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LETTER Communicated by Anthony Burkitt

Synaptic Shot Noise and Conductance Fluctuations Affect the
Membrane Voltage with Equal Significance

Magnus J. E. Richardson
magnus.richardson@epfl.ch
Wulfram Gerstner
wulfram.gerstner@epfl.ch
Laboratory of Computational Neuroscience, I&C and Brain-Mind Institute,
Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne EPFL, Switzerland

The subthreshold membrane voltage of a neuron in active cortical tissue is
a fluctuating quantity with a distribution that reflects the firing statistics
of the presynaptic population. It was recently found that conductance-
based synaptic drive can lead to distributions with a significant skew.
Here it is demonstrated that the underlying shot noise caused by Poisso-
nian spike arrival also skews the membrane distribution, but in the op-
posite sense. Using a perturbative method, we analyze the effects of shot
noise on the distribution of synaptic conductances and calculate the con-
sequent voltage distribution. To first order in the perturbation theory, the
voltage distribution is a gaussian modulated by a prefactor that captures
the skew. The gaussian component is identical to distributions derived
using current-based models with an effective membrane time constant.
The well-known effective-time-constant approximation can therefore be
identified as the leading-order solution to the full conductance-based
model. The higher-order modulatory prefactor containing the skew com-
prises terms due to both shot noise and conductance fluctuations. The
diffusion approximation misses these shot-noise effects implying that
analytical approaches such as the Fokker-Planck equation or simulation
with filtered white noise cannot be used to improve on the gaussian ap-
proximation. It is further demonstrated that quantities used for fitting
theory to experiment, such as the voltage mean and variance, are robust
against these non-Gaussian effects. The effective-time-constant approxi-
mation is therefore relevant to experiment and provides a simple analytic
base on which other pertinent biological details may be added.

1 Introduction

Given a perfect model of the membrane response to synaptic input, it would
be possible to infer from the distribution of the subthreshold, membrane-
voltage fluctuations many quantities of interest, such as the levels of activity
and correlations in the excitatory and inhibitory presynaptic populations.

Neural Computation 17, 923–947 (2005) © 2005 Massachusetts Institute of Technology
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Early models of synaptic input (Stein, 1965) comprised a leaky integrator
driven by a stochastic current, which generated postsynaptic potentials of
fixed amplitude. Since then, great effort has been made to incorporate fur-
ther biological details.

Soon after the publication of Stein’s model, synaptic conductance ef-
fects began to be addressed (Stein, 1967; Johannesma, 1968; Tuckwell, 1979;
Wilbur & Rinzel, 1983; Lansky & Lanska, 1987). These early models fea-
tured unfiltered, delta-pulse synapses and were primarily concerned with
the statistics of the interspike interval distribution. Although the majority
of studies used the diffusion approximation (i.e., the limit of high synaptic
rates and low postsynaptic potential amplitudes), the effects of shot noise
due to Poisson distributed pulse arrival at low rates have also been consid-
ered (see, e.g., Tuckwell, 1989) in the context of stochastic resonance (Hohn
& Burkitt, 2001) and the neural response to correlations in the presynap-
tic population (Kuhn, Aertsen, & Rotter, 2003). Other studies have exam-
ined the filtering of the incoming pulses at the synapses and have shown
it can lead to unexpected dynamical response properties: synaptic filtering
can, paradoxically, allow neurons to follow high-frequency signals better
(Brunel, Chance, Fourcaud, & Abbott, 2001; Fourcaud & Brunel, 2002).

More recently, a number of experimental studies have directly mea-
sured the effect of synaptic drive on the membrane voltage (Kamondi,
Acsady, Wang, & Buzsaki, 1998; Destexhe & Paré, 1999; Sanchez-Vives &
McCormick, 2000; Monier, Chavane, Baudot, Graham, & Frégnac, 2003;
Holmgren, Harkany, Svennenfors, & Zilberter, 2003). The availability of such
measurements has led to a renewed interest in the quantitative modeling of
synaptic drive, with a view to infer presynaptic network states from voltage
fluctuations (Stroeve & Gielen, 2001; Rudolph, Piwkowska, Badoual, Bal, &
Destexhe, 2004), compare current and conductance-based models of synap-
tic drive (Tiesinga, José, & Sejnowski, 2000; Rauch, La Camera, Lüscher,
Senn, & Fusi, 2003; Rudolph & Destexhe, 2003; Jolivet, Lewis, & Gerstner,
2004; Richardson, 2004; La Camera, Senn, & Fusi, 2004; Meffin, Burkitt, &
Grayden, 2004), and explore mechanisms for the gain control of the neuronal
response (Chance, Abbott, & Reyes, 2002; Burkitt, Meffin, & Grayden, 2003;
Destexhe, Rudolph, & Paré, 2003; Fellous, Rudolph, Destexhe, & Sejnowski,
2003; Prescott & De Koninck, 2003; Grande, Kinney, Miracle, & Spain, 2004;
Kuhn, Aertsen, & Rotter, 2004).

In this letter, the combined effects on the membrane voltage of synaptic
shot noise, filtering, and conductance increase will be examined. The central
result is that the effects of synaptic shot noise on the membrane voltage
statistics are as significant as those of synaptic conductance fluctuations
and therefore either both (or neither) of these features of the synaptic drive
should be taken into account for a consistent approach. This means that
diffusion-level descriptions, such as numerical simulations or the Fokker-
Planck approach, in which the drive is modeled as gaussian noise, cannot
correctly describe detailed aspects of the membrane-voltage distribution,
such as its skew.
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2 Membrane Response to Synaptic Drive

In this section, the full model of the membrane response to synaptic drive
is introduced and two common approximations to this model outlined. An
analysis of the aspects of the drive missed by these approximation schemes
will motivate the development of a perturbative approach.

2.1 The Full Model. Following Stein (1967), the membrane voltage V(t)
responds passively to synaptic drive: voltage gated channels, including
spike-generating currents, are not included. The membrane is modeled by
a capacitance C in parallel with a leak conductance gL and two fluctuating
excitatory ge (t) and inhibitory gi (t) conductances with equilibrium poten-
tials at EL , Ee , and Ei , respectively. This system therefore comprises three
independent variables:

C
dV
dt

= −gL (V − EL ) − ge (V − Ee ) − gi (V − Ei ) + Ia pp (2.1)

τe
dge

dt
= −ge + ceτe

∑
{tke}

δ
(
t − tke

)
(2.2)

τi
dgi

dt
= −gi + ciτi

∑
{tki}

δ
(
t − tki

)
. (2.3)

The excitatory conductance is driven by pulses that arrive at the Poisson-
distributed times {tke } at a total rate Re summed over all input fibers.
Each pulse provokes a quantal conductance increase ce , which then de-
cays exponentially with a time constant τe . The inhibitory conductance is
defined analogously. Any experimentally applied current is accounted for
by Ia pp.

In this letter, only the steady-state statistical properties will be considered.
Thus, all expectations of a quantity x(t), written as 〈x(t)〉, denote either an
average over an ensemble of statistically independent systems, in which any
transients due to initial conditions are no longer present, or the temporal
average of x(t) in a single system.

2.2 The Diffusion Approximation. For the case in which the rates
Re ,Ri are relatively high, the number of pulses that arrive within the
timescales τe , τi will be approximately gaussian distributed. The replace-
ment of the synaptic shot noise in equations 2.2 and 2.3 by a constant term
and gaussian white noise constitutes the diffusion approximation. Thus,
using excitation as an example,

τe
dge

dt
� ge0 − ge +

√
2σeξe (t), (2.4)
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where the gaussian white noise ξe (t) has a mean and autocorrelation function
defined by

〈ξe (t)〉 = 0 〈ξe (t)ξe (t′)〉 = τeδ(t − t′). (2.5)

The Ornstein-Uhlenbeck process (see equation 2.4) has been shown to cap-
ture the statistics of conductance fluctuations at the soma of compartmental-
ized model neurons (Destexhe, Rudolph, Fellous, & Sejnowski, 2001). The
average conductance ge0 and the standard deviation σe are related to the
variables ce , τe , and Re through

ge0 = ceτeRe , σe = ce

√
τeRe

2
. (2.6)

By construction, the first two moments of the diffusion approximation are
identical to those of the shot noise process. Higher moments, however, are
not correctly reproduced in the diffusion approximation.

The conductance equation 2.4 is linear and can be integrated.1 The fluc-
tuating component ge F of the conductance is

ge F (t) ≡ ge (t) − ge0 �
√

2σe

∫ ∞

0

ds
τe

e−s/τe ξe (t − s), (2.7)

which yields (with equation 2.5) the gaussian distribution

pD(ge ) = 1√
2πσ 2

e

exp
(

− (ge − ge0)2

2σ 2
e

)
. (2.8)

The subscript signifies that the calculation was made in the diffusion ap-
proximation. There are clearly some problems with distribution 2.8 if the
conductance mean ge0 is of a similar magnitude to the standard deviation σe .
In this regime, the diffusion approximation predicts negative conductances
(Lansky & Lanska, 1987; Rudolph & Destexhe, 2003). In fact, the criterion
for validity of the diffusion approximation is

σe/ge0 � 1, (2.9)

1 The Stratonovich formulation of stochastic calculus is used throughout this letter.
However, for additive white noise or multiplicative colored noise, there is no difference
between the Stratonovich or Ito forms. See, for example, Risken (1996).
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suggesting that this approximation misses higher-order terms scaling with
powers of σe/ge0. Thus, the shot noise conductance fluctuations should read

ge F (t) =
√

2σe

∫ ∞

0

ds
τe

e−s/τe

(
ξe (t − s) + corrections ∝ σe

ge0

)
, (2.10)

where ξe (t) is the gaussian white noise defined in equation 2.5.

2.3 The Diffusion Approximation Is Inconsistent. The combination of
the diffusion approximation of the synaptic drive (see equation 2.4 and its
equivalent for inhibition) and the full voltage equation, 2.1, will now be
examined. By separating the synaptic conductances into tonic components
ge0, gi0 and fluctuating components ge F , gi F , the voltage equation can be
written as

C
dV
dt

= −g0(V − E0) − ge F (V − Ee ) − gi F (V − Ei ), (2.11)

where the total conductance g0 and drive-dependent equilibrium potential
E0 are defined by

g0 = gL + ge0 + gi0 and E0 = 1
g0

(gLEL + ge0 Ee + gi0 Ei + Ia pp).

(2.12)

The subscripts 0 anticipate that these quantities are correct at the zero order
of a perturbation expansion that will be developed in a later section. The
total conductance g0 suggests the introduction of an effective membrane
time constant,

τ0 = C/g0. (2.13)

This feature of the synaptic drive was identified in the early analytic treat-
ment of Johannesma (1968).

The fluctuation terms driving the voltage in equation 2.11 will now be
examined. Taking excitation as an example, the voltage-dependent compo-
nent of the drive can be expanded around the equilibrium potential E0,

ge F (V − Ee ) = ge F (E0 − Ee ) + ge F (V − E0). (2.14)

The two terms on the right-hand side have simple interpretations. The first
is an additive noise term and therefore just a fluctuating current. The second
is a multiplicative noise term and, in the context of equation 2.11, it can be
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seen that this term represents fluctuations in g0, or equivalently in τ0, the
effective membrane time constant.

These two noise terms are, however, not equally significant. The quan-
tity V−E0 grows (linearly) with the fluctuations ge F , gi F . So whereas the
additive noise terms are of the order ge F , gi F , the multiplicative noise terms
are of the order g2

e F , g2
i F , and ge F gi F . This suggests that (1) the multiplicative

noise terms could be neglected if the noise strength was in some way small,
and (2) if these terms were retained, the effects of the synaptic drive on the
membrane voltage would be modeled in greater detail. Point 1 is valid, as
will be seen in section 2.4. Point 2, however, is false due to an unexpected
weakness of the diffusion approach with multiplicative noise. This will now
be outlined.

On reexamining equations 2.7 to 2.9, it is seen that relative to the tonic con-
ductance, the fluctuations in the diffusion approximation scale with σe/ge0.
But equation 2.10 states that the terms missed by this approximation scale
with the square of this quantity. Hence,

ge F /ge0 = A
(

σe

ge0

)
+ B

(
σe

ge0

)2

+ · · · (2.15)

where A is the diffusion-level term and B is the first-order correction due
to shot noise. Given that σe/ge0 is the small quantity parameterizing the
diffusion approximation, it is clearly inconsistent to neglect the second-
order term B in the additive noise ge F (Ee −E0) of equation 2.14 but keep
the implicit A2 term in the multiplicative noise ge F (V−E0)∝g2

e F . This is,
however, what occurs in the diffusion approximation.

This result is surprising because it implies that although diffusion-based
approaches (such as the Fokker-Planck equation or any simulation with
filtered gaussian noise) purport to capture the effects of synaptic-
conductance fluctuations, they miss equally important terms due to the
shot noise. However, it should be stressed that almost all previous studies
of conductance-based synaptic noise that used the diffusion approximation
implicitly concentrated their analyses on the dominant effects coming from
the tonic conductance increase and additive noise term; the conclusions of
such studies remain valid.

2.4 The Effective-Time Constant Approximation. This is also known
as the gaussian approximation of the voltage distribution. The treatment of
the membrane voltage can easily be made consistent with the diffusion
approximation of the synaptic conductance equations. This is achieved by
dropping the multiplicative noise term, that is, by neglecting conductance
fluctuations, to yield

C
dV
dt

� −g0(V − E0) + ge F (Ee − E0) + gi F (Ei − E0). (2.16)
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This voltage equation is of the form of a current-based model, but the dom-
inant effect of the synaptic conductance is accounted for through the use
of an increased effective leak g0. This approximation is in widespread use,
having been applied to white noise synaptic drive (Wan & Tuckwell, 1979;
Lansky & Lanska, 1987; Burkitt & Clark, 1999; Burkitt, 2001; Burkitt et al.,
2003, La Camera et al., 2004), alpha-pulse synapses (Manwani & Koch,
1999), and, more recently (Richardson, 2004), to the case of exponentially
filtered synapses studied here. The equation set comprising the voltage
equation 2.16 and the diffusion approximations for the conductances are
simple to analyze and can be integrated to give

V(t) − E0 �
√

2
(

σe

g0

)
(Ee − E0)
(τe − τ0)

∫ ∞

0
ds

(
e−s/τe − e−s/τ0

)
ξe (t − s)

+
√

2
(

σi

g0

)
(Ei − E0)
(τi − τ0)

∫ ∞

0
ds

(
e−s/τi − e−s/τ0

)
ξi (t − s).

(2.17)

This equation has an obvious interpretation: the quantities multiplying the
noise are just the excitatory and inhibitory postsynaptic potentials for a
membrane with an effective time constant τ0. The fact that it is linear in
the noise means that many quantities of interest can be easily calculated,
including temporal measures such as the autocorrelation function.

The distribution predicted for the voltage is the gaussian

p0(V) = 1√
2πσ 2

V

exp
(
− (V − E0)2

2σ 2
V

)
, (2.18)

where, for the case where there are no correlations between excitation and
inhibition, the variance is (Richardson, 2004)

σ 2
V =

(
σe

g0

)2

(Ee − E0)2 τe

(τe + τ0)
+

(
σi

g0

)2

(Ei − E0)2 τi

(τi + τ0)
. (2.19)

If the limit τe , τi →0 is correctly taken (by keeping the quantities ceτe/C
and ciτi/C fixed), it can be shown that this variance is compatible with
previous results derived for the gaussian approximation of white noise
conductance-based synaptic drive (Burkitt et al., 2003). However, for fil-
tered noise, the variance in equation 2.19 differs significantly from that
derived in Rudolph and Destexhe (2003). In that study, a one-dimensional
Fokker-Planck equation was used that could not capture the effects of synap-
tic filtering. Through the introduction of effective synaptic time constants
(Rudolph et al., 2004), the one-dimensional Fokker-Planck equation can be
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made to yield results that correspond, at the gaussian level and in the steady
state, to the distribution parameterized by equations 2.12 and 2.19.

2.5 The Aim of This Letter. The gaussian approximation provides a
mathematically convenient approach to the analysis of conductance-based
synaptic drive and is accurate for parameter values relevant to experiment
(Richardson, 2004). Given the analysis presented above, it is clear that to
improve on the gaussian approximation, both shot noise and conductance
fluctuations must be included. The goal of the next two sections will be to de-
velop a perturbative method that allows for the consistent calculation of the
conductance and voltage distributions at a higher order than the gaussian
approximation. These higher-order calculations will yield the skew of the
voltage distribution, a quantity that is measurable experimentally. More
important, the approach will provide information on the validity of fitting
gaussian-level analytical forms for the mean and variance to voltage traces
of cortical neurons. To aid readability, only the results of the calculations
are given in the main body of the article. However, the methods developed
here are applicable to other areas of theoretical neuroscience, such as the
distribution of amplitudes at depressing synapses (Hahnloser, 2003) or the
shape of synaptic weight distributions (van Rossum, Bi, & Turrigiano, 2000;
Rubin, Lee, & Sompolinsky, 2001), and are therefore presented in full in the
appendixes.

3 Synaptic Shot Noise and Conductance Distributions

In this section, the effects of shot noise on the synaptic conductance distri-
butions will be analyzed. It should be noted that relaxation processes with
shot noise, for which equations 2.2 and 2.3 are examples, have been well
studied, and an exact solution (Gilbert & Pollak, 1960) for the distribution, in
the form of a recursion relation, does exist. However, the aim of the approach
(in section 4) is to incorporate the shot-noise conductance fluctuations into
a model of the membrane voltage. A perturbative approach is better suited
to this purpose. For this reason, the full solution for the shot-noise distribu-
tion pS(ge ) will not be presented here but, when needed, will be obtained
by numerical simulation of equation 2.2.

3.1 The Diffusion Approximation Misses the Skew. In the limit where
the standard deviation σe has a similar magnitude to the conductance
mean ge0, the diffusion approximation, unlike the full model, predicts neg-
ative conductances. A second source of difference between the statistics of
shot noise and the diffusion approximation is also seen in the same limit;
the distribution of the shot noise conductance becomes skewed, an effect
that is obviously missed by the gaussian distribution given in equation
2.8. In order to get some intuition about the skew of the distribution, a
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Figure 1: Distribution of shot noise conductance fluctuations; the perturbation
theory improves on the diffusion approximation. (A) Comparison of the full
distribution pS generated by the simulation of equation 2.2 to the diffusion ap-
proximation pD (see equation 2.8) and the perturbation theory pP (see equation
3.4) for the case σe/ge0 = 0.60 (Reτe = 1.5). (B) The corresponding absolute differ-
ence between the diffusion approximation and full solution |pD− pS| and also
the perturbatively generated distribution and the full solution |pP − pS|. The
perturbative distribution reduces the error caused by both the negative con-
ductances and the skew. (C, D) Analogous measures for the case σe/ge0 = 0.41
(Reτe = 3.0) for which the theoretical approaches can be expected to be more
accurate. Details of the simulations are given in appendix A.

comparison can be made between the full and approximate distributions
shown in Figure 1A. In this case (for which Reτe = 1.5 implying σe/ge0 =
0.60), the peak of the shot noise distribution is to the left of that of the
gaussian. Because both distributions have the same mean conductance
ge/ce = 1.5, the shot noise distribution is skewed; it leans to the left with
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a longer tail to the right. Any improvement of the diffusion approximation
should address both the negative conductivity and the skew of the conduc-
tance distribution.

3.2 Accounting for the Shot Noise. The corrections identified in
equation 2.10 will now be accounted for. A stochastic variable ζe (t),
analogous to gaussian white noise ξe (t),

τe
dge

dt
� ge0 − ge +

√
2 σe ζe (t), (3.1)

can be constructed that has statistics that capture the shot noise fluctuations
correctly up to the next order missed by the diffusion approximation. It can
be shown that such a quantity must obey the same first- and second-order
correlators as gaussian white noise,

〈ζe (t)〉 = 0, 〈ζe (t)ζe (t′)〉 = τeδ(t − t′), (3.2)

but also a new third-order correlator,

〈ζe (t)ζe (t′)ζe (t′′)〉 =
√

2
(

σe

ge0

)
τ 2

e δ(t − t′)δ(t′ − t′′). (3.3)

It is this third-order correlator, proportional to σe/ge0, that provides the
leading-order correction to the diffusion approximation. All higher-order
correlators of products of ζe (t) factorize in terms of these first-, second-,
and third-order correlators. Using the rules in equations 3.2 and 3.3, the
conductance distribution can be shown (see appendix B) to be

pP (he ) = 1√
2π

[
1 + 4

3
σe

ge0

(
h3

e

3!
− he

2!

)]
exp

(
−h2

e

2

)
, (3.4)

where he = (ge −ge0)/σe is the normalized conductance and the subscript P
denotes that the result was derived as a perturbative expansion in the small
variables σe/ge0. The distribution takes the form of a gaussian modulated
by a prefactor. To zero order in σe/ge0, the prefactor is equal to one, and
the gaussian distribution 2.8 is recovered. The prefactor terms proportional
to σe/ge0 now allow for the moments of the distribution to be calculated at
higher order. The mean and variance are unchanged, as would be expected
given the previous comments about the exactness of these two moments.
The first new result of the perturbation theory is the skew Sge of the distri-
bution:

Sge = 1
σ 3

e

〈
(ge − ge0)3〉 = 〈

h3
e

〉 = 4
3

σe

ge0
. (3.5)
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A useful aspect of the perturbation theory is that this skew is exact. The
distribution itself and its higher moments are, however, correct only at the
given order of the series expansion in σe/ge0. Two examples comparing the
numerically generated conductance distribution pS, diffusion approxima-
tion pD and perturbation theory pP , are plotted in Figure 1.

4 The Subthreshold Voltage Distribution

The model of synaptic conductance studied in the previous section can now
be incorporated into the membrane voltage equation. This will allow the
voltage distribution to be calculated at the next order beyond the gaussian
approximation. The method involves a perturbative solution to the voltage
equation 2.1, the excitatory synaptic conductance equation 3.1, and its in-
hibitory analog. For the perturbative calculation of the voltage distribution,
it is convenient to use the following small parameters,

xe = σe/g0 and xi = σi/g0, (4.1)

which are linearly related (in σe , σi ) to the small parameters of the conduc-
tance expansion σe/ge0 and σi/gi0. The calculation for the voltage distribu-
tion is given in appendix C and, in terms of v = V − E0, can be written in
the form

pP (v) = 1√
2πσ 2

V

[
1 + v

σV

(
µV

σV
− S

2!

)
+ v3

σ 3
V

S
3!

]
exp

(
− v2

2σ 2
V

)
, (4.2)

where the subscript P denotes the perturbatively generated result. The volt-
age appears only through the ratio v/σV , and the other terms µV/σV and S
are parameters proportional to xe , xi : this distribution generates moments
〈vm〉/σ m

V that are correct up to order xe , xi .
The quantity µV is the leading-order correction to the voltage mean E0

and stems from the conductance fluctuations only: the shot noise does not
influence the mean voltage. The standard deviation, given by equation 2.19,
is identical to the gaussian value σV and is therefore unaffected by shot noise
or multiplicative conductance at this order in the perturbation expansion.
Thus,

〈V〉 − E0 = µV and 〈(V − 〈V〉)2〉 = σ 2
V. (4.3)

The third-order moment of the distribution 4.2 gives the skew of the voltage
distribution,

1
σ 3

V

〈(V − 〈V〉)3〉 = S = SSN + SC F . (4.4)



934 M. Richardson and W. Gerstner

From the expression given in appendix C, equation C.20, it can be seen that
two distinct contributions to the skew naturally arise: one from the shot
noise SSN and a second one from the conductances fluctuations SC F . These
two contributions to the skew are equally significant because they are both
proportional to xe , xi . This illustrates one of the central points of this study:
the diffusion approximation of a conductance-based model with multiplica-
tive noise is inconsistent because it misses the shot noise contribution SSN.
The full set of equations for µV , σV , and S is given in appendix D.

4.1 An Example with Relevance to Experiment. To illustrate the ef-
fects of shot noise and conductance fluctuations, a scenario is considered
in which the fluctuations due to the inhibitory component of the drive can
be neglected. There are two different situations that allow this action to be
taken. The first is when inhibition is absent. The second, and more interest-
ing, case is relevant to experiments designed to isolate the effect of excitation
on the membrane voltage (Silberberg, Wu, & Markram, 2004). In such ex-
periments, the neuron is hyperpolarized through the injection of current so
that the mean voltage E0 is near the reversal of inhibition Ei . In such cases,
the factor Ei −E0 multiplying all inhibitory contributions to membrane fluc-
tuations is relatively small, and such contributions can be dropped without
significant loss of accuracy. Inhibition enters only through an increase of the
tonic conductance g0 and the corresponding decrease of the effective time
constant τ0.

For either of these scenarios, the moments that parameterize the distri-
bution in equation 4.2 take the values

µV = −x2
e (Ee − E0)

τe

(τe + τ0)
(4.5)

σ 2
V = x2

e (Ee − E0)2 τe

(τe + τ0)
(4.6)

SSN = xe
8
3

g0

ge0

(τe + τ0)2

(τe + 2τ0)(2τe + τ0)

√
τe

(τe + τ0)
(4.7)

SC F = −4xe

(
3τ 2

e + 6τeτ0 + 2τ 2
0

)
(τe + 2τ0)(2τe + τ0)

√
τe

(τe + τ0)
. (4.8)

Equations 4.7 and 4.8 give the positive and negative contributions to the
skew (see equation 4.4) that come from the shot noise and conductance
fluctuations, respectively.

For the case of purely excitatory drive, g0 = gL + ge0, the relative impor-
tance of these contributions can be gauged by examining the ratio

∣∣∣∣SSN

SC F

∣∣∣∣ = 2
3

τL

(τL − τ0)

(
(τe + τ0)2

3(τe + τ0)2 − τ 2
0

)
, (4.9)
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Figure 2: Distribution of the membrane voltage; perturbation theory captures
the skew. A neuron is subject to a purely excitatory synaptic drive with a current
Iapp applied such that E0 = −60 mV. (A, B) The conductance and voltage dis-
tributions for a low conductance state (ge0 = 0.0167, gL = 0.05 mS/cm2) with
noise strength xe = σe/g0 = 0.2. The perturbative conductance distribution (see
equation 3.4) is not accurate because σe/ge0 = 0.8. The weak skew of the corre-
sponding voltage distribution (B) is, however, correctly predicted by the per-
turbation theory (see equation 4.2) because the underlying conductance skew is
exact. (C) The voltage skew (see equations 4.7 and 4.8) is plotted as a function of
xe for the same parameters, but with increasing noise σe . The shot noise SSN and
conductance-fluctuation SC F contributions to the skew nearly cancel, explain-
ing the almost gaussian voltage distribution in B. (D, E) A high conductance
state (ge0 = 0.15 mS/cm2) with xe = σe/g0 = 0.4. (E) The large skew of the volt-
age distribution is captured by the perturbation theory. (F) The voltage skew is
negative for the high-conductance case because SC F dominates. Details of the
simulations are given in appendix A.

where τL = C/gL is the leak time constant. The ratio is a monotonically
increasing function of the effective time constant τ0. In the limit of low con-
ductance states, for which τ0 →τL , the ratio diverges, and the contribution
due to conductance fluctuations becomes negligible. For high-conductance
states, for which τ0 →0, the ratio converges to a constant value of 2/9. These
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results underline the fact that the effect of shot noise is nonnegligible: even
in extremely high conductance states it still comprises just under a third,
SSN/S = 2/7, of the net skew. These results are illustrated graphically in
Figure 2.

5 Discussion

The effect that shot noise synaptic drive has on the membrane voltage dis-
tribution was examined. A perturbative approach was developed that was
first used to capture the statistics of filtered shot noise conductance fluc-
tuations beyond both the gaussian effective-time-constant approximation
and the diffusion approximation. These synaptic conductances were then
incorporated into a model of the membrane voltage response. The approach
allowed for the analysis of nongaussian features of the voltage distribution,
such as its skew. In particular, it was shown that shot noise and synaptic con-
ductance fluctuations affect the membrane at the same order: both effects
need to be taken into account for a consistent approach.

The regime in which the effects of shot noise on the voltage and firing
rate might be clearly seen experimentally, is one of low presynaptic rate and
large, sharp excitatory postsynaptic potentials (EPSPs). This is typical of the
excitatory drive experienced by certain neocortical interneurons (Silberberg
et al., 2004) for which isolated EPSPs can be many millivolts and there is little
dendritic filtering. For a case in which the effects of shot noise are strong
(outside the perturbative regime considered here), the voltage distribution
can be considerably positively skewed with increased probability to be near
threshold. It is expected that in such a case, the statistics of the generated
action potentials would differ significantly from those predicted using a
gaussian model of the membrane fluctuations with the same mean and
variance.

The gaussian, or effective-time constant approximation for the mem-
brane distribution, is, however, mathematically simple: the mean (see
equation 2.12) and variance (see equation 2.19) are transparent functions of
the model parameters. Such gaussian distributions are therefore ideal to fit to
experimental data (Rudolph et al., 2004) in cases where the shot noise effects
are weak. The functional form of the distribution that takes into account the
shot noise and conductance fluctuations is, however, somewhat less trans-
parent as can be seen in equations D.5 and D.6 for the skew. So the question
should be asked: To what extent would weak higher-order effects interfere
with an attempt to fit the mean and variance to an experimental distri-
bution? This question can be answered in the framework presented here.
First, it is seen from equations 4.5 and D.3 that the correction to the mean
voltage due to shot noise and conductance fluctuations is of order x2

e , x2
i ,

〈V〉 = E0 + µV + · · · = E0 + O
(
x2

e , x2
i

)
. (5.1)
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Hence, the mean is not affected at first order. The same is true for the mea-
sured variance,

〈(V − 〈V〉)2〉 = 〈(V − E0)2〉 − (〈V〉 − E0)2 = σ 2
V

(
1 + O

(
x2

e , x2
i

))
, (5.2)

which also increases only with x2
e , x2

i , despite the fact that the skew grows
linearly with xe , xi . These results demonstrate that information extracted
from the voltage mean using equation 2.12 and variance using equations 2.19
is not strongly affected by shot noise and conductance fluctuations missed
in the gaussian approximation. Hence, fitting the gaussian-level moments to
voltage traces is a robust method, given that equations 2.1 and 2.4 and their
inhibitory counterpart provide a sufficiently realistic model of the effect of
synaptic drive on the membrane voltage.

In summary, the gaussian effective-time-constant approximation pro-
vides an accurate description of the voltage fluctuations and is a convenient
tool for fitting theory to experiment. For most situations, its description of
the stochastic voltage dynamics due to conductance-based synaptic drive
is adequate, and it can be easily extended to include many biological de-
tails (such as voltage-dependent currents, dynamic synapses, heterogeneity,
nontrivial temporal correlations in the drive, and others) missed in the sim-
plified model considered here. Nevertheless, for the purposes of detailed
modeling of conductance-based synaptic drive, it should not be overlooked
that shot noise and conductance fluctuations are equally important. Our
results demonstrate that diffusion-based approaches such as the Fokker-
Planck equation or simulation using multiplicative filtered gaussian noise
are inadequate for the description of the nongaussian statistics of the volt-
age. If the aim is to model or simulate the statistics of voltage fluctuations
beyond the gaussian, effective-time-constant approximation, then synaptic
shot noise must be included.

Appendix A: Details of the Simulations

The parameters used for the simulations were τe = 3 ms for the excita-
tory synaptic filtering, C = 1 µF/cm2 for the membrane capacitance, and
gL = 0.05 mS/cm2 for the leak conductance. The reversal potentials used
were EL = −80 mV for the leak and Ee = 0 mV for synaptic excitation. Sim-
ulations were performed using the Euler method with the Poissonian synap-
tic shot noise implemented by integrating the conductance equation 2.2 to
yield

ge (t + dt) = ge (t) − dt
τe

ge (t) + ceP(Redt), (A.1)

where ce is the postsynaptic conductance amplitude for a single pulse and
Re is the total rate of incoming pulses. The quantity P(Redt) is the random
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number of incoming pulses that arrive within the time step dt. The number
is drawn from a Poisson distribution characterized by the mean Redt.

Appendix B: Filtered Poissonian Shot Noise

The method for expanding higher-order gaussian correlators is first
reviewed. The first- and second-order correlators are given in equation set
2.5. All higher odd-order correlators vanish, and higher even-order corre-
lators (of order 2n) factorize into

(2n)!/(2nn!) (B.1)

permutations of products of n second-order correlators. As an example, and
writing ξ (t1) = ξ1 for simplicity, the fourth-order correlator is

〈ξ1ξ2ξ3ξ4〉 = 〈ξ1ξ2〉〈ξ3ξ4〉 + 〈ξ1ξ3〉〈ξ2ξ4〉 + 〈ξ1ξ4〉〈ξ2ξ3〉. (B.2)

A fluctuating quantity ζe (t) is now introduced with statistics that are
constructed so as to capture the effects of shot noise at a higher order than
gaussian white noise ξ (t). The factorization properties of high-order correla-
tors of ζe (t) can be derived from its first-, second-, and third-order correlators
defined in equation set 3.2 and equation 3.3. These rules can be derived by ex-
panding the Poissonian distribution of the shot-noise Ornstein-Uhlenbeck
equation 2.2 and by keeping terms beyond the usual diffusion approxima-
tion (see, e.g., Rodriguez, Pesquera, San Miguel, & Sancho, 1985).

To order σe/ge0, higher even-order correlators obey the usual gaussian
factorization rules and higher odd-order correlators can be decomposed
into permutations of a product of a single third-order correlator and an
appropriate number of second-order correlators. As an example, and us-
ing the shorthand ζe (t1) = ζ1, the seventh-order correlator is factorized as
follows:

〈ζ1ζ2ζ3ζ4ζ5ζ6ζ7〉 = 〈ζ1ζ2ζ3〉〈ζ4ζ5ζ6ζ7〉 + permutations, (B.3)

where for this case, there are 7 · 6 · 5 permutations of the indices of the
third-order correlator. Each fourth-order correlator can then be decomposed
using the usual gaussian rules (see eq. B.2). It is important to note than no
further third-order correlators are extracted out of the remaining even-order
product. Otherwise, this would produce terms that go beyond the σe/ge0

correction. Hence, for a (2n + 3)-order correlator, there are

(2n + 3)(2n + 2)(2n + 1) · (2n)!
2nn!

(B.4)
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permutations. The first set of three terms comes from the different ways of
arranging the single third-order correlator, and the final term comes from the
gaussian statistics of the reduction of the remaining even-order correlator.

B.1 The Conductance Distribution and Correlators. The normalized
conductance variable he = (ge −ge0)/σe is introduced to simplify the follow-
ing analysis. It obeys the equation

τe
dhe

dt
= −he +

√
2 ζe (t), (B.5)

which can be integrated to yield

he (t) =
√

2
∫ t

−∞

ds
τe

e−(t−s)/τe ζe (s). (B.6)

From this, the correlators of the conductance are found to be

〈he (t)〉 = 0

〈he (t)he (t′)〉 = exp(−|t − t′|/τe )

〈he (t)he (t′)he (t′′)〉 = 4
3

σe

ge0
exp(−|t − t′|/τe ) exp(−|t′ − t′′|/τe ), (B.7)

with higher-order correlators derivable from these using the underlying
factorization rules for ζe (t).

The steady-state distribution of the variable he (t) can be obtained by
calculating the probability density that he (t) is found having a value near
he :

p(he ) = 〈δ(he − he (t))〉 =
∫ ∞

−∞

dq
2π

e−iqhe
〈
eiqhe (t)〉. (B.8)

The exponential is expanded to give

〈
eiqhe (t)〉 =

∞∑
m=0

(iq )2m

2m!

〈
h2m

e (t)
〉 + ∞∑

m=0

(iq )3+2m

(3 + 2m)!

〈
h3+2m

e (t)
〉
. (B.9)

The structure of the correlators allows this to be rewritten as

〈
eiqhe (t)〉 =

∞∑
m=0

1
m!

(−q 2

2

)m (
1 + (iq )3 4σe

3ge0

)

=
(

1 + (iq )3 4σe

3ge0

)
e−q 2/2, (B.10)
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which can be inserted into equation B.8,

p(he ) =
(

1 − 4σe

3ge0

d3

dh3
e

) ∫ ∞

−∞

dq
2π

e−iqhe −q 2/2, (B.11)

to yield the distribution given in equation 3.4.

Appendix C: The Membrane Distribution

The statistics of the conductance fluctuations (given in equation 3.1) now are
incorporated into a model of a passive membrane (see equation 2.1). For the
following analysis, it is convenient to use the shifted voltage v = (V − E0),
with normalized conductances he , hi defined in equations B.5 and B.6,

τ0v̇ + v(1 + xe he + xi hi ) = xeEe he + xiEi hi , (C.1)

where τ0 = C/g0, E0 are defined by equation 2.12, Ee = Ee −E0, and xe =
σe/g0 provides the small parameter used for the perturbative analysis of
the voltage (with a similar definition of xi ). Because these small parameters
are linearly related to those used for the conductance perturbation theory,
corrections due to shot noise and conductance fluctuations will be simulta-
neously accounted for.

Equation C.1 can be integrated to give

v(t) =
∫ t

−∞

ds
τ0

e−(t−s)/τ0

(
α(s) e− ∫ t

s
dr
τ0

β(r )
)

, (C.2)

where the terms α(s) generate corrections to voltage-like quantities and β(r )
generates corrections to the effective time constant:

α(s) = xeEe he (s) + xiEi hi (s)

β(r ) = xe he (r ) + xi hi (r ). (C.3)

The voltage distribution can now be obtained by evaluating the expectation

p(v) = 〈δ(v − v(t))〉 =
∫ ∞

−∞

dq
2π

e−iqv〈eiqv(t)〉, (C.4)

to the appropriate order in xe and xi . No correlations are assumed to
exist between excitation and inhibition. This simplifying assumption can
be relaxed, and the method used here easily extended to account for such
correlations.
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C.1 The Leading-Order Voltage Distribution. The derivation
(Richardson, 2004) of the leading-order contribution to the voltage distri-
bution of equation set 2.1 to 2.3 is first reviewed. The fluctuations of the
voltage from its mean value are written as v(t) = σ (t) + O(x2

e , x2
i ) where

σ (t) =
∫ t

−∞

ds
τ0

e−(t−s)/τ0 (xeEe he (s) + xiEi hi (s)) . (C.5)

In this approximation, the leading-order probability density is a gaussian,
as can be seen by examining

p0(v) =
∫ ∞

−∞

dq
2π

e−iqv〈eiqσ (t)〉, (C.6)

where the expectation

〈
eiqσ (t)〉 = 1 − q 2

2
〈σ (t)2〉 + q 4

4!
〈σ (t)4〉 · · · = e− 1

2 q 2σ 2
V (C.7)

is evaluated using the gaussian relation 〈σ (t)2n〉 = (2n)!〈σ (t)2〉n/2nn! At this
order, there are no contributions from the shot noise. From equation C.5,
the expectation 〈σ 2(t)〉 = σ 2

V is time independent and takes the value

σ 2
V = x2

e E2
e

τe

(τe + τ0)
+ x2

i E2
i

τi

(τi + τ0)
. (C.8)

Reinserting the result, equation C.7, into the probability density,

p0(v) = exp
(

− v2

2σ 2
V

) ∫ ∞

−∞

dq
2π

exp

(
−σ 2

V

2

(
q − i

v
σ 2

V

)2
)

, (C.9)

and evaluating the integral gives a gaussian voltage distribution:

p0(V) = 1√
2πσ 2

V

exp
(

− (V − E0)2

2σ 2
V

)
. (C.10)

C.2 The Next-Order Correction to the Distribution. From the previous
section, it is seen that the typical difference between the voltage and its mean
scales with xe , xi . To develop a systematic expansion, the dimensionless
variable y = v/σV is therefore introduced. At the next order,the expansion
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can be written

y(t) = σy(t) − φ2
y(t) + O

(
x2

e , x2
i

) + · · · ,

where σy(t) = σ (t)/σV and φ2
y takes the form

φ2
y(t) = 1

σV

∫ t

−∞

ds
τ0

e− (t−s)
τ0

∫ t

s

dr
τ0

α(s)β(r ). (C.11)

This gives the probability density correct to order xe , xi as

p0(y) + p1(y) =
∫ ∞

−∞

dq
2π

e−iq y〈eiq (σy(t)−φ2
y(t))〉.

Again the exponential within the expectation will be expanded and then
evaluated to first order in φ2

y:

〈
eiq (σy(t)−φ2

y(t))〉 =
∞∑

m=0

(iq )2m

(2m)!

〈
σ 2m

y

〉 + ∞∑
m=0

(iq )3+2m

(3 + 2m)!

〈
σ 3+2m

y

〉

−
∞∑

m=0

(iq )1+2m

(2m)!

〈
σ 2m

y φ2
y

〉 + O
(
x2

e , x2
i

)
. (C.12)

The first term on the right-hand side of equation C.12 is the zero-order
gaussian component treated above, the second term is the correction due to
the Poissonian nature of the noise, and the third term is the correction due
to the conductance-based drive.

The second term is straightforward to analyze. Using the rules for the
permutation of correlators, this term can be expanded out to give

∞∑
m=0

(iq )3+2m

(3 + 2m)!

〈
σ 3+2m

y

〉 = (iq )3〈σ 3
y

〉 ∞∑
m=0

1
m!

(−q 2

2

)m

, (C.13)

which takes the form of a gaussian with a prefactor.
To obtain the third term of equation C.12, expectations of the form 〈σ 2m

y φ2
y〉

need to be calculated. An examination of the structure of the integrals com-
prising this term shows that they can be written as

〈
σ 2m

y φ2
y

〉 = 〈
σ 2m

y

〉〈
φ2

y

〉 + 2m·(2m − 1)
〈
ψ4

y

〉〈
σ 2m−2

y

〉
. (C.14)



Shot Noise and Conductance Fluctuations 943

The expectation 〈φ2
y〉 can be calculated from the form given above, and 〈ψ4

y〉
is defined by

〈
ψ4

y

〉 = 1
σ 3

∫∫∫ t

−∞

ds1

τ0

ds2

τ0

ds3

τ0

∫ t

s3

dr3

τ0
〈α(s1)α(s3)〉〈α(s2)β(r3)〉, (C.15)

where 〈ψ4
y〉 ∼ O(xe , xi ). An explicit form for this quantity will be given in ap-

pendix D. Substitution of the form C.14 into the third term of the expansion
C.12 gives

∞∑
m=0

(iq )1+2m

(2m)!

〈
σ 2m

y φ2
y

〉 = (
iq

〈
φ2

y

〉 + (iq )3〈ψ4
y

〉) ∞∑
m=0

1
m!

(−q 2

2

)m

. (C.16)

Inserting the results of equations C.13 and C.16 into the expansion C.12
gives

〈
eiq (σy(t)−φ2

y(t))〉 = (
1 + (iq )3〈σ 3

y

〉 − iq
〈
φ2

y

〉 − (iq )3〈ψ4
y

〉)
e− 1

2 q 2
, (C.17)

where the fact that 〈σ 2
y 〉 = 1 has been used. Inserting this into the leading

order correction to the distribution,

p1(y) =
∫ ∞

−∞

dq
2π

e−iq y (
(iq )3〈σ 3

y

〉 − iq
〈
φ2

y

〉 − (iq )3〈ψ4
y

〉)
e− 1

2 q 2

=
(〈

φ2
y

〉 d
dy

+ (〈
ψ4

y

〉 − 〈
σ 3

y

〉) d3

dy3

) ∫ ∞

−∞

dq
2π

e−iq ye− 1
2 q 2

= −(〈
φ2

y

〉
y + (〈

ψ4
y

〉 − 〈
σ 3

y

〉)
(y3 − 3y)

) 1√
2π

e−y2/2, (C.18)

yields the perturbatively generated distribution, correct to order xe , xi , with
the following functional form,

p(y) = 1√
2π

(
1 + y

(
µy − S

2!

)
+ y3 S

3!

)
exp

(
− y2

2

)
, (C.19)

where µy is the correction to the mean voltage and S is the skew,

µy = 〈y〉 = − 〈
φ2

y

〉
and S = 〈(y − 〈y〉)3〉 = 6

(〈
σ 3

y

〉 − 〈
ψ4

y

〉)
,

(C.20)

and the equalities hold to first order in the perturbation theory. The first cor-
rection to the mean of y is affected only by the synaptic conductance. How-
ever,there are two components of the skew S = SSN + SCF: a contribution
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SSN = 6〈σ 3
y 〉 from the Poissonian nature of the drive and a contribution

SCF = −6〈ψ4
y〉 from synaptic conductance fluctuations. The functional forms

of µy and S will be evaluated by the quantities 〈φ2
y〉, 〈σ 3

y 〉 and 〈ψ4
y〉 in the

next section.

Appendix D: The Voltage Mean and Skew

At this order in perturbation theory, any of the higher-order cumulants of
the voltage distribution can be expressed in terms of the mean µy and the
skew S,

〈y2m〉 = (2m)!
2mm!

and 〈y2m+1〉 = (2m + 2)!
2m+1(m + 1)!

(
µy + m

3
S

)
, (D.1)

where m = 0, 1, 2 · · · Only the odd correlators are different from the gaussian
approximation at this order.

D.1 Voltage Mean. The first quantity to be evaluated is the correction
to the mean. Because of equation C.20, the integral

〈
φ2

y

〉 = 1
σ

∫ t

−∞

ds
τ0

e− (t−s)
τ0

∫ t

s

dr
τ0

〈α(s)β(r )〉 (D.2)

must be evaluated. These integrals can be performed using the equation set
B.7 and yield for µV = 〈v〉:

µV = −
(

x2
e Ee

τe

(τe + τ0)
+ x2

i Ei
τi

(τi + τ0)

)
. (D.3)

D.2 Voltage Skew: The Poissonian Contribution. Due to equation C.20,
this requires the evaluation of

〈
σ 3

y

〉 =
(

1
σ

)3 ∫∫∫ t

−∞

ds
τ0

ds ′

τ0

ds ′′

τ0
e− (3t−s−s′−s′′ )

τ0 〈α(s)α(s ′)α(s ′′)〉, (D.4)

which can be performed using the result for the third-order correlator given
in equation set B.7. This yields for SSN = 6〈σ 3

y 〉,

SSN = 1
σ 3

(
8E3

e τ 3
e x4

e (g0/ge )
3(τe + 2τ0)(τ0 + 2τe )

+ 8E3
i τ 3

i x4
i (g0/gi )

3(τi + 2τ0)(τ0 + 2τi )

)
. (D.5)
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D.3 Voltage Skew: The Conductance Contribution. This is given by
−6〈ψ4

y〉 and therefore requires the evaluation of the integral given in equa-
tion C.15. After some algebraic effort, the result can be written in the form

SC F = −4x4
e E3

e

σ 3

(
τe

τe +τ0

)2
((

3τ 2
e + 6τeτ0 + 2τ 2

0

)
(τe + 2τ0)(2τe + τ0)

)

− 4x4
i E3

i

σ 3

(
τi

τi +τ0

)2
((

3τ 2
i + 6τiτ0 + 2τ 2

0

)
(τi + 2τ0)(2τi + τ0)

)

− 2x2
e x2

i E3
e Eiτeτi

σ 3(τe +τ0)(τi +τ0)

(
2 + (2τeτi +τ0(τe +τi ))(2τe (τi +τ0) − τiτ0)

(2τe + τ0)(2τi + τ0)(τeτi + τeτ0 + τiτ0)

)

− 2x2
i x2

e E3
i Eeτiτe

σ 3(τi +τ0)(τe +τ0)

(
2 + (2τiτe +τ0(τi +τe ))(2τi (τe +τ0) − τeτ0)

(2τi + τ0)(2τe + τ0)(τiτe + τiτ0 + τeτ0)

)
.

(D.6)

If only one synaptic input type is present or if the average voltage is near the
reversal of inhibition such that Ei = Ei −E0 �0, this result greatly simplifies.
This case is given in equation 4.8 and compared to simulations of the full
model in Figure 2.
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