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Abstract
Realistic neural networks involve the co-existence of stiff, coupled, continuous differential equations
arising from the integrations of individual neurons, with the discrete events with delays used for
modeling synaptic connections. We present here an integration method, the local variable time-step
method (lvardt) that utilizes separate variable step integrators for individual neurons in the network.
Cells which are undergoing excitation tend to have small time-steps and cells which are at rest with
little synaptic input tend to have large time-steps. A synaptic input to a cell causes re-initialization
of only that cell’s integrator without affecting the integration of other cells. We illustrated the use of
lvardt on three models: a worst-case synchronizing mutual-inhibition model, a best-case synfire chain
model, and a more realistic thalamocortical network model.

Introduction
We have previously demonstrated some advantages of the global variable time-step integrators
CVODE and CVODES (Cohen, 1994) over traditional fixed step methods such as Euler,
Runge-Kutta or Crank-Nicholson for simulating single cells. (Hines & Carnevale, 2001) The
major advantage was due to the fact that neuron activity features spikes, requiring short time-
steps, followed by interspike intervals, which allow long time-steps. The associated speed-up
in the single-cell integration realm does not extend to simulation of networks however. A major
reason is that the global time-step is governed by the fastest changing state-variable. In an
active network, some cell is usually firing, requiring a small time-step for the entire network.
Another, related reason, is that synaptic events generally cause a discontinuity in a parameter
or state-variable. This requires a re-initialization as the integrator must start again with a new
initial-condition problem. In a network simulation, this means re-initialization of the entire
network due to a single state variable change in one cell. With re-initialization, the integrator
is working without any past history. Hence the first step can only be first-order accurate and
must be very short.

We demonstrate here that the poor network performance of the global variable time-step
method can be overcome by giving each neuron in the system an independent variable time-
step integrator. Thus, a single cell’s individual integrator uses a large dt when a neuron is
quiescent or changing slowly, even though activity in other neurons in the network may cause
those other integrators to proceed forward with many steps (small dt). When a cell receives a
synaptic event, only that cell’s integrator has to be re-initialized.

The critical problem in the implementation of the local time-step method (lvardt) is to ensure
that when an event arrives at a cell at time te that all the state-variables for the receiving cell
are also at time te. This requires coordinating individual integrators so that one cell does not
get so far ahead that it cannot receive a synaptic signal from another cell.
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To maximally challenge lvardt, we used the mutual-inhibition model, a model which fully
synchronizes. In this case, the expected superiority of multiple integrators is expected to be
negated by the fact that all integrators are doing the same thing at the same time. At the other
extreme we show that synfire chains enjoy a dramatic performance improvement when using
lvardt. We generalize the synfire chain in a simulation of multiple delay-line rings to help
understand the computational complexity of lvardt.

Additionally, we demonstrate the performance improvement obtained using lvardt on a more
biologically detailed thalamocortical network.

Methods
The techniques and simulations described here are implemented in the NEURON simulator
(Neuron web site). The simulator provides several global time-step integration schemes. For
global fixed step methods (Hines, 1984; Hines and Carnevale, 1997) one can select either a
first order backward euler integration scheme that is numerically stable for all reasonable neural
models or the second order Crank-Nicholson method. There are two global variable step
methods, both part of the Livermore SUNDIALS package, CVODES and IDA. (SUNDIALS
web site; Hindmarsh & Serban, 2002) The current implementation of lvardt uses CVODES
which solves ordinary differential equations (ODEs) of the form

(1)

CVODES, like many other variable step integrators, has an important property for the present
usage. It allows rapid interpolation within the interval of the just-executed time-step.

Using a fully implicit fixed step method, accuracy is proportional to dt. With the variable step
method, an absolute error tolerance (atol) is used to bound the error. In Neuron, absolute error
tolerance is used in preference to proportionate error in order to avoid infinitesimal error
tolerance near zero for state-variables, notably voltage, that approach or pass zero.

We replicated a fully-connected homogeneous inhibitory interneuron network that shows rapid
synchronization through mutual inhibition. (Wang & Buzsaki, 1996) As a shorthand, we will
call this the mutual-inhibition model. Variations on this model have been widely studied.(Traub
et al., 1999) The basic simulation used parameters identical to those in the original paper.
(Wang & Buzsaki, 1996) Porting this simulation to lvardt required minor alterations detailed
in the results. We replicated the single cell model from the network, demonstrating a current-
frequency response curve identical to that reported in the paper.(Wang & Buzsaki, 1996) We
then used both Neuron’s fixed step method and global variable time-step methods to
demonstrate comparable activity in the network simulation (precise activity is dependent on
randomized initial conditions).

Both the original simulation and the lvardt version are available in runnable open-source form
at the ModelDB web site (Hines et al., 2004). We also present a synfire simulation available
as an example in the Neuron simulation package and a thalamocortical simulation based on
published sources.(Bazhenov et al., 1998)

Simulations were run on 2.40 and 2.80 GHz Intel CPUs under Linux and Solaris operating
systems.

Lytton and Hines Page 2

Neural Comput. Author manuscript; available in PMC 2009 July 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Results
The global variable time-step method has advantages in any simulation where periods of
intense simulation activity alternate with periods where state-variables remain relatively
constant for a period of time. In general this situation is more likely to occur during simulation
of a single cell rather than a network. The larger the network simulation, the greater the
likelihood that a neuron somewhere in the network is showing spike activity. Using a global
variable time-step method, this activity slows the entire simulation to tend to that one neuron’s
integration needs. Neurons that are not active will be integrated with an unnecessarily short
time-step.

These considerations suggested the development of the local variable time-step method
(lvardt) to integrate a network piece-meal, providing short time-step integration for active
neurons and long time-step integration for inactive neurons, while maintaining consistent
integration accuracy throughout. Neurons that fire at different times get their state-variables
calculated at different times and, more importantly, different intervals (Fig. 1). Using the global
method (top graph), the two cells have their trajectories calculated at the same times. With
lvardt (bottom graph), integration points are independent. This is most obvious at the beginning
of the simulation, where the cell that fires first (at right on schematic; vertical lines on graph)
has only 2 integration points while the other cell (bottom; crosses) has 12 integration points.
Where the trajectories cross, the first-spike cell integrator is called frequently while the second-
spike cell integrator is using longer dt. At the peak of the first spike, both cells are being updated
frequently since the second-spike cell is coincidentally approaching threshold. At the peak of
the second spike, however, the first-spike cell is on the falling phase of its spike and has far
fewer integration points.

State-variables change quickly near threshold and at the peak of the action potential. At these
times, the integrators use short time-steps to accurately follow the trajectory through state
space. At other times, much larger dt’s can be used to achieve the same accuracy for the more
slowly varying state-variables. Using lvardt, a neuron that is inactive does not waste CPU time.
Overall performance evaluation for this simple simulation demonstrates that the global method
integrates its 8 state-variables (the 4 Hodgkin-Huxley variables m, h, n, V for each cell) 177
times for a total of 1416 state-variable integrations. On the other hand the integrators in the
lvardt example integrate 4 state-variables 138 times (first-spike cell) and 115 times (second-
spike cell) for a total of 4 · (138 + 115) = 1012 state-variable integrations. Thsi suggests the
possibility of a 40% speed-up.

The lvardt method creates a separate CVODES integrator for each of Nc cells in the network.
Although there are many more integrators, each integrator is more compact since it only has
to handle the state-variables belonging to its particular neuron. Whether using one or Nc
integrators, the total number of state-variables remains the same. Although the expected
relative performance gain with lvardt by function-call statistics in Fig. 1 is 40%, there is
constant overhead for each step associated with each integrator (total overhead proportional to
Nc) and overhead required to determine which cell is to be integrated next, proportional to log
(Nc) for each step (total overhead proportional to Nc · log(Nc)). We discuss queue overhead in
the section, “Estimating simulation complexity,” but, except for very large numbers of cells,
it reduces performance only slightly.

Because the system now is being calculated forward in time by multiple, independent
integrators, an integration-coordinator is used to maintain the overall coherence of the
integration. If the various neurons in the network are not connected, as in the case of testing
parameter variation over a set of neurons, such coordination is not needed. However, in a
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network, the integration-coordinator is vital to permit synaptic signals to be communicated at
appropriate times.

Handling events
Handling events with lvardt requires that when an event arrives at a cell all of the state-variables
for that cell are at their appropriate values for that time. This is accomplished with 3 standard
variable-step-integrator operations: single step integration, interpolation, and re-initialization.
Using these operations, we ensure that a) incoming events are always within reach of the
receiving cell’s integrator. b) individual integrators do not move too far beyond the network
as a whole.

The individual integrators maintain state and derivative information on the interval of the most
recent time-step. That is, each neuron’s integrator can access states over an interval between
the beginning ta and the end tb of a time-step:  for the ith neuron. This gives each
individual integrator the ability to provide fast, high-order interpolation to a state at any time
within the interpolation-range defined by the two bounding times. The integration-coordinator

ensures that there is always overlap in these interpolation-ranges: . We define
tb/emin as the time of the earliest event te or least-advanced integration bound tb. To guarantee
interpolation-range overlap, the integration-coordinator either handles the least-time event or
single-steps the least advanced integrator, whichever is earlier. In this way, no integrator’s tb,
and no event, ever falls behind any ta.

Fig. 1 illustrates most of these operations in the context of a sample integration for 6 cells. Note
that an input event normally requires a three step sequence of: 1. interpolation to the event
time, 2. handling the event (or all the outstanding events to the cell with that delivery time),
and 3. re-initializing the integrator. This full three-step sequence is only required for events
that alter the course of the integration. By contrast, an event which only records the value of a
state requires the interpolation step, since the recorded cell’s integration can then continue from
tb rather than from the interpolation point. Similarly, threshold detection does not affect the
integrator. However, it must be noted that threshold detection remains tentative until the
threshold time is reached by tb/emin, because an event received by the cell in the interim may
re-initialize the cell to a time prior to the tentatively calculated threshold time.

Porting the mutual-inhibition model to lvardt
The mutual-inhibition model is an all-inhibitory network with full-connectivity. Each neuron
is a single compartment (point neuron) with spike-generating sodium and potassium voltage-
dependent currents of the Hodgkin-Huxley type. The dynamics of the mutual-inhibition model
permits initially asynchronous firing to coalesce into synchronous firing within a few spikes.
In the original versions of the mutual-inhibition model,(Wang & Buzsaki, 1996) the entire
network is implemented as one large continuous set of linked ODEs. This is done by making
the opening-rate (kC→O in /ms) of the postsynaptic conductance a continuous and continuously
differentiable Boltzmann function of presynaptic voltage:

(2)

This continuous-activation synapse model has the advantage of making the entire simulation
somewhat more tractable analytically. However, the continuous-activation model can be
criticized as being non-biophysical, since it represents postsynaptic conductance as being
activated by somatic presynaptic voltage at all voltage levels.(Destexhe et al., 1994a; Destexhe
et al., 1994b) At rest, this activation is generally infinitesimal and will have no effect on the
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simulation. A more important disadvantage of the continuous-activation synapse model is that
it does not allow explicit definition of axonal and synaptic delays.

In order to implement the mutual-inhibition model using lvardt, we needed to translate the
continuous-activation synapses to event-driven synapses. Equation 2 for the continuous-
activation synapse gives a steeply rising sigmoid. Thus the transmitter release is significant
only in the period in which the presynaptic action potential is above some threshold around 0
mV. Furthermore, since the action potential trajectory in this region is relatively insensitive to
changing synaptic inputs, the transmitter release is well approximated by a threshold triggered
stereotypical pulse of transmitter of duration, Cdur. This latter synapse model has been
extensively used.(Destexhe et al., 1994; Lytton, 1996) Adjusting the event threshold and pulse
duration parameters to least squares best fit the continuous-activation synapse conductance,
Fig. 2, gives synaptic conductance trajectories so similar that simulations with the two kinds
of synapses produce graphically identical results.

Spike time deviations between the event-driven simulation and the original continuous
simulation were minimal: 108± 64 µs (mean ± standard deviation), well below the duration of
an action potential. Improving the fit by, for example, adjusting the maximum kC→O was
unnecessary. For the mutual-inhibition model, event-driven simulations run a bit faster than
the equivalent continuous simulations. This is due to the use of a single generalized synapse
for each cell that accepts all of the connecting input event streams and discontinuously changes
just two state variables when an event arrives. This is orders of magnitude more efficient than
the continuous model where there are about Nc synapses per cell, each with an ODE that
requires an evaluation of equation 2 every time-step. Given that fixed time-step methods remain
the simulation standard, we compared the fixed time-step performance with lvardt for the
mutual-inhibition model (Fig. 3). We found that a fixed time-steps of 0.0025 ms gave results
closely comparable to those of lvardt with absolute error tolerance (atol) of 1 · 10−3 or 1 ·
10−5. In this simulation, firing of all cells is powerfully drawn into the synchronizing attractor,
making the result qualitatively similar for any integration method or tolerance that produced
reasonable spike trajectories for the individual cells. Fig. 3A demonstrates that the lvardt
simulations are relatively slow in the early phase of the simulation where irregular firing
generates high frequency input events in all cells but then become far more efficient once
synchrony sets in. Fig. 3B explains this by showing the time-steps used during the simulations.
The fixed dt methods are represented here by horizontal lines. The lvardt methods produces
time-steps that jump around during the initial presynchrony phase of the simulation and then
settle down to an alternation between large dt (>1 ms with atol=1 · 10−3) in the long intervals
separating the population spikes and extremely short dt during the population spike itself. This
is readily understood by noting the need to calculate not only individual cell spiking during
the period of the population spike but also handle the instantaneous (zero-delay) exchange of
spikes and synaptic responses to these spikes during this same brief period. Profiling of these
simulations demonstrates that lvardt consumes about 12% of its total CPU time performing
these event deliveries and the associated interpolations. This relatively high figure is due to
the fact that spikes that are tentatively triggered in a particular cell may then need to be taken
back as other inputs into that cell arrive and alter the spike time.

When using the global variable time-step method, this species of thrashing behavior sometimes
resulted in severe inefficiencies. Due to the all-to-all connectivity, the near-simultaneous
spiking of 100 neurons places 9900 (n2 − n since no self-connectivity) near-simultaneous events
on the event queue after the occurrence of spikes in all of the cells. Using lvardt these events
are generally handled in sequential order with only occasional need to recalculate threshold
time (Fig. 1C). However, the global variable time-step method attempts to reconcile the mutual
influence of all of these competing events using the single integrator. This led to large computer
time increases (up to 60-fold) in some simulations. It is possible to provide efficient handling
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of such massive event influx under the global method by artificially defining a resolution
interval within which events would be considered to be simultaneous. However, such an ad
hoc event-handling approach would not be desirable for other types of simulations. Instead,
we regard the lvardt as the natural implementation for the event-driven form of the mutual-
inhibition model. We further note that the all-to-all connectivity and near-perfect synchrony
of the mutual-inhibition model represents an extreme simulation situation.

Generalization of mutual-inhibition model using lvardt
The use of the event-driven simulation for mutual-inhibition model provides the desirable side
effect of allowing arbitrary delays to be introduced into the simulation. We have begun
exploring the effects of delays primarily in order to ensure that these would be handled readily
without introducing unexpected errors or inefficiencies. We found that CPU times using
lvardt decreased slightly with the introduction of 2 ms delay (from 1.43 min to 1.07 min). CPU
times were also similar with introduction of inhomogeneity in the cells’ intrinsic frequencies
(1.33 min), introduction of variability in the delays (1.33 min), or variability in both intrinsic
frequency and delay times (1.57 min).

Introduction of brief delay shifted but did not otherwise interfere with synchronization in the
homogeneous case. Introduction of a range of delays (1.9–2.1 ms; uniform distribution) also
did not interfere with synchronization. Further increasing the delay range to 2–5 ms produced
slightly broader population spikes. However activity still synchronized within 4–5 cycles as
before. These manipulations increased lvardt integration efficiency by 10–20%.

With an inhomogeneous population of neurons having different natural firing frequencies, the
population spike broadened considerably, again without interfering significantly with the
number of cycles required to achieve synchrony. Here again there was only a mild reduction
of integration speed, comparable to that seen with randomization of delays.

Use of lvardt with a synfire chain
The synfire chain, introduced by Abeles,(Abeles, 1991; Aviel et al., 2003) is optimal for
application of the lvardt method. In this classical simulation, sets of cells are fired sequentially
due to synaptic connectivity density that is greatest from each set to a follower set. At any one
time, activity is restricted to a small set of cells that are carrying the signal forward, while other
cells in the simulation are quiescent or are firing at lower background rates. Our evaluation of
simulations consisting of 100 single compartment HH cells showed a 20-fold speed-up using
lvardt as compared to fixed dt method with similar accuracies. In general, synfire simulations
can be expected to show speed-ups of one to two orders of magnitude depending on the size
of the chain, background firing rates and forward vs. lateral connectivity densities. Profiling
of these simulations demonstrated that event handling overhead was insignificant.

Use of lvardt in thalamocortical simulation
The highly structured, stereotyped simulations described above were meant to highlight
situations in which lvardt would be particularly useful (synfire chain) or would be likely to
encounter problems (mutual-inhibition model). We also benchmarked lvardt with a more
complex thalamocortical simulation more closely related to activity in the nervous system.
This simulation features four cell types, cortical pyramidal neurons and interneurons,
thalamocortical cells and thalamic reticular neurons.(Bazhenov et al., 1998) The two thalamic
cell types produced bursts with prolonged interburst intervals, a situation particularly
advantageous for the use of the lvardt algorithm.

To preserve accurate spike times out to 150 ms of simulation time, we had to use high accuracy
simulations: an error tolerance (atol) of 1 · 10−6 for the lvardt method and a dt of 1 · 10−4 for
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the fixed time-step method. (The concept of accuracy is somewhat problematic when
considering these complex network simulations, as will be discussed further below.) The results
were striking: 10 hour 20 minute simulation time for fixed dt and 6 minutes 13 seconds for
lvardt, a 100-fold speed-up. Less dramatic results were obtained when comparing to a more
typical fixed dt of 1 · 10−2, comparable in this simulation to the lvardt method with error
tolerance of 1 · 10−3. In this case, the simulations took 2 minutes for lvardt and 5 minutes 53
seconds for fixed dt, a 3-fold speed-up.

As in the original Bazhenov et al. model, several cell parameters were randomized to introduce
variability into the model. In general, added variability would be expected to be advantageous
for lvardt, increasing the likelihood that the integrators would require different time-steps at a
give point in the simulation. In practice, repetitive drive in this simulation dominated dynamics
so that changing the degree of cellular variability made little difference. Similarly, addition of
noisy inputs had little effect in this simulation. In general, addition of strong, high-frequency
noisy inputs would be expected to remove lvardt advantages, requiring interrupts and re-
initialization at the input frequencies. Such an extreme case would also adversely affect
performance of the global variable time-step method. Although the fixed dt method would be
unaffected, it would be inaccurate: all events would be rounded off to the nearest dt, an aliasing
producing false input synchrony. Addressing this by reduction to an appropriately small fixed
dt would again leave the variable time-steps with an advantage.

Estimating simulation complexity
In order to perform detailed benchmarking and complexity evaluation, we needed a hybrid
simulation that would allow us to scale simulation size without altering the simulation pattern.
This was not readily done with the thalamocortical simulation, where scaling to greater
numbers of neurons produced activity spread that depended critically on boundary conditions
and parameter-scaling choices, despite preservation of qualitative activity pattern. We
therefore went back to the synfire chain, reconfiguring it as a set of rings (Fig. 4A) to make it
1. scale well and 2. produce continuous activity. Each neuron in this rings simulation has 10
active compartments with Hodgkin-Huxley sodium, potassium and leak conductances, i.e., 40
states. Increasing the number of neurons in a ring increases the size of the simulation without
increasing the amount of parallel activity: each ring is a delay line in which only one neuron
is active at a given time. An increase in the number of rings increases the amount of activity
occurring simultaneously.

As expected, simulation time for the global and fixed methods depends only on the number of
cells and not on how they are divided into rings. Therefore the “global” and “fixed dt” curves
for different number of rings all overlap in Fig. 4B. The relative location of these curves reflects
the usual choice of time-step=0.025 ms for the fixed method and atol=1 · 10−3 for the global
variable step method.

The lvardt curves indicate an enormous speed advantage when run with a small number of
rings (lower set of dashed curves labeled 1, 2, 4) where only 1, 2 respectively 4 cells will be
active at any given time. As we increase the number of rings, hence increasing the number of
cells simultaneously active, lvardt takes more computation time to simulate a given number
of cells. As the number of simultaneously active cells approaches the total number of cells,
lvardt will be placed at a disadvantage compared to the other integration methods as it wastes
time maintaining the integrator-queue and because of the Nc–fold increase in constant
integrator overhead.

At the left side of each lvardt curve (small number of cells per ring), doubling the number of
rings doubles the number of active cells and approximately doubles simulation time. As the
number of cells per ring rises, simulation time increases only very slightly at first and then rises
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more steeply causing the curves to converge somewhat as the number of cells per ring gets
very large. With these very large rings, the time spent integrating the cell that is firing is
swamped by the time doing maximum time-steps in the large number of quiescent cells.

Evaluation of the lvardt integration in the ring simulation allowed us to develop an empiric
weighting of simulation time which indicates the complexity of the lvardt method:

(3)

Total simulation time (Trun) for the lvardt method will be proportional to number of cells
(Nc) and total model time (tstop). The characteristic inverse dependence on time-step (Δtsmall)
must here be weighted by a θ factor indicating the proportion of neuron-time spent crawling

through spikes at small dt. The proportion of  is also included since inactive cells will
be expected to have a characteristic time-step related to subthreshold synaptic input interval
in the interspike interval. For the fixed step method, Δtbig = Δtsmall. For the global variable step
method, θ is dependent on the proportion of active to inactive in the network as a whole. For
all methods, simulation time will be dependent on the number of state variables s per neuron
and the time Ts required to integrate a single state variable. lvardt has 2 more dependencies:
general overhead time To for handling each integrator, as well as queue handling overhead for
determining which integrator goes next. This latter term scales as Nc · log(Nc) rather than Nc,
reflecting the scaling for a queue sorting algorithm. Profiling demonstrates that integrator-
queue effect on simulation time is minimal (coefficient Tq is relatively small). For 128 rings
of size 160 each, management of the integrator-queue is under 3% of the simulation time while
integration is 94%. When using 1-compartment instead of 10-compartment cells (4 instead of
40 state variables) with this size network, state integration still dominates the calculation with
queue time increasing to only 6% of the simulation time.

In Fig. 1 we depict times for events and integration boundaries as they would appear on a single
queue. In the Neuron implementation, events are maintained on an event-queue while
integrators are maintained on a separate integrator-queue. Only the latter is considered in the
Tq term of Eqn. 3. We did not consider the time for the event-queue in this equation since it is
the same regardless of which of the 3 integration methods is being used.

Discussion
The opposing demands of the continuous and event-triggered aspects of neural simulation
suggest that the problem can be split up. Individual neurons are computationally demanding.
By contrast, connectivity does not require much CPU time, although its representation may be
demanding of memory (up to n2 of neuron number). Thus it is natural to separate the simulation
problem into calculation of the continuous neural potentials and calculation of events and their
effects. Splitting the problem thusly, it is immediately recognized that the computational
demands of each neuron will differ among themselves at any given time. This suggests the use
of the local time-step method.

Event driven simulation
Prior work has demonstrated a variety of methods for efficient handling of event-driven neural
network simulations.(Makino, 2003; Mattia & Del Giudice, 2000; Watts, 1994) However, these
networks have been restricted to use with artificial cells which permit analytic solution or
approximation of cell states based on values at an arbitrary prior time. In such a network, cell
states are calculated at the time of event receipt based on values determined at the prior event.
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In addition to external events (te), the event-queue for an artificial network may also contain
self-events. For example, an artificial cell may use an event to alert itself to the end of its
refractory period, permitting resetting of an internal state flag. Such self-events are typically
of fixed period and can be added effortlessly into the queue.

In an artificial cell network, the simulator maintains a queue of scheduled events that are then
evaluated in order. To handle an event, the simulator updates the states of follower cells and
places on the queue any new events generated by these followers. Since many practical
simulations involve only a small set of event delay times, the need for O(logNc) queue sorting
is avoided and the event-queue can make use of efficient algorithms such as the O(1) algorithm
presented by Mattia and Del Giudice (2000).

Similar to the above, a network in Neuron can be constructed entirely of event-driven artificial
cells. In an artificial cell network without realistic cells, there is no need for integration. In this
setting, lvardt creates no integrators and does not need an integrator-queue, only making use
of the event queue. States for artificial cells are computed analytically upon the arrival of events
and output events are then added to the event queue.

By contrast with the event-queue, the integrator-queue always contains Nc ordered tb events,
where Nc is the number of cells. The tb times are uncorrelated with each other and with any
te times. This variability in event order means that the integrator-queue requires a fully general
algorithm with characteristic log(Nc) complexity per time-step. In Neuron, both the event- and
integrator-queues are based on Jones’s (1986) implementation of the splay-tree algorithm of
Sleator and Tarjan (1983). As we have shown, integrator-queue execution time is negligible
even for simulations on the order of 10000 cells.

Contrasting example simulations
In order to demonstrate the general usefulness of the method, we explored its performance in
several examples. The mutual-inhibition model is relatively unsuited to the use of any variable
time-step method, proceeding to full synchronization within the round-off error for the double
precision representation available. With regard to lvardt, such synchronization is a worst-case
scenario from a performance perspective, since perfect synchrony of identical neurons means
that all integrators are redundantly performing the same calculations at the same time. In
addition, the mutual-inhibition model places increasing demands on event accounting, as the
event-delivery algorithm attempts to reconcile the mutual effects of the n2 − n events arriving
nearly simultaneously. Performance on the mutual-inhibition model simulation can be greatly
improved by providing a window wherein arriving events are considered simultaneous and can
be handled in the order received. We have explored this implementation but did not pursue it
since it is an ad hoc solution to a peculiar simulation with pathologically synchronized
behavior, and since the lvardt method performed adequately despite this handicap.

Moving beyond this artificially handicapped situation, it can readily be seen that the best use
of lvardt will be in larger simulations involving heterogeneous neural populations where
activity bounces from one area to another or spreads across the network. The synfire chain
simulation represents the best-case extreme with only a small subset of neurons being active
at a given time. lvardt can integrate these few, devoting no resources to the many that are done
or await their moment. The ring simulation generalizes the synfire chain to allow the simulation
size and the extent of simultaneous activity to be independently scaled. With a large enough
number of rings, lvardt will be expected to lose its advantage as integrator switching between
simultaneously active cells will dominate.

The more complex thalamocortical simulation was also assessed to demonstrate that the new
method has real virtual-world application. While performance of lvardt on this simulation
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produced excellent results, comparison of simulations run using different integration methods
with different degrees of precision raised questions of the appropriate standard of accuracy for
simulations. In general, network simulations will not converge to a single, correct result since
long runs will invariably yield a near-threshold event which will produce spikes at slightly
different times or not at all, ultimately dependent on round-offs, an example of sensitivity to
initial conditions. From this point onward, the divergence of activity in the single neuron may
spread to alter firing patterns throughout the network. In the case of a synchronizing network
such as the mutual-inhibition model, the strength of the synchronizing attractor will resolve
such deviations. In the general case however, these deviations result in entirely different spike
trains after a certain point, regardless of the degree of accuracy requested. This invariable
variability requires some metric other than strict spike occurrence times to identify firing
pattern similarities and the adequacy of an integration method. (Victor and Purpura, 1996)

Parallel computation
The use of parallel integrators for different neurons naturally raises the issue of porting this
simulation method to a parallel computer. The NEOSIM project (NEOSIM web site) has
developed a “Parallel Discrete Event” sample implementation for the delayed delivery of spike
events from a source cell on one cpu to a target cell on another. This implementation coexists
with Neuron’s lvardt method. High performance requires that there be a significant minimum

spike delay time , between source cell i and target cell j. In this case, our strict integration

assertion property  is relaxed to . The Neuron portion of the NEOSIM +
Neuron implementation merely accepts a request from NEOSIM to integrate a specific cell or
group of cells to a specified stop time consistent with the relaxed assertion. When a Neuron

cell fires at time t it notifies NEOSIM. At this time, no cell has a . Note that in our zero-
delay mutual-inhibition model model, this parallel method would be useless. However, most
network models have a significant minimum delay between different cells and can realize
significant performance gains with the NEOSIM Parallel Discrete Event delivery technique.

Summary
In summary, lvardt offers substantial speed ups for simulations of networks of realistic ion-
channel-based neurons. The advantages will be greatest in situations where some neurons are
quiescent during periods when other portions of the network are active. This would be the case
for simulations involving serial activation of areas, as for example in hippocampus, or
involving cell types with very different firing properties, as for example in a thalamocortical
or basal ganglia simulation. lvardt’s mixture of event-driven and differential equation
simulation also make it ideal for implementation of hybrid networks where artificial cells with
analytically-soluble states are combined with realistic neurons requiring full ODE integration.

As with any computational method, the suitability of lvardt is dependent on the exact problem
to be solved. The individual user will want to benchmark a particular simulation across methods
before deciding on which one to use. A general assessment of suitability can be performed by
considering the factors laid out in equation 3. Our heuristic conclusion is that for medium size
networks in which average synaptic input intervals to a single cell are much greater than a fixed
step dt, the lvardt method will have better performance than the fixed step method.
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Fig. 1.
Voltage trajectories for two cells are shown for the global variable step method (A) and lvardt
(B). dt (interval between marks) varies together at top and separately at bottom. Network is
shown in schematic: stimulator cell (filled circle) fires at time 0 and drives bottom cell weakly
with a delay of 0.1 ms (+’s on graphs) and the right cell strongly with a delay of 1 ms (vertical
lines on graphs). The right cell drives the bottom cell moderately with a delay of 0.1 ms. The
two cells have Hodgkin-Huxley dynamics. The right cell spike threshold is −10 mV and that
second-order correct threshold event is marked with a “-” on the bottom panel. The threshold
event does not necessarily lie on an integration time-step boundary.
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Typical sequence of local integration steps in a 6 cell example. The ta to tb intervals of possible
interpolation are shown as black rectangles. The tb/emin is shown as a vertical dashed line.
A. Integration-coordinator requests integration for lagging cell (# 0 with minimum tb).
Integrator advances by dt (length of hashed rectangle). In that step, we suppose cell 0 crosses
threshold and a threshold event is generated — labeled “trigger” in panel B. This is an event
whose time is tentative since unprocessed synaptic events could still influence this cell. B. Cell
5 has minimum tb and integrates forward. C. The trigger event is at tb/emin. The handling of
this trigger creates 3 events to be delivered to cells 3,4,5 at varying delays (short vertical lines).
We suppose that its delay places the cell-3 input event earlier than any tb. D. Event in cell 3 is
now tb/emin. Cell 3 back-interpolates, the event is handled and cell 3 re-initializes, giving

. Cell 3 will be the next cell to integrate forward.
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Fig. 2.
Comparison between event-triggered (solid) and continuously activated (dashed) synaptic
conductance elicited by a presynaptic action potential. Curves superimpose except for slight
deviations at initiation and peak, demonstrated by 50 fold blow-ups at these locations.
Threshold = −5.7 mV, Cdur = 0.41 ms
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Fig. 3.
Comparison of fixed and variable time-step methods for the mutual-inhibition model. A. CPU
time increases linearly with simulation time for fixed step method (dashed lines for dt=2.5 µs
– upper curve; dt=25 µs – lower) There is a reduction in CPU load at onset of synchrony using
the variable step method (solid lines with absolute error tolerance 1 · 10−5 – upper; 1 · 10−3 –
lower). B. Time-step size as a function of time. Log(dt) is shown for fixed dt (horizontal dashed
lines) and variable dt in one neuron (solid lines).
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Fig. 4.
A. Schematic of a rings simulation using 8 rings of ten neurons. The 10 tightly-coupled
compartments of each neuron have standard Hodgkin-Huxley channels. Activity is passed
around each ring independently. B. Log-log plot of simulation time vs. simulation size.
Simulations range in size from 10 to 20480 neurons (total of 400 to 819200 state variables) in
1 to 128 rings. With global and fixed dt, results for different number of rings overlap. With
lvardt (dashed lines) simulation time increases with increased number of rings (number above
each line). Asterisk shows the simulation represented in A with with dashed vertical line
indicating run time with fixed and global methods. Times are on a Pentium CPU running at 3
GHz.
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