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Abstract
We provide an analytical recurrent solution for the firing rates and cross-correlations of
feedforward networks with arbitrary connectivity, excitatory or inhibitory, in response to steady-
state spiking input to all neurons in the first network layer. Connections can go between any two
layers as long as no loops are produced. Mean firing rates and pairwise cross-correlations of all
input neurons can be chosen individually. We apply this method to study the propagation of rate
and synchrony information through sample networks to address the current debate regarding the
efficacy of rate codes versus temporal codes.

Our results from applying the network solution to several examples support the following
conclusions: (1) differential propagation efficacy of rate and synchrony to higher layers of a
feedforward network is dependent on both network and input parameters, and (2) previous
modeling and simulation studies exclusively supporting either rate or temporal coding must be
reconsidered within the limited range of network and input parameters used. Our exact, analytical
solution for feedforward networks of coincidence detectors should prove useful for further
elucidating the efficacy and differential roles of rate and temporal codes in terms of different
network and input parameter ranges.

1 Introduction
Much of the theoretical basis for understanding information processing in complex
biological systems is based on computational modeling—numerical solutions of the
underlying model equations. While this approach has proven extremely useful and is the
only practical one in many cases, analytical solutions would nearly always be preferable if
they were available. Naturally, this is the case only for carefully selected systems of
sufficient simplicity. In this report, we present one such system: an interconnected network
of ideal coincidence detectors of arbitrary depth. Our solution is limited to feedforward
networks, but otherwise the connectivity is arbitrary:neuronal thresholds can be arbitrary,
synapses can be of arbitrary strengths, they can be excitatory and inhibitory, and they can be
between any two neurons in any two layers provided that no loops are formed (this is the
feedforward condition). The input to the network is characterized in terms of the average
firing rate and the pairwise correlation, and we present iterative, closed-form solutions for
all neurons (and pairs) in the network in the same form. The model is based on our previous
exact, analytical solutions for the output firing rate of an individual coincidence detector
receiving excitatory and inhibitory inputs, in both the presence and absence of synaptic
depression (Mikula & Niebur, 2003a, 2003b, 2004)
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After defining methods and notations in section 2, we present our main result, the closed-
form expressions for mean rate and cross-correlation, in section 3. Example networks are
studied in sections 4 and 5. Implications for neural coding are discussed in section 6.

2 Methods
2.1 Notational Conventions

Matrix notation is used throughout our derivation. Matrices are denoted by boldfaced,
uppercase letters; row and column vectors by boldface, lowercase letters; and scalars by
regular lower-case letters. Matrices and vectors that are functions of one or more variables
have their arguments denoted by subscripts, whereas scalars have their arguments within

parentheses. Thus, for instance,  denotes a matrix that is a function of one argument, j;

the vector  is a function of two arguments, i and j; and q(i, j; s, t) denotes a scalar that is
a function of four arguments, i, j, s, and t.

2.2 Model Neurons: Coincidence Detectors
The model neurons used in this study are coincidence detectors. A coincidence detector is a
computational unit that fires at time t if the number of unit excitatory postsynaptic potentials
(EPSPs) received within the window (t − T, t) equals or exceeds the threshold θ. In many
cases, it makes sense to think of T as a period on the order of 10 ms. This is the timescale of
fast ionic synaptic conductances, and it is at this timescale that synaptic events superpose
and interact. We do not, however, make use of this specific setting in our analysis, other
than requiring that it be sufficiently small so that a maximum of one spike can be generated
in a period of this length, and our results do not depend on this setting.

2.3 Binomial Spike Trains with Specific Cross-Correlation
In a previous report Mikula & Niebur, 2003a), we introduced a systematic method for the
generation of an arbitrary number of spike trains with specified pair-wise mean cross-
correlations and firing rates. Action potentials are distributed according to binomial counting
statistics in each spike train. Mean firing rates and cross-correlations are the same for all
spike trains (or all pairs of spike trains, respectively), but they can be chosen independently
of each other. We describe the procedure here for the convenience of the reader.

Let m be the number of input spike trains, each having n time bins. All bins are of equal
length δt, chosen sufficiently small so that each contains a maximum of one spike; that is,
each bin is guaranteed to contain either one or zero spikes. The makes the decision whether
to fire within one time bin; therefore, T = δt. Assuming a firing rate of

(2.1)

the probability that a spike is found in any given time bin is p; no spike is found with
probability(1 − p). Bins in any given spike train are independent, which implies that the
following analysis can be limited to a single time bin. A physiologically important special
case is obtained if the rate of incoming spikes is low and convergence is high; the binomial
statistics that governs the spikes generated by a coincidence detector is then approximated
by Poisson statistics. We further note that throughout this letter, we often refer to the spike
probability, p, simply as an input or output firing rate, with the understanding that the actual
firing rate is obtained by dividing p by the time bin size, δt, as in equation 2.1.
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2.4 Network Architecture
An example feedforward network is shown in Figure 1. To characterize the connectivity

between layers in the network, let us introduce the connectivity matrix, denoted , which
quantifies the connectivity from the j layer to the j + 1th layer, and in which the (k, l)th entry
contains the numerical value of the connection to the kth neuron in layer j + 1 from the lth

neuron in layer j. The size of  is mj+1 × mj, where mj denotes the number of neurons in
layer j. The values of the connectivity matrix are real numbers—positive for excitatory
connections and negative for inhibitoryconnections.

We define the connectivity vector, a row vector, denoted , to be the ith row from . It

follows from the definition of  that the length of  is mj and that the kth element of 
contains a real number describing the connection from the kth neuron in layer j to the ith
neuron in layer j + 1.

Although the example network in Figure 1 is limited to connections between subsequent
layers, that is, between layers j and (j + 1) for all j, we note that our formalism is sufficiently
general to allow connections between any two layers j and j + J with J ≥ 1, provided layer j +
J exists in the network. This can be seen by first considering a network with connections
only between subsequent layers (as in Figure 1), that is, with J = 1. The connections with J >
1 are then added by formally adding virtual neurons with one incoming synapse whose
strength exceeds its threshold.

Finally, we denote the output firing probability(which, by equation 2.1, is directly
proportional to output firing rate) for the ith neuron located in the jth layer by the scalar
firing rate, p(i, j).

3 Results
3.1 Computation of Firing Rates for the Network

As discussed in section 2.3, the m0 initial inputs to our feedforward network are binomial
and originate at the zeroth layer (see Figure 1). Because each of the m0 inputs is the outcome
of a Bernoulli trial, the total number of possible input states is 2m0.1 We will find it useful to
enumerate these 2m0 input states and to assign corresponding probabilities for their
occurrence.

Toward this end, we define the input state matrix, . Each row of this matrix represents
one input state in the form of a binary row vector whose kth entry consists of a zero or a one,
denoting the absence or presence of an input spike in the kth input, respectively. From the

above considerations, we know that  must be of size 2m0 × m0.

We now determine how the different input states are transformed at layer 1 of our network.
That is, we compute how each input state affects suprathreshold events for all of the m1
neurons in layer 1. The solution is based on the known connectivities between the m0 inputs

and the m1 neurons in layer 1,  (see section 2.4), and on the thresholds of the neurons in

layer 1, listed in the matrix . This matrix has 2m0 identical rows, each consisting of the

1A Bernoulli trial is defined as a single random event for which there are two and only two possible outcomes that are mutually
exclusive and have a priori fixed probabilities that sum to unity. In our case, the outcome of a trial will be either zero or exactly one
spike of an input neuron in a given time bin; the former happens with probability p where 0 ≤ p ≤ 1 and the latter with probability (1 −
p).
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vector of all thresholds in layer 1; thus, the element in column j (and all rows) of this matrix
is the threshold of neuron j in layer 1 (the usefulness of this construct will become obvious
in equation 3.1). These network dynamics transform the input states, contained in the matrix

, into the resulting states in layer 1 of the network. We collect these states in the matrix

, which describes the states of layer 1 and is computed as follows:

(3.1)

By the definition of matrix products, the element in row i and column j of  is the input
to neuron j in layer 1 when state i is present in layer 0.

Furthermore, we define the operator Θ() in this equation as the Heaviside function acting on
the individual entries of its matrix argument. It takes on the value of unity if an entry within

its argument is nonnegative and zero otherwise.2 Note that the dimensions of  are 2m0 ×

m1 and that the kth row of  is the layer 1 state corresponding to the kth row of . That

is, the transformation of the kth input state at layer 1 is given by the kth row of . To be

sure, while  is an exhaustive list of all states in the input layer,  is, in general, not a
matrix containing all states in layer 1. Depending on m0, m1 and the connectivity and
thresholds, this matrix in general contains only a subset of all possible states in layer 1, and
each of these states may appear more than once.

We can recursively apply the same method used in equation 3.1 to generate the state

matrices for other layers of our network to arrive at the general expression for , the layer j
state matrix, as the following:

(3.2)

where the kth row of  gives us the layer j state corresponding to the kth row of . The

iteration defines  in terms of  and  and terminates at  and , as in equation
3.1.

The ith column of , which is of length 2m0, gives us the neuronal responses of the ith

neuron in layer j to the 2m0 input states. Let this column vector be denoted , the state
vector for the ith neuron in layer j; then the following holds:

(3.3)

where the scalar θ(i, j) is the threshold of neuron i in layer j. Note that the only difference
between the right-hand sides of equations 3.3 and 3.2 is that the latter substitutes the

connectivity matrix  and the threshold matrix  for the connectivity vector  and
the threshold scalar θ(i, j), respectively.

2We note that this component-wise procedure is not an operation defined in a vector space. We nevertheless use the terminology of
vector spaces (rather than introducing terms like arrays or n-tuples) for convenience.
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Having determined how input states are transformed across the network by equations 3.1
and 3.2, we now proceed to compute mean output spiking probabilities. We define the input

state probability vector , a column vector whose kth element is the probability for the
occurrence of the kth input state. The output spiking probability for any neuron in the
network is obtained by summing over all input states, leading to suprathreshold events times

the corresponding input state probability (given by ). Thus, the output spiking

probabilities for all neurons located in layer j can then be written as a column vector ,
computed as

(3.4)

where the ith entry of  is the output spiking probability for the ith neuron located in layer j

and where  is the transpose of .

Alternatively, by using equation 3.3, we can obtain an explicit expression for the output
spiking probability of a single neuron located anywhere in the network. The output spiking
probability for the ith neuron located in layer j, the scalar p(i, j), is given by

(3.5)

Note that p(i, j) is the same as the ith entry of  from equation 3.4.

With equations 3.4 and 3.5, we have thus obtained an analytical recurrent solution for the
output spiking probabilities (or firing ratesas per equation 2.1) of the coincidence detectors
comprising a feedforward network that receives an arbitrary number of binomial inputs
modulated with respect to both mean rate and cross-correlation.

3.2 Computation of Cross-Correlations
The standard Pearson correlation coefficient, denoted q(x, y), is defined by the following for
random variables x and y,

(3.6)

where 〈x〉 denotes the mean value of x, and var(x) denotes the variance of x. If x is a
Bernoulli random variable (i.e., takes on values 0 or 1), then its variance is given by

(3.7)

and we may rewrite equation 3.6 as the following (Mikula & Niebur, 2003b):

(3.8)

where prob(x=1) denotes the probability that x takes the value of unity, and prob(xy=1)
denotes the probability that both x and y take the value of unity.

In the notation established earlier, the spiking probability scalar p(i, j) of neuron j in layer i
takes the place of Σprob(x=1) in equation 3.8, taking into account that it is based on a
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Bernoulli process. In this equation, to compute the correlation with neuron t in layer s, the
probability p(s, t) takes the place of Σprob(y=1). And finally, since the joint probability for
the ith neuron in layer j and the sth neuron in layer t to fire action potentials is given by

, as can be seen by direct substitution, it follows that Σprob(xy=1) is

equivalent to . We can therefore rewrite equation 3.8 as the following
expression for the cross-correlation, denoted q(i, j; s, t), between the ith neuron in layer j and
the sth neuron in layer t,

(3.9)

where  is obtained using equation 3.3.

We have thus obtained an exact recurrent solution for the cross-correlation between any two
coincidence detectors, or between any coincidence detector and an input, located within a
feedforward network receiving an arbitrary number of binomial inputs modulated with
respect to both mean rate and cross-correlation.

3.3 Large Networks

On a practical note, we find that it is useful to consider methods for reducing the size of 
for the purpose of making our solutions for rate and cross-correlation applicable to larger

feedforward networks. As we saw in section 3.1, for m0 inputs, the size of  is 2m0 × m0,
which increases quickly for increasing m0. We assume that the connectivity of the network
is given. Under this condition, we have discerned three practical methods for reducing the

size of . One of them is to include only suprathreshold events, which means excluding
those input states in which a subthreshold number of spikes occurs; all of these are mapped
on a single state with a zero everywhere. Assuming uniform thresholds for all neurons,

which we will denote by θ, then this method reduces  to size ,
which can be a significant reduction as θ/m0 approaches unity. The mirror image of this
simplification is obtained in the case of small θ/m0; in this case, a large number of input
states is mapped onto one state, namely, “one” in all positions. The second method for

reducing the size of  is valid for low input rates (i.e., the Poisson regime), in which case
the input states characterized by many spikes can be ignored due to the unlikely probability
of such a state. The third method is to reduce the number of inputs while maintaining a
relatively large number of neurons in each layer. In many cases, this is justified since for
large convergence (the physiologically relevant case), only a small number of neurons can
be simultaneously active (within one time bin of length T) to avoid the need for
unrealistically high thresholds or saturation of the next layer.

4 Simple Example
Let us consider the simple n-layer excitatory feedforward network shown in Figure 1 with
four neurons in each layer, cyclical (periodic) boundary connectivity conditions, and θ(i, j) =
θ = 2 ∀i, j. We further assume that each connection is excitatory and has a weight of +1.
The connectivity patterns between layers are the same for all layers; that is, each neuron in
layer j connects to the three closest neurons in layer j + 1. Recalling from section 2.4 that the
(k, l)th entry of the connectivity matrix is defined as the weight of the connection to the kth
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neuron in layer j + 1 from the lth neuron in layer j, we obtain a connectivity matrix that is
the same for each layer and given by the following:

(4.1)

For computing the total number of input states, we note that there are four binomial inputs,

and thus 24 input states. The resulting input matrix  is

(4.2)

Thus, the first row of  is the input state for having zero input spikes for all four inputs, the
second row is the input state for having zero input spikes for inputs 1 through 3, whereas

input 4 has a spike, and so on for all of the 16 rows of .

Using the network connectivity and the input state matrices, we can now apply either

equation 3.2 or 3.3 to derive  and . The result is given in Table 1, which shows all
attainable states for all neurons in layers 1 through 3 of our network (plus the input layer, 0).

We have placed , , , and  alongside each other in Table 1 to emphasize that this
is a logical truth table. This should also make it easier to see how different input states,

which correspond to the rows of , are transformed across different layers, which

correspond to the rows of , , and .

It turns out that Table 1 characterizes the behavior not only of the first three but of all layers

of the (infinite) network. The reason is that all higher even layers are identical to , and

similarly, all higher odd layers are identical to . This periodic behavior is not a peculiarity
of this specific network, is a property of all feedforward networks of coincidence detectors
with identical layer properties (connectivity and thresholds) and finite numbers of neurons
per layer; since they can have only a finite number of states, networks of infinite depth need
to show periodic behavior. This can be seen easily by considering that there are 2m0 possible
states in the input layer, layer 0 (see section 3.1), and in all higher layers. Since all layers are
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assumed to have the same number of neurons, at least two layers between the input layer and
layer (2m0 + 1) must have identical activity patterns. Let us assume the first one of these is
layer l and the second one is layer l’. Then, since the connectivities between all layers are
identical, the pattern in layer (l’ + 1) is the same as in (l + 1), the pattern in (l’ + 2) is as in (l
+ 2), and so on; activity is thus periodic with a periodicity (l’ + l) starting at layer l. This is
what was to be shown. We note in passing that periodicity includes the case of period 1, for
example, when the activity “dies out” in layer l because all activity is below threshold and
therefore all higher layers have zero activity.

The next step is the computation of column vector , whose ith entry contains the

probability for the ith input state (i.e., the ith row of ). We will first assume uncorrelated
inputs (correlated input is discussed later; see equation 4.6 for an example). In this case, the

components of  are simple binomial probabilities. We have the following for :

(4.3)

To alleviate the notation, we replaced p(i, 0) by Pi0 for i ∈ {1, …, 4}, that is, the mean firing
probabilities for the ith input from the zeroth layer. The values of Pi0 can be freely chosen
depending on the question under study (subject to the conditions 0 ≤ Pi0 ≤ 1 since they are
probabilities). For example, we may choose uniform inputs, in which case all Pi0 would be
equal. Alternatively, we may study how spatially localized high rate inputs are dissipated in
higher levels of the network. In this case, we set some of the Pi0 to high values relative to
the remaining Pi0. Both cases are illustrated in the examples. The results for the case of
uncorrelated inputs of uniform rate are shown in Figure 2. Figure 2A shows the mean rates
for the input, even, and odd layers. Note that rates get propagated to arbitrarily high levels of
the feedforward network. Besides the initial attenuation of rates at layer 1, there is no further
attenuation. Figure 2B shows nearest-neighbor cross-correlations for the network, and
Figure 2C shows cross-correlation matrices for each layer. As expected, because we have
uncorrelated inputs of uniform rate, nothing much interesting happens with the cross-
correlation at higher layers, except for a uniform increase in all cross-correlations, which is
expected due to shared connections. What is more interesting is that cross-correlation is not
monotonically increasing as a function of network layer; rather, it remains constant from
layer 1 to all higher layers.

Figure 3 shows how rates and cross-correlations in higher layers vary as a function of input
rates. In Figure 3A, we see that rates in higher layers are approximately linearly related to
input rates, whereas in Figure 3B, we see that cross-correlations in higher layers depend on
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input rates in an inverted-U shaped manner, with maximum cross-correlations occurring for
input rates of 0.5.

We now briefly consider the case of spatially inhomogeneous inputs. As an example, let the
mean rates of the second and third inputs into our feed-forward network, P20 and P30 or, in
the notation of equation 3.5, p(2, 0) and p(3, 0), be equal, that is, p23 = P20 = P30, where this
equation defines p23. Let us further assume that these inputs are correlated with a correlation
coefficient q23, with 0 < q23 ≤ 1 (the case q = 0 is the case of spatially inhomogeneous,
uncorrelated input, which is of less interest here). To simplify upcoming expressions, we
make the following definitions:

(4.4)

(4.5)

The equivalent of equation 4.3 for  is now (see the appendix to Mikula and Niebur,
2003b, for detailed derivations)

(4.6)

The results for the case of uncorrelated, spatially localized high input rates are shown in
Figure 4. Figure 4A shows the mean rates for the input, even, and odd layers. Notably,
spatially localized high input rates get propagated to arbitrarily high levels of the
feedforward network. Besides the initial attenuation of firing rates at layer 1, there is no
further attenuation. Figure 4B shows nearest-neighbor cross-correlations for the network,
and Figure 4C shows cross-correlation matrices for each layer. Due to the convergence of
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inputs to higher layers, uncorrelated, spatially localized high input rates appear as cross-
correlations in higher layers (see Figure 4B). That is, not only does rate information get
propagated across the network, it also gets propagated as cross-correlation information.

The case shown in Figure 5 is identical to that in Figure 4 except that now the input rates are
halved. Note that qualitatively, the results shown are identical to those of Figure 4, which
means that for even relatively low spatially localized input rates, with p(2, 0) = p(3, 0) = 0.2,
rate information still gets propagated to arbitrarily high levels of the feedforward network.
In addition, this rate information also appears as cross-correlation information in higher
layers.

Figure 6 shows the case for spatially localized cross-correlated inputs with uniform input
rates. For this case, inputs 2 and 3 are cross-correlated to a value of q2 = 0.4, and as can be
seen in Figure 6B, this spatially localized cross-correlation gets propagated to arbitrarily
high levels of the feedforward network. In Figure 6A, we see that the cross-correlation
between inputs 2 and 3 is also represented in higher layers as higher rates. Note the
appearance of increased cross-correlation between units 1 and 4 in layers 1 and higher in this
and subsequent figures. It is due to the periodic boundary conditions and the specific
connection scheme used: since input unit 2 projects to layer 1 unit 1, and input unit 3
projects to layer 1 unit 4, and units 2 and 3 are partially correlated, units 1 and 4 are also
partially correlated but with a lower correlation coefficient than units 2 and 3, which both
receive input from both correlated input units rather than from only one.

The case shown in Figure 7 is identical to that in Figure 6 except that now the cross-
correlation between inputs 2 and 3 is doubled to 0.8. This does not lead to much of an
increase in higher-layer cross-correlations beyond what was seen in Figure 6B. Interestingly,
in Figure 6A, we see that higher-layer rates are almost double what they were in Figure 6A.
What this means is that doubling the input cross-correlation is reflected in an almost
doubling of the higher-layer rates, as opposed to the relatively smaller increase in higher-
layer cross-correlations.

Finally, in Figure 8, we see the case for spatially localized high cross-correlation (q = 0.6)
and high firing rate between inputs 2 and 3. Figure 8A shows that rates are propagated with
little attenuation, which is in contrast to the cases in Figures 4 and 5, where the high input
rates were not cross-correlated. We see in Figure 8B that cross-correlations also get
propagated across our network, though we also see relatively high cross-correlations
between inputs 1 and 4 at higher layers, an effect likely attributed to the cyclic connectivity
boundary conditions of our feedforward network.

5 More Complex Networks
The simple example of section 4 is useful for making explicit the details involved with the
application of equations 3.4, 3.5, and 3.9. In this section, we look at a larger feedforward
network, which has the advantage of being more realistic than the previous one, but with the
trade-off that many of the details cannot be made explicit due to space limitations.

Our feedforward network is a slightly scaled-down version of the one introduced by Litvak,
Sompolinsky, Segev, and Abeles (2003). We consider a 100-layer feedforward network
containing exactly 1000 coincidence detectors per layer—500 excitatory and 500 inhibitory.
The connectivity matrix is different between each layer3 and is randomly constructed with

3The connectivity used by Litvak et al. (2003) is apparently repeating (i.e., identical between each pair of subsequent layers). We
studied this case as well and found results that were very similar to those with connectivity matrices that vary between each pair of
layers and that are shown here.
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precisely balanced excitation and inhibition such that each neuron receives exactly 50
excitatory inputs and 50 inhibitory inputs. Further, pairs of neurons in each layer share 5%
of their inputs from the preceding layer. Each excitatory connection carries a weight of +1,
and each inhibitory connection has a weight of −1.

We now define the inputs and the input states. For simplicity, we assume just two different
input states. One state is defined with zero activity in all neurons of the input layer.4 In the
other state, 10% of the inputs provide perfectly correlated input spike trains (i.e., q = 1), with
a spiking probability within each spike train of pin. We designate these inputs as active
inputs; since the total number of inputs is 1000, the number of active inputs is 100. All other
input neurons (i.e., the other 90%) have zero spiking probability. Our requirement that the
active inputs are perfectly correlated greatly simplifies what would otherwise be a difficult
calculation. For example, if the active inputs were completely uncorrelated, then we would
have 2100 different input states to deal with, a clear impossibility. Assuming perfectly
correlated active inputs is a simple and effective way to dramatically reduce the number of
input states.

The results of this model using 100 different randomly generated connectivity matrices are
shown in Figure 9 for average input spiking probabilities of .02 and .04 and using a
threshold of 3. We show the results for only the first 20 layers of the network because higher
layers are essentially the same as would be expected from Figure 9 (we studied up to layer
100). Spiking probabilities increase rapidly and immediately level off at about layer 2,
remaining nearly constant for all higher layers. Because of the perfect correlation between
all input neurons (q = 1), the mean firing rates at the higher layers of our network depend
linearly on the initial input rates pin. For example, in Figure 9a, pin = .02 results in a mean
output spiking probability of .055 at higher layers, whereas in Figure 9b, pin = .04 results in
a mean output spiking probability of .11. Note the large standard deviations, indicating the
richness and complexity of behavior for different connectivity matrices. The mean cross-
correlations are propagated in a similar manner as the mean rates shown in Figure 9: since
all active neurons in our network are perfectly correlated with other, the mean cross-
correlation must be a function of the number of active neurons per layer, as is true for the
mean rate per layer. Thus, if the fraction of active neurons in a given layer is r, the cross-
correlation in that layer is r2. The propagating rates and cross-correlations show no sign of
decrement at higher layers (layer 100 looks the same as layer 3 in terms of rates and cross-
correlations).

6 Discussion
This article extends our previous analytical results (Mikula & Niebur, 2003a, 2003b, 2004)
for an individual coincidence detector to a feedforward network of coincidence detectors
receiving steady-state cross-correlated binomial inputs at the zeroth layer. Thus, our
derivation is valid only for steady-state neuronal responses and does not tell us anything
about transient responses, which also appear to be important. For example, Diesmann,
Gewaltig, and Aertsen (1999) studied temporal structures of spike trains in feedforward
networks of spiking neurons. They showed that in different parameter regimes, synchronous
packets of spikes can either travel from layer to layer without loss of coherency or,
alternatively, disperse within a few layers. The objectives of their study are complementary
to ours as it focuses on transient activity while ours is concerned with constant firing rates
and correlations. Likewise, the approach taken by Diesmann et al. is complementary to what
we have taken insofar as they use a more complex single-neuron model, a leaky integrate-
and-fire neuron rather than the simpler coincidence detector, but it requires a numerical

4For all nonzero thresholds, the same results would be achieved with all neurons active in the input layer.
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solution while ours is analytical and recurrent and, furthermore, does not require introducing
any approximations.

In spite of the obvious limitations of feedforward networks, they are of considerable interest
for theoretical considerations. Likewise, coincidence detectors are an old and tested but
simple model for the units of neural networks. However, although computational approaches
allow the use of much more realistic neuron models (an extreme case perhaps being a recent
study by Reyes, 2003, in which replicas of an actual biological neuron were used as the
underlying units), the use of the much simpler coincidence detectors as building blocks
allowed us to develop a closed form for the mean rate and pairwise cross-correlation of each
neuron and neuron pair, respectively.

The details of our results apply only to the specific networks that we have studied here as
examples to illustrate the general method we introduced. This method should, however,
allow the analysis of other feedforward networks of coincidence detectors that are relevant
for a specific problem. We emphasize that the methods described in section 3.3 permit one
to find solutions for networks with much more realistic connectivity, including much higher
numbers of synaptic connections.

One way in which our approach may prove useful is in the elucidation of the neural code,
which involves addressing the question of how biological neural networks represent and
transform information in their patterns of activity (Perkel & Bullock, 1968). Most research
in the primate cortex has focused on two coding schemes, rate and temporal coding. In rate
coding, information is coded purely in terms of average spiking activity, and variability of
neural discharges is regarded as a form of noise. In temporal coding, neurons make use of
the temporal structure of spike trains. Much experimental, computational, and theoretical
work has been devoted to discussing this question, with evidence existing in favor of both
rate codes and temporal codes.

One of the tools for studying these competing models is the numerical simulation of
feedforward networks. Unfortunately, two such recent simulation results involving
biologically inspired feedforward networks yielded conflicting results, in which the group
conducting one study (Litvak et al., 2003) could not reproduce previously published
numerical results of another group (Shadlen & Newsome, 1998). As we have shown in
section 5, our approach can make a contribution to the resolution of this dispute, bearing in
mind that the basic units employed in those studies are different from the coincidence
detectors we employed. The availability of an analytical form for the solution provided by
our approach clearly precludes similar disputes.

In a network of coincidence detectors, we find that aspects of both rate coding and temporal
coding may be found. At least in the simple network studied in section 4, rate information is
propagated up to arbitrarily high layers, even when spatially localized rate information is
absent from the inputs and only spatially localized cross-correlation information is present.
Also, in the case of uncorrelated inputs of uniform firing ratesshown in Figure 3A, we find
that the output firing ratesof higher layers are almost linearly related to the input firing rates.
Both would support that rate coding is at least a viable possibility, as proposed by Shadlen
and Newsome (1998). The latter study may overemphasize the importance of rate coding,
however: Salinas and Sejnowski (2000) pointed out that the influence of cross-correlations
is relatively low in the Shadlen and Newsome study. The reason is that the latter study
employed exactly equal correlation coefficients between inhibitory and excitatory
populations (ρEE = ρII = ρEI in equation 20 of Salinas and Sejnowski, 2000), and the
variance in the output layer becomes small since the contributions to the variance resulting
from correlations between these populations cancel out (ρEE + ρII − 2ρEI = 0; Salinas &
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Sejnowski, 2000). Of course, the model described in section 5 works in the same parameter
regime.

On the other hand, we find that rate coding is not the only possibility of propagating
information across the layers of the network. Our results show that cross-correlation
information is propagated across the feed-forward network to arbitrarily high layers, even
when spatially localized cross-correlation information is absent from the inputs and only
spatially localized rate information is present. Our results thus support the viability of
temporal codes, as proposed by Litvak et al. (2003).

For the types of networks we studied in sections 4 and 5, we conclude that both rate and
cross-correlation information is propagated across feedforward networks and, furthermore,
that they will interact and tend to occur together, such that when only rate or only cross-
correlation information is present in the inputs, this information will appear in higher layers
in the form of both rate and cross-correlation information. As such, rate and cross-
correlation codes may well be intertwined and interdependent.

An example of such a mixed code in complex nervous systems might be the representation
of selective attention in the primate cortex (Niebur, 2002). Selective attention has been
shown in electrophysiological studies to be correlated with both rate changes and changes in
the fine temporal structure (on the order of milliseconds or tens of milliseconds) of neural
activity (Moran & Desimone, 1985; Steinmetz et al., 2000; Fries, Reynolds, Rorie, &
Desimone, 2001; Salinas & Sejnowski, 2001; Niebur, Hsiao, & Johnson, 2002). It will take
more experimental as well as theoretical work to come to a conclusive answer as to which of
the proposed neural coding schemes are used by the different nervous systems.
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Figure 1.
A simple n+1-layer feedforward network with cyclical boundary conditions, period 4.
Coincidence detectors are represented by a circle with a Θ(Σ) symbol in them, and
connections are shown as directed arrows between coincidence detectors. Input is shown as
stylized spike trains at the very bottom. Comma-separated pairs of numbers indicate layer
(second number) and neuron in this layer (first number).
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Figure 2.
Effect of uniform, uncorrelated input firing rate. (A) Mean firing rates for the network. (B)
Nearest-neighbor cross-correlations for the network. (C) Cross-correlation matrices for each
layer.
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Figure 3.
(A) Higher-layer output rate versus input rate curve. (B) higher-layer cross-correlation
versus input rate curve for the case of uncorrelated inputs of uniform rate.
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Figure 4.
Effect of spatially localized high input rates. (A) Mean firing rates for the network. (B)
nearest-neighbor cross-correlations for the network. (C) Cross-correlation matrices for each
layer.
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Figure 5.
Effect of halving input rates of Figure 4. (A) Mean firing rates for the network. (B) Nearest-
neighbor cross-correlations for the network. (C) Cross-correlation matrices for each layer.
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Figure 6.
Effect of spatially localized high cross-correlation (q = .4) between inputs 2 and 3. (A) Mean
firing rates for the network. (B) Nearest-neighbor cross-correlations for the network. (C)
Cross-correlation matrices for each layer.
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Figure 7.
Effect of spatially localized high cross-correlation (q = .8) between inputs 2 and 3. (A) Mean
firing rates for the network. (B) Nearest-neighbor cross-correlations for the network. (C)
Cross-correlation matrices for each layer.
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Figure 8.
Effect of spatially localized high cross-correlation (q = .6) and high firing ratebetween
inputs 2 and 3. (A) Mean firing rates for the network. (B) Nearest-neighbor cross-
correlations for the network. (C) Cross-correlation matrices for each layer.
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Figure 9.
Mean layer output rates as a function of network layer. (A) Mean input rate of 0.2. (B) mean
input rate of 0.4.
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