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Abstract
As subjects perceive the sensory world, different stimuli elicit a
number of neural representations. Here, a subjective distance be-
tween stimuli is defined, measuring the degree of similarity between
the underlying representations. As an example, the subjective dis-
tance between different locations in space is calculated from the ac-
tivity of rodent’s hippocampal place cells, and lateral septal cells.
Such a distance is compared to the real distance, between loca-
tions. As the number of sampled neurons increases, the subjective
distance shows a tendency to resemble the metrics of real space.

1 How different are two stimuli perceived?

Consider a subject that is labeling the elements of a given set of stimuli
S = {s1, s2, ..., sN}. Every time a stimulus sj ∈ S is shown, he or she
identifies it as sk ∈ S, where j may or may not be equal to k. Successful
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trials are those where the stimulus is correctly identified, that is, when j = k.
By writing down the succession of presented stimuli, and in each case, the
response of the subject, one can build up a list of pairs (sj , sk), where the
first element, sj, is the real stimulus, and the second one, sk, is the choice
made by the subject.

Notice that by looking into the table, one cannot determine precisely what
the subject actually perceived, since only the final choice sk is accessible. The
subject may, in fact, hesitate to identify the stimulus as a member of S, or
even think that it does not truly match any of the si. However, even if the
mental representation elicited by stimulus sj is unknown, the experimentalist
can assess that under the requirement to classify the stimulus as an element
of S, the subject chooses sk. In a way, whatever the neural activity brought
about by sj, out of all the elements in S, the one whose representation is
most similar to the actual one, is sk. The object of the present work is to
provide a quantitative measure of such a criterion of similarity. The approach
does not rely on a model of mental representations, it only makes use of the
statistics of actual and chosen stimuli.

In what follows, we assume that a sufficiently large number of samples has
been taken, so that the conditional probability Q(sk|sj) of showing sj and
perceiving sk may be evaluated, for all j and all k. The matrixQ is henceforth
called the confusion matrix. The elements of matrix Q are positive numbers,
ranging from 0 to 1. In addition, normalization must hold,

∑

k

Q(sk|sj) = 1. (1)

It should be noticed that Q need not be symmetric. For any fixed j, one can
define an N -dimensional vector qj such that its k-th component is equal to
Q(sk|sj). The positivity of the elements of Q and the normalization condition
Eq. (1) determine a domain D, where qj can live. It is a finite portion of a
hyperplane of dimension N − 1. Figure 1 depicts the domain D for N = 3.

For some sets of stimuli, the confusion matrix may show clustering. That
is, choosing a convenient ordering of the stimuli, Q may show a block struc-
ture, where cross elements between stimuli belonging to different blocks are
always zero. In this case, the stimuli belonging to different blocks are never
confounded with one another. Moreover, they are never confounded with
a third common stimulus. The phenomenon of clustering exposes a very
particular structure perceived by the subject in the set of stimuli.

In this work, we are interested in studying the statistics of mistakes. More
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Figure 1: Domain D where the vector qj can exist, when N = 3.

specifically, if the subject happens to systematically confound, for example,
two of the stimuli, it could be argued that from his or her subjective point
of view, those two stimuli are particularly similar. We would like to quantify
such an amount of similarity by introducing a distance between stimuli. This
distance, being defined with the statistics of mistakes, is of course subjective.

It may happen that in a particular experiment, the subjective distance
between stimuli can actually be explained in terms of some physical parame-
ter qualifying the stimuli (orientation angle, pitch, colour, etc). But it could
also happen that the subjective metric structure had no physical correlate
in the stimuli themselves, but instead depended on the previous semantic
knowledge of the subject, or on the presence or absence of distractors, or on
the statistical distribution with which the stimuli are presented, or on the
attention being paid by the subject. The aim, hence, of defining a subjective
distance between stimuli, is to provide a quantitative measure that may serve
to determine the degree up to which these different processes—if present—
contribute to the confusion of some stimuli with others, or, in contrast, to
their clear differentiation.

In order to define a distance between stimuli, it is necessary to have a
notion of equality. Here, two stimuli i and j are considered subjectively
equal if qi = qj . That is, if for all k, Q(sk|si) = Q(sk|sj). Hence, in the
notion of equality not only the way stimulus i is confounded with stimulus
j is relevant. One must also compare the way each of those two stimuli are
confounded with the rest of the elements in set S. If one of them is perceived
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as very similar to a third stimulus k, but the other is not, then a noticeable
difference between i and j can be pointed out, and the stimuli cannot be
considered subjectively equal.

The equality of qi and qj, in addition, is not equivalent to a high confusion
probability, between the two of them. If stimulus i is always perceived as
stimulus j and vice versa, then—taking si and sj as representing the first and
second components, respectively, in the q vectors— (qi)t = (0, 1, 0, ..., 0),
whereas (qj)t = (1, 0, 0, ..., 0). In this case, the two stimuli are perfectly
distinguishable from one another. The fact that the subject chooses to label
stimulus i as j (and vice versa) does not mean he or she makes confusion
between them. It is only a question of names. Correspondingly, it may
happen that two stimuli are never confounded with one another, and yet they
are equal. This happens when Q(si|sj) = Q(sj |si) = Q(si|si) = Q(sj|sj) = 0,
and in addition, Q(sk|si) = Q(sk|sj), for all k different from i and j.

Starting from the notion of subjective equality, in the next section a
number of desirable properties of a subjective distance are discussed. Out
of all the distances that fulfill these requirements, a single one is selected,
in section 3. Next, in section 4, the relationship of our subjective distance
to other measures of similarity is discussed. Section 5 extends the definition
of subjective distance to the case where the response of the subject is given
as a neural pattern of activity. In section 6 an example is presented, using
extracellular recordings from the rodent hippocampus and lateral septum.
Finally, in section 7, a brief summary of the main ideas and results is given.

2 Properties of a subjective distance

What are the desirable properties of a subjective distance? First, since the
distance D between elements i and j is intended to reflect the statistics of
confusions upon presentation of these two stimuli, it is convenient to define
it in terms of the vectors qi and qj. As a distance, it is required to fulfill the
following conditions:

1. D(qi,qj) ≥ 0, and D(qi,qj) = 0 ⇔ qi = qj.

2. D is symmetric: D(qi,qj) = D(qj,qi).

3. D obeys the triangle inequality: D(qi,qj) +D(qj,qk) ≥ D(qi,qk).
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These are general requirements, defining a distance. The third condition
implies that the set of q vectors that lie all at the same distance of one
particular qi conform a convex figure, in the domain D.

In addition, in the present case, the distance between two elements should
not depend on the ordering of the stimuli. Hence, if the components k and
ℓ are interchanged, in both qi and qj , the distance D(qi,qj) should remain
invariant. That is, if Ckℓ is a matrix that interchanges the k-th and ℓ-th
component, then

4. D(qi,qj) = D(Ckℓqi, Ckℓqj).

This requirement, though plainly obvious from the intuitive point of view,
imposes quite serious restrictions. Consider, for example, all the distances
D(qi,qj) that can be derived from a scalar product <,>, namely, D(qi,qj) =√
< qi − qj ,qi − qj >. Once an orthonormal basis is given, this may be

written as D(qi,qj) =
√

(qi − qj)tM(qi − qj), where M is any hermitian,
positive definite matrix representing the scalar product. Condition 4 imposes
symmetry among the components of the vectors, which means that M must
be proportional to the unit matrix. Therefore, out of all the distances that
have a scalar product associated to them, the only one that fulfills condition
4 is the Euclidean distance—apart from a scale factor, fixing the units.

What should be the meaning of the maximum subjective distance? The
maximum distance should be reserved to those pairs of objects which the
subject distinguishes unambiguously from one another: that is, to those si

and sj that are never confounded with a common stimulus. Mathematically,
this means that for each k, either Q(sk|si) or Q(sk|sj) (or both) must vanish.
That is, whenever Q(sk|si) 6= 0, Q(sk|sj) = 0 (and vice versa). In this case,
whatever the response of the subject to stimulus si, it never coincides with
his or her response to stimulus sj. This situation corresponds to the intuitive
notion of unambiguous segregation: the response of the subject to stimulus i
is enough to ensure that the stimulus was not j. And vice versa, the response
to stimulus j is enough to discard stimulus i.

The fifth requirement, hence, reads

5. if D(qi,qj) is maximal if and only if si and sj are unambiguously
segregated. And conversely, if D(qi,qj) is not maximal, then si and sj

are not unambiguously segregated.

Imposing requirement 5 ensures that the stimuli that are unambiguously
segregated are all at the same distance, no matter any other particular char-
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acteristic of the stimuli. And conversely, if two stimuli do not elicit segregated
responses, they are not allowed to be at the maximum distance. Condition 5
establishes the cases that correspond to the maximum distance, in the same
way that condition 1 does to the minimum distance. Adding the triangular
inequality 3, ensures that those pairs of stimuli whose distance lies in between
of the minimal and the maximal one, be consistently ordered.

Condition 5 has two important consequences. In the first place, it ensures
that the clustering structure present in Q is also reflected in the matrix of
distances D. In D, of course, cross terms between different blocks are not
equal to zero, but to the maximum distance. Conversely, if D shows a block
structure, it may be shown that Q has the same block structure. In the
second place, if the maximum distance is finite, a similarity matrix S may
be defined, S = dMI − D, where dM is the maximum distance, and I, the
unit matrix. The matrix S also inherits, if present, the clustering structure
of Q. This correspondence between the clustering structure of D (and of S)
with the one of Q cannot be ensured, if condition 5 is not fulfilled.

The Euclidean distance DE(q
i,qj) =

√

∑

k(q
i
k − qjk)

2 does not fulfill con-
dition 5. Taking into account that the q vectors are normalized (Eq. 1), the
maximum value of the Euclidean distance between two stimuli is

√
2. It can

be attained, for example, for (q1)t = (1, 0, 0, 0) and (q2)t = (0, 1, 0, 0). In
this example, in fact, stimulus 1 shares no common response with stimulus
2. However, not all stimuli with no common responses lie at the maxi-
mum Euclidean distance. Consider, for example, (q3)t = (1/2, 1/2, 0, 0) and
(q4)t = (0, 0, 1/2, 1/2). Though showing disjoint response sets, their Eu-
clidean distance is equal to 1, which is less than the maximum distance.
This means that none of the distances that can be associated to a scalar
product are useful, as a measure of subjective dis-similarity.

3 Choosing a subjective distance

There are still many distances fulfilling requirements 1 - 5. In what follows,
a single one is selected, on the basis of a maximum likelihood decoding.
Imagine that someone observing the subject’s responses to either stimulus
i or j has to guess which of the two has been presented. For the moment,
for simplicity we assume that both stimuli appear with the same frequency;
this requirement will be abandoned later on. We assume the observer is
familiar with the confusion matrix of the subject. There are several ways
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in which he or she can decide between stimuli i and j, given the subject’s
response. Here, a maximum likelihood strategy is considered, since this is
the algorithm that maximizes the fraction of stimuli correctly identified. It
consists of taking the choice of the subject - say, stimulus k- and deciding
whether the actual stimulus was i or j on the basis of which of them has the
largest qk component. If Q(sk|si) > Q(sk|sj), the observer chooses stimulus
i, if the opposite holds, the observer chooses stimulus j. If both conditional
probabilities are equal, then the observer chooses any of the two stimuli, with
equal probabilities.

Under this scheme, the fraction of times the observer correctly identifies
stimulus i is

P (si|si) =
∑

k/qi
k
>qj

k

qik +
1

2

∑

k/qi
k
=qj

k

qik. (2)

The fraction of times stimulus j is presented, but the observer chooses stim-
ulus i is

P (si|sj) =
∑

k/qi
k
>qj

k

qjk +
1

2

∑

k/qi
k
=qj

k

qik. (3)

Correspondingly, when the observer decides for stimulus j

P (sj|sj) =
∑

k/qj
k
>qi

k

qjk +
1

2

∑

k/qi
k
=qj

k

qjk. (4)

P (sj|si) =
∑

k/qj
k
>qi

k

qik +
1

2

∑

k/qi
k
=qj

k

qjk. (5)

The distance D(qi,qj) is defined as the difference between the fraction of
correct and incorrect maximum likelihood choices, namely,

D(qi,qj) =
1

2

[

P (si|si)− P (si|sj)
]

+
1

2

[

P (sj|sj)− P (sj|si)
]

=
1

2

N
∑

k=1

|qik − qjk|. (6)

In other words, the distance between stimulus i and stimulus j is defined
in terms of the performance of the maximum likelihood decoding, assuming
that the response statistics of the subject are known. This definition is easily
shown to fulfills all 1-5 conditions. A distance equal to zero means that the
observer is deciding at chance, between the two stimuli. Given that he uses
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a maximum likelihood strategy, that means that the two underlying vectors
are equal. A distance equal to 1 implies that the observer always makes the
right choice.

In what follows, some mathematical properties of the distance D are
analyzed. In order to get a geometric flavor of D, figure 2 shows a contour

Figure 2: Contour plot of the distance D to a fixed vector qi, in D. (a)
qi = (1/3, 1/3, 1/3), and (b), qi = (1, 0, 0)
.

plot of the distance of all the vectors in D to the vectors (1/3, 1/3, 1/3), in
(A), and (0, 0, 1), in (B).

The subjective distance D is translation invariant. That is, if the vectors
qi and qj are displaced by a fixed vector ∆q, the distance between them
remains unchanged. Mathematically,

D(qi,qj) = D(qi +∆q,qj +∆q). (7)

Equation (7) is valid for any displacement ∆q. However, in the present
context, the displacement should be such that qi+∆q and qj +∆q fall both
inside the domain D. This means that the components of ∆q must sum up
to zero, and its magnitude must be bounded (the value of the bound depends
on the location of qi and qj).

As a further characterization, the distance D between a stimulus that is
perfectly identified by the subject - say, stimulus i - and another stimulus j,
is given. We take (qi)t = (1, 0, 0, ..., 0). In this case, D(qi,qj) =

∑N
k=2

qjk =
1− qj1. The distance between qi and qj is fully determined by qj1, it does not
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matter whether the probability of not selecting stimulus 1 is spread out over
the last N − 1 components of qj, or is entirely concentrated in a single one.
This result generalizes to any vector qi having two or more null components:
the distance depends on the sum of those same components of qj , and not
on their individual values.

Finally, consider the case where the subject has a probability α of iden-
tifying any of the stimuli correctly (Q(si|si) = α), and that whenever he or
she makes a mistake, the error is equally distributed among all other stimuli
(Q(si|sj) = β, for all i 6= j). The normalization condition Eq. (1) implies
α + (N − 1)β = 1. In this case, D(si, sj) = |α− β|.

3.1 Extension to continuous stimuli

Consider the case where there is a continuous parameter x labeling the stim-
uli, such that stimulus i corresponds to an interval of x values ranging from
i∆ to i∆+1/∆, with ∆ = 1/N . It is now convenient to vary i between 0 and
N − 1. The scale of x is chosen in such a way that its maximum value is 1.
For large N , the confusion matrix can be written as Q(sj|si) = u(j∆|si)∆,
where u(x|si) is a piecewise continuous probability density. The distance
between stimuli i and j reads

D(qi,qj) =
1

2

∑

k

∣

∣

∣u(k∆|si)− u(k∆|sj)
∣

∣

∣∆ → 1

2

∫

1

0

|u(x|si)− u(x|sj)| dx,

(8)
where the right hand limit corresponds to making the number of stimuli N
tend to infinity. In other words, the distance between stimuli i and j is equal
to the area between the two corresponding densities. The normalization
condition for u(x|s) ensures that D lies between 0 and 1. One can easily
show that its value remains invariant, when a different parametrization of
the variable x is used—as long as the new variable is in a one to one relation
to x.

3.2 Extension to stimuli with non uniform prior prob-

abilities

One could ask whether the measure D can be extended to stimuli which are
not all presented with the same probability. Let Q(si) denote the proba-
bility of presenting stimulus si. In this case, the maximum likelihood al-
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gorithm has to be substituted by a maximum a posteriori one. That is,
the observer chooses stimulus si upon response sk from the subject, when-
ever pik = Q(sk|si)Q(si) is larger than pjk = Q(sk|sj)Q(sj), and vice versa.
Whenever the pik = pjk, the choice between si and sj is proportional to their
corresponding priors. In this case, the difference between the correct and
incorrect fractions of maximum likelihood estimations is

D0(q
i,qj) =

1

Q(sj) +Q(si)

∑

k

∣

∣

∣pik − pjk

∣

∣

∣ . (9)

This is, of course, also a valid distance between stimuli, since it fulfills re-
quirements 1 - 5. Its maximum value is also 1, and it still carries the same
block structure as Q. Notice that in this case, the distance not only de-
pends on the subject’s perception—characterized by Q(sj |si)—but also on
the statistics of the stimuli (described by Q(si)).

4 Comparison with other measures of dis-si-

milarity

The distance D0 is no more than a geometrical view of the matrix Q(si, sj).
It has the advantage of being true distance, that is, of obeying conditions 1
- 3, of section 1. In addition, it fulfills the symmetry constrains imposed by
condition 4, and preserves the block structure in Q, as ensured by condition
5. However, there are also other distances that still obey requirements 1-5,
the angle between the vectors qi and qj can be taken as an example. The
advantage of D0 is that it has a simple interpretation in terms of maximum
likelihood decoding performance.

There have been previous attempts aiming at quantifying how different
two stimuli are perceived. Maybe the most similar to ours was proposed by
Green and Swets (1966), in their definition of the discriminability d′ between
two stimuli. Strictly speaking, their approach can only be used when the
response to different stimuli is described by Gaussian functions whose mean
depends on the stimulus, but whose variance remains fixed. They defined the
discriminability d′ between two stimuli as the ratio between the difference of
the two corresponding mean values to the standard deviation.

Can the concept of d′ be extended to more general response distributions?
Still in the Gaussian case, one can make a correspondence between a given
d′ value, and the expected fraction of errors when estimating the stimulus
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from the response of the subject, using a maximum likelihood decoding. In
terms of this correspondence, d′ not only represents the distance at which the
Gaussian functions sit from one another, but more generally, the fraction of
decoding mistakes—which is something that does not depend on the shape
of the probability distribution of the responses of the subject. Large discrim-
inability is associated to a small probability of making a mistake. The scale
of the measure, however, since inherited from the Gaussian case, has a non
linear relationship with the fraction of mistakes.

With this idea in mind, d′ can be extended to non Gaussian stimuli (Rieke,
Warland, de Ruyter van Steveninck, and Bialek, 1997). Whatever the shape
of P (sk|si) and P (sk|sj), given the response sk, an observer can decide in
favor of stimulus si or sj depending on which of them has a highest proba-
bility of eliciting response sk. For each pair of stimuli si and sj there will be,
on average, a certain fraction fe of errors. One could extend the definition
of discriminability to be the d′ value that would give, in the Gaussian case,
the same fraction fe of errors. This extension, being intimately related to
the performance of a maximum likelihood decoding, is grounded on the same
rationale as our subjective distance D. The problem is that if one is con-
strained to choose the d′ scale as to match the equivalent Gaussian case, then
the definition of discriminability does not obey the triangular inequality. It is
easy to construct an example where P (sk|si) overlaps in certain region with
P (sk|sj), which in turn, overlaps in a different region with P (sk|sℓ), but such
that P (sk|si) and P (sk|sℓ) are never simultaneously different from zero. In
this case, d′(si, sj) and d′(sj, sℓ) are both finite, whereas d′(si, sj) is infinite.
Hence, though both D and d′ can be defined in terms of maximum likelihood
performance, D is a proper distance, whereas d′ is not.

Another well known notion of distance can be defined (for continuous
stimuli) in terms of the Fisher information metric tensor J . There is a
natural scalar product associated with J , and also a notion of distance in
the space of stimuli (see Amari 1999). However, the entire Fisher geometry
becomes meaningless for discrete stimuli. Our aim is to show that even in
the discrete case, a definition of distance is possible.

The distance defined in terms of the Fisher metric tensor is a bilinear form.
Its matrix elements are not constant, but depend on the point q that one is
interested in. Hence, distances are defined in terms of a curvilinear integral—
which may actually involve very difficult calculations. When two stimuli have
disjoint response sets, the Fisher distance between them diverges. However,
a Fisher distance between two stimuli equal to infinity does not necessarily
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imply that the responses to those two stimuli conform disjoint sets. The
Fisher distance between two stimuli may diverge, for example, when the
probability density u(x|s) is discontinuous. This implies a discrepancy with
requirement 5.

The Kullback-Leibler divergence (Cover and Thomas, 1991) between the
vectors qi and qj can also be used to measure how different two stimuli are
perceived. It has the appealing property of being intimately related to many
concepts in information theory, and as such, it has an information based in-
tuitive interpretation: it is a measure (in number of additional bits of the
mean code length) of the inefficiency of assuming that the distribution of a
given variable is qi when its true distribution is qj . It is not a distance, how-
ever, since it does not fulfill requirements 2 - 3. Its symmetrized version is
sometimes called the Jensen-Shannon measure, which is still not a distance,
because it does not obey the triangular inequality 3. For this measure, condi-
tion 4 is always true. The maximum value of the Jensen-Shannon divergence
is infinite. This value, however, is not only reached for pairs of stimuli whose
response sets are disjoint, but also whenever there is a component k such that
qik = 0, and qjk 6= 0. This means requirement 5 is not, in general, fulfilled.

There has been another previous proposal of a pseudo-distance (Treves,
1997), which was also defined in terms of the confusion matrix. As opposed
to D0, and also to the Jensen-Shannon measure, the distance between stimuli
si and sj only depends on Q(si|sj), Q(sj|si), Q(si|si) and Q(sj|sj), (other
stimuli do not appear). Just as the Jensen-Shannon divergence, however, it
does not fulfill requirements 3 and 5.

We claim that our measure allows to have a geometrical picture of a set
of stimuli. Multidimensional scaling (Young and Ham 1994, Cox and Cox
2000) also aims at this goal. The two approaches, however, bear certain
differences, which are now discussed. The use of D0 aims at a definition of a
distance. It is particularly useful when one can vary a certain parameter in
the experiment (in the example below, the number of cells being sampled)
and wants to know the effect of that parameter in the structure of confusions.
Nevertheless, D0 in itself does not provide a way of visualizing the stimuli
in a particular space. Since the structure of confusions may depend on a
very large number of factors (as for example, the semantic knowledge of
the subject), there may be, actually, no small dimensional space where the
stimuli can be placed.

Multidimensional scaling, in contrast, starts with a given matrix of dis-
tances, or dis-similarities. The algorithm is designed to place the stimuli in
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a finite dimensional space producing the minimum possible distortion of the
pairwise distances. Except for very particular sets of stimuli, it is an approxi-
mate method. What is gained is the optimal set of coordinates of the stimuli,
out of the matrix of distances. The subjective distance could be, in certain
applications, a good starting point with which to feed the multidimensional
scaling algorithm.

Finally, we point out that our definition of subjective distance makes
special emphasis in the probability of confounding the stimuli, as opposed
to other possible measures, that stress the differences in the elicited neural
representations. In this sense, our approach is, broadly speaking, comple-
mentary to Victor and Purpura’s (1997) proposal of constructing a metric
in the set of responses. There, different distances between spike trains were
considered. Each proposed distance captured specific aspects of the neural
response. For example, the distance between two spike trains was either
defined in terms of how different the timing of individual spikes were, or
how different the inter-spike intervals were, and so forth. Their aim was to
decide which of those distances could better cluster the neural responses cor-
responding to the different stimuli in their set, and in such a way, to make
inferences about the way stimuli were encoded into spike trains. In the back
of this reasoning is the assumption that the stimuli themselves are all suffi-
ciently different from one another. Here, in contrast, we are interested in the
perceived distances and similarities of the stimuli, as can be deduced from
the structure of confusions.

5 From neural representations to the subjec-

tive distance

In order to use the distances defined in section 3, the conditional probabilities
Q(si|sj) are needed. Such probabilities may be extracted, as described in
section 1, from an experiment where the subject is asked to identify the
stimuli. However, this is not the only way a matrix Q can be obtained. In
the case of non human subjects, many times the stimuli are presented while
the activity of one or several neurons is being recorded by microelectrodes
implanted into the animal’s brain. From these experiments, the conditional
probability ρ(rk|sj) of recording response rk upon presentation of stimulus
sj may be calculated.
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One way of deriving Q from ρ is to use a decoding procedure. That is,
to define a mapping going from the set of neural responses to the set of
stimuli (Rolls and Treves, 1998; Dayan and Abbot, 2001; Rieke, Warland,
de Ruyter van Steveninck, and Bialek, 1997). Different rules defining such
a transformation give rise to different decoding procedures. Among them,
one can point out the maximum a posteriori decoding, where rk is associated
to the stimulus which maximizes ρ(sj |rk) = ρ(rk|sj)P (sj)/

∑

ℓ ρ(r
k|sℓ)P (sℓ),

that is, the conditional probability of having presented stimulus sj when
response rk was measured. This rule is, among all possible decoding rules,
the one that maximizes the fraction of correct decodings.

Another widely used option is the Bayesian approach, where

Q(sj |si) =
∑

k

ρ(sj |rk)ρ(rk|si). (10)

Strictly speaking, in this case there is no decoding, since one does not choose
a single stimulus for each response. One rather keeps all the probability
distribution for each stimulus, given the neural response. The only assump-
tion in the back of Eq. (10) is that the decoded stimulus is conditionally
independent of the actual stimulus, that is P (sj|rk, si) = P (sj|rk)P (rk|si).

Passing from matrix ρ to matrix Q always means a loss of informa-
tion. The amount of information that is lost can sometimes be estimated
(Samengo, 2001). A maximum a posteriori decoding maximizes the fraction
of correct identifications (that is, the trace f of the resulting Q) but probably
looses some of the structure of ρ, whenever the response rj is not the most
probable response elicited by a given stimulus. A procedure like Eq. (10)
is intended to preserve the statistical regularities of mistakes, but typically
implies a lower fraction of correct choices f . Therefore, whenever neural
responses are used to construct matrix Q, one must bear in mind that the
results depend, at least partially, on the way of calculating Q.

The dependence of the Q matrix on the decoding may seem perhaps
dangerous. Could one define a distance in terms of ρ, without having to
pass through matrix Q? Of course this is possible, in general terms. One
option, for example, would be to calculate the mean response mi to stimulus
i, and then define the distance between stimuli i and j as the distance Dn

between the corresponding means1. This is a distance between vectors living
in the response set, not in D. The sub-index n, hence, stands for neural.

1Of course, even more sophisticated distances are possible, for example, one taking
into account the covariance matrix, or even higher moments of the distributions ρ(rk|si).
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The distance Dn may be a sensible approach when one is interested in the
neural representations of the stimuli. It is not very convenient, however, if
the distance is meant to reflect the structure of confusions. As is shown
below, Dn does not, in general, fulfill condition 5.

In the entire subject, confusions are defined at the behavioral level: the
subject is asked to identify the stimuli. At the neural level, one can only
talk about confusion between two stimuli when a decoding procedure is in-
troduced. In this sense, the process of decoding should not be viewed as an
arbitrary step: one shifts the question of how distinguishable two stimuli are,
to the problem of inferring the stimulus from the neural response.

To test whether a distance defined in the response set fulfills condition 5,
we point out that for any reasonable decoding procedure, two stimuli that
elicit responses occupying convex, non overlapping, portions of the response
space are never confounded with one another. Is this enough to have them at
the maximum Dn? In general, no. Being Dn defined in terms of a distance
in the response set, the more separate the responses to the two stimuli, the
larger Dn. Hence, neural based distances do not, in general, fulfill condition
5.

6 Application to place cells: comparing the

actual and the subjective distance between

two locations in space

It is known that many of the pyramidal cells in the rodent hippocampus
selectively fire when the animal is in a particular location of its environment
(O’Keefe and Dostrovsky, 1971). Such a response profile allows one to define,
for each cell, a place field, that is, the region in space for which the neuron
is responsive. A classical experiment in the study of the rat’s hippocampal
neurophysiology consists in letting the awake animal wander in a given en-
vironment, while the activity of one or several of its hippocampal pyramidal
cells is being recorded (for an overview see, for example, O’Keefe (1971),
or Redish (2000)). In the experiment we analyze next, cells in the lateral
septum have also been recorded. The lateral septum receives a massive pro-

Here, we only use a very simple definition of a distance Dn in the response space, since we
only want to point out that there is a qualitative difference between defining a distance in
terms of the Q matrix and in terms of the ρ matrix.
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jection from hippocampal pyramidal neurons, the activity of septal cells has
also been shown to be informative about the location of the animal, though
not as neat as in hippocampal neurons.

The set of stimuli, in this case, consists of all the possible locations where
the animal can be placed. This set is endowed with a natural metric: we all
know what the distance between two locations is. Other sets of stimuli, for
example a set of pictures of human faces, lack an obvious, natural distance.
In order to test our definition of subjective distance, it is convenient to work
with a metric set of stimuli, which allows the comparison of D0 with the
natural physical distance in the set.

A description of the experiment follows. Nine young adult Long-Evans
rats were tested while moving in an 8 arm radial maze, as shown in figure 3
(A).

Figure 3: (A) Eight arm maze where the animals move. (B) Path traveled
by a rat, in a given trial, as measured by the diode on its head. The rat goes
straight to the end of the arm, and drinks the chocolate milk. When turning
round, it typically sweeps its head in a circular movement, peeping outside
the maze.

Each arm contained a small amount of chocolate milk in its distal part
(for details see Leutgeb and Mizumori, (2000)). In a given trial, a rat ini-
tially placed in the center of the maze, visited the eight arms in a random
order (see the example of figure 3 (B)) taking the food reward. Several trials
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were recorded per animal, sometimes in darkness and sometimes in light con-
ditions. Septal and hippocampal cells were simultaneously registered while
the animal moved on the maze. Single units were separated using an on-
line and off-line separation software. Units were then classified according to
their anatomical location and the characteristics of the spikes. Hippocampal
pyramidal cells and lateral septal cells were identified. In what follows, each
arm of the maze is taken as a different stimulus, and it is labeled by its an-
gle, as in figure 3 (A). The center of the maze was excluded, so as to have
eight similar, and evenly visited stimuli. Thus, in the present experiment the
physical distance between any two stimuli is the (actual) angle between the
corresponding arms. The subjective distance is deduced from the responses.

As an example, in figure 4 the location of the animal is shown, whenever

Figure 4: Location of the animal when (A) a given lateral septal and (B) a
hippocampal pyramidal neuron fired a spike. The dots that fall outside the
maze indicate that the nose of the animal is peeping outside the walls of the
labyrinth.

(A) a lateral septal, and (B) a hippocampal place cell fire a spike. It is clear
that both cells fire selectively when the animal is in a particular location on
the maze, the septal cell having a somewhat more distributed response.

The decoding procedure and the calculation of the Q matrix was carried
out first for a single neuron, and then for pairs, triplets and sets of 4 cells
measured simultaneously. The response of the animal was, correspondingly,
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a scalar, or a 2, 3 and 4 dimensional vector r, where the component rc stands
for the firing rate of cell c. Hence, upon entrance to arm sj , rc was calculated
as the ratio of the number of spikes fired by cell c to the time spent in the
arm sj , in that particular trial. To decode the arm corresponding to a given
response r, theM responses most similar to r were taken into account. Those
M firing rates, included M0 that corresponded to the animal in arm 0◦, M45

to the animal in arm 45◦, and so forth. That is, M =
∑

i Mi, and the response
r of the present trial is not included. The probability ρ(sj|r) for the rat to
be in arm sj when response r was observed was set as Mj/M . The decoded
arm was the one maximizing ρ(sj|r). If there was a draw between two arms,
the decoded one was chosen at chance between those two, with probabilities
that are proportional to the two corresponding priors. With this procedure,
Q(si|sj) is defined as the fraction of times si was decoded, whenever sj was
the actual arm.

The procedure was carried out for several values of M , ranging from 2
to 20. Each M gave rise to a different Q matrix. We observed that the
fraction of correct decodings (the trace of Q) typically showed a maximum,
as a function of M . The M for which tr(Q) was maximal was taken to be
the final one. With this procedure, we obtained a Q matrix for each neuron,
for each pair of neurons, for each triplet, and for each quadruplet. In what
follows, the results for the subjective distance as derived from the chosen Q
matrices are shown.

As examples from the single neuron behavior we show, in figure 5, the
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Figure 5: Matrix of distances D0 for (A) the lateral septal cell of figure 4
(A), and (B) the hippocampal pyramidal cell of figure 4 (B).
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matrix D0(q
i,qj), for the same cells of figure 4. In each plot, the arm i is

kept fixed, while the arm j is varied (it does not really matter which is i and
which is j, since the distance is symmetric). In all graphs D0 = 0 corresponds
to i = j.

The plot in (A) corresponds to the lateral septum. It may be seen that
most arms are far away from the one at 135◦. Not surprisingly, this is pre-
cisely the arm where the cell fires most. If a strong, reliable response is
obtained for a given stimulus, and if this response differs from the response
to all other stimuli, then there is little probability to miss-identify it. Among
the remaining arms, the one closest to the one at 135◦ is the one at 0◦, and
it corresponds to the second largest firing rate.

In the case of the hippocampal cell (B), the arm that is most far away
to all others is the one at 0◦, the one where the place field is located. Sur-
prisingly, however, its distinction from all other arms is not as clear as in
the septal cell of part (A), even though figure 4 (B) indicates that this cell is
much more selective to the location of the animal. The fact is that figure 4
alone is not enough to depict the selectivity of the cell, because it does not
show the statistics. The rat in (B) entered 18 times into the arm at 0◦, but
in only half of those trials the cell fired a burst of spikes. The other half had
no response. Therefore, a burst of spikes most probably means the animal is
the arm at 0◦, but a silent response does not discard this arm. In all those
trials when there was no activity upon entrance to the arm at 0◦, this arm
can well be confounded with any other arm. If all the silent entrances to the
arm at 0◦ are discarded, then the matrix of distances changes drastically, as
is shown in figure 6. There, the distance from the arm at 0◦ to any other
arm is shown to be equal to one, implying no mistakes at all. This shows
that the trial to trial variability has an important influence on the distance
between any two stimuli, even for those stimuli that may elicit very strong
responses.

Every cell has a different spatial distribution of responses, and hence, a
different matrix of subjective distances. In what follows, therefore, instead of
analyzing the specific characteristics of individual cells, the average behaviour
is studied.

In figure 7, the average distance of a given arm with all the others is
shown. The numbers in the x axis indicate the angle separating the two
arms under consideration. Thus, the average D0 between all pairs of arms
which lie at 45◦ from one another is shown as a single point in the plot. Each
data point represents an average among cells (62 units have been considered:
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Figure 6: Matrix of distances D0 for the cell of figure 4 (B), when all the
trials with silent entrances to the arm at 0◦ have been removed.

29 pyramidal cells in the hippocampus, and 33 lateral septal cells). The error
bars show the standard deviation of the cell average. In the lower curve, the
arm is decoded from the activity of a single cell. As the curves rise, the
decoding makes use of more cells (from 1 to 4) recorded simultaneously.

The first thing that can be noticed, is that as the number of neurons
increases, all the subjective distances grow. This means nothing but that
the representation of the different arms becomes more and more distinctive,
and therefore, the fraction of mistakes goes down. One can also observe that
the single neuron case looks pretty flat. That is, there is no evident structure
in the set of stimuli, since each arm has roughly the same probability to be
confounded with any other arm. An analysis of variance (ANOVA) of the
distances obtained for pairs of arms at 45◦ and 180◦ shows that they are not
significantly different (p > 0.3).

In contrast, as the number of neurons increases, the curves begin to bend,
showing larger distances for pairs of arms that lie farther apart. The ANOVA
test shows that the distances obtained for pairs of arms at 45◦ is significantly
different from the ones at 180◦ (p < 0.0001). This means that if the response
of 4 neurons is considered, then it is more probable to confound a given
location with a nearby location, than with a distal one. Topography, hence,
seems to emerge from population coding, not from the single cell response.

This example shows that the subjective distance is, when read from 4
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Figure 7: Average distance of a given arm with all the others, numbered
counter-clockwise, as calculated from 62 units (29 hippocampal pyramidal
neurons and 33 lateral septal cells). The error bars are the standard devia-
tions from the averages. Stars, triangles, squares and circles correspond to
1, 2, 3 and 4 cells, respectively.

simultaneously recorded cells, a monotonic function of the true distance.
This is indicates that near in the actual world corresponds to near in the
subjective perception, and far in the actual world corresponds to far in the
subjective perception. In this sense, one can ensure that there is continuity,
or topography. If the subjective distance were strictly equal to the actual
distance, however, the upper curve of figure 7 would have a linear rise from
0◦ to 180◦, and then a similar linear decrease from 180◦ to 360◦. The curved
shape of the upper trace of figure 7 indicates that the scale in the subjec-
tive representations somehow shrinks as the actual stimulus moves farther
away. This, in turn, shows that the system is better designed to make fine
distinctions between nearby stimuli than between distal ones. The single cell
response, instead, makes no distinction at all between near or far. It only
recognizes whether the two arms are the same or not. All these non trivial
characteristics of the coding properties of hippocampal and septal cells have
been visualized in terms of our definition of the subjective distance.
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7 Summary

The subjective distance, as introduced here, is a way of measuring how dif-
ferently stimuli are perceived. The distance between any two elements may
be interpreted in terms of the average performance when trying to infer the
actual stimulus, if only the response of the subject is known. In such a per-
formance, the trial to trial variability of the responses to each stimulus is as
important as the mean responses.

It should be noticed that the probability of confusion does not only de-
pend on the characteristics of the two stimuli under consideration, but also,
on all the other stimuli in the set S. Hence, the distance between two given
items may vary, when the remaining stimuli in S are modified. So here, as
well as in many other information, or discrimination analyses, the choice of
the set of stimuli is a highly relevant (and sometimes difficult) issue in itself,
which should not be neglected.

The distances D and D0 may have several applications, for example,
it may be of interest to compare the subjective distance with some other
objective measure of dis-similarity. Here, as shown in section 6, D0 has
proven useful to show that an increasingly topographic encoding of spatial
location arises, as the number of cells grows. In this case, as the population
of neurons increases, the topography of real space seems to emerge. There
are other cases, though, where the subjective perception of certain objects
raises clear differentiating bounds between stimuli that are actually near,
in the so called physical space. For example, it is known that during the
first year of life, the exposure of infants to their mother tongue builds up
a very particular way of perceiving phonetic information. Two sounds that
are physically very similar, but correspond to two different phonemes in the
child’s language, are easily discriminated. Yet, the experimentalist can design
two sound waves differing even more in their physical characteristics, but that
the infant cannot distinguish, simply because they are not distinct building
blocks (phonemes) in his or her own language (see for example Kuhl 1994).
Another example is the perception of facial expression (Young et al. 1997),
where although all the experimentalist can continuously morph the picture
of a happy face into that of an angry one, human observers have a tendency
to categorize them into distinct emotions (full happiness or full anger). Our
subjective distance would be a good way to quantify these effects.

Another possible application would be to use the subjective distance as
the input to a multidimensional scaling algorithm. This would allow to place
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the stimuli in a finite dimensional space, and to gain further geometrical
intuition about them.
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