conducted on 225 points, a discretization of
the (log2 C, log2 γ ) = [−2, 12] × [−10, 4] space. The second way is from the
cross-validation procedure adopted by LIBSVM for multiclass data, where
a list of (C, σ 2) is selected first, and then for each (C, σ 2), the one-against-one
method is used for estimating the cross-validation accuracy of the multiclass
data. Therefore, for the final optimal model, k(k − 1)/2 decision functions
share the same C and σ 2. Since the same number of nonlinear SVMs is
trained, the time for the two complete grid searches is exactly the same, but
the performance (test accuracy) may be different. There is no comparison
so far, so we present a preliminary investigation here.

Table 5 presents experimental results. For each problem, we compare
test accuracy by two complete grid searches and by algorithm 1. The two
grid searches are represented as “1 (C, σ 2)” and “k(k −1)/2 (C, σ 2),” respec-
tively, depending on how many (C, σ 2) used by the decision functions. The
performances of the three approaches are very similar. However, the total
model selection time of algorithm 1 is much shorter. In addition, we also list
the accuracy of algorithm 1 in parentheses if we search only log2 C̃ value in
[−10, 3] in step 1. We find that the accuracy is consistently lower if we search
only C̃ in this smaller region. In fact, if we search log2 C̃ in [−10, 3], there
are many log2 C̃ equals to 3 in this experiment. This means that [−10, 3] is
too small to cover good parameter regions. We make algorithm 1 practi-
cal with using alpha seeding. Otherwise, the time for solving linear SVMs
increases greatly, so the proposed model selection does not possess any
advantage.

We then investigate the stability of the new model selection approach.
Due to timing restrictions, we consider two smaller problems, banana and
adult small, tested in Keerthi and Lin (2003). adult small, a subset of adult
used in section 3, is a binary problem with 1605 examples. Table 6 shows
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Table 6: Mean and Standard Deviation of Two Model Selection Methods.

Complete Grid Search Algorithm 1

log2 C log2 γ Accuracy log2 C̃ Accuracy

Problem Mean SD Mean SD Mean SD Mean SD Mean SD

banana 7 4.45 -0.4 1.51 87.91 0.47 -1.9 2.18 76.36 12.21
adult small 5.4 2.37 -7.6 1.71 83.82 0.27 0.3 4.08 83.20 1.28
dna 5.4 3.34 -5 0 95.56 0.19 - - 94.85 0.20
satimage 2.5 0.71 0.1 0.57 91.74 0.24 - - 91.19 0.28

Note: Each method was applied 10 times.

the means and standard deviations of parameters and accuracy using the
k(k − 1)/2 (C, σ 2) grid search and algorithm 1 10 times. For algorithm 1, we
list only C̃’s variances because the variances of parameters C and σ 2, which
are computed from equation 6.1, are less meaningful. By applying the same
method 10 times, note that different parameters as well as accuracy are due
to the randomness of cross validation.

From Table 6, we can see that although the performance (testing accuracy
and consumed time) of the model selection algorithm 1 is good, it might be
less stable. That is, the variance of accuracy is significantly larger than that
of the complete grid search method, while the variances of both parameters
are large. We think that in the complete grid search method, the cross-
validation estimation bounds the overall error. Thus, the variances of gained
parameters do not affect the testing performance. However, in the two-line
search method (algorithm 1), two-stage cross validations are utilized. Thus,
the variance in the first stage may affect the best performance of the second
stage.

7 Discussion and Conclusion

It is arguable that we may have used a too strict a stopping condition in
DSVM when C is large. One possibility is to use the stopping tolerance
that is proportional to C. This will reduce the number of iterations so that
directly solving linear SVMs with large C may be possible. However, in the
appendix of Chung et al. (2002), we show that even in these settings, DSVM
with alpha seeding still makes the computational time several times faster
than the original DSVM, especially for large data sets. Moreover, a stopping
tolerance that is too large will cause DSVM to stop with wrong solutions.

In conclusion, we hope that based on this work, SVM software using
decomposition methods can be suitable for all types of problems, both n � l
and n � l.
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