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Abstract

Minimizing bounds of leave-one-out (loo) errors is an important and efficient ap-

proach for support vector machine (SVM) model selection. Past research focuses on

their use for classification but not regression. In this article, we derive various loo

bounds for support vector regression (SVR) and discuss the difference from those for

classification. Experiments demonstrate that the proposed bounds are competitive

with Bayesian SVR for parameter selection. We also discuss the differentiability of

loo bounds.

1 Introduction

Recently, support vector machines (Boser, Guyon, and Vapnik 1992; Cortes and

Vapnik 1995) have been a promising tool for classification and regression. Its success

depends on the tuning of several parameters which affect the generalization error.

A popular approach is to approximate the error by a bound that is a function of

parameters. Then, we search for parameters so that this bound is minimized. Past

efforts focus on such bounds for classification, and the aim of this paper is to derive

bounds for regression.

We first briefly introduce support vector regression (SVR). Given training vectors

xi ∈ Rn, i = 1, . . . , l, and a vector y ∈ Rl as their target values, SVR solves

min
w,b,ξ,ξ∗

1

2
wTw +

C

2

l
∑

i=1

ξ2
i +

C

2

l
∑

i=1

(ξ∗i )
2 (1.1)

subject to −ε − ξ∗i ≤ wTφ(xi) + b − yi ≤ ε + ξi, i = 1, . . . , l.

Data are mapped to a higher dimensional space by the function φ and an ε-insensitive

loss function is used. We refer to this form as L2-SVR as a two-norm penalty term
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ξ2
i +(ξ∗i )

2 is used. As w may be a huge vector variable after introducing the mapping

function φ, practically we solve the dual problem:

min
α,α∗

1

2
(α − α∗)T K̃(α − α∗)

+ε
l
∑

i=1

(αi + α∗
i ) +

l
∑

i=1

yi(αi − α∗
i ) (1.2)

subject to
l
∑

i=1

(αi − α∗
i ) = 0, 0 ≤ αi, α

∗
i , i = 1, . . . , l,

where K(xi,xj) = φ(xi)
T φ(xj) is the kernel function. K̃ = K + I/C and I is the

identity matrix. For optimal w and (α, α∗), the primal-dual relationship shows

w =

l
∑

i=1

(α∗
i − αi)φ(xi),

so the approximate function is

f(x) = wT φ(x) + b (1.3)

= −
l
∑

i=1

K(x,xi)(αi − α∗
i ) + b.

More general information about SVR can be found in the tutorial by Smola and

Schölkopf (2004).

One difficulty over classification for parameter selection is that SVR possesses

an additional parameter ε. Therefore, the search space of parameters is bigger than

that for classification. Some work have tried to address SVR parameter selection. In

(Momma and Bennett 2002), the authors perform model section by pattern search,

so the number of parameters checked is smaller than that by a full grid search. In

(Kwok 2001) and (Smola, Murata, Schölkopf, and Müller 1998), the authors analyze

the behavior of ε and conclude that the optimal ε scales linearly with the input noise

of the training data. However, this property can be applied only when the noise is

known. Gao, Gunn, Harris, and Brown (2002) derive a Bayesian framework for SVR

which leads to minimize a function of parameters. However, its performance is not

very good compared to a full grid search (Lin and Weng 2004). An improvement is in

(Chu, Keerthi, and Ong 2003), which modified the standard SVR formulation. This

improved Bayesian SVR will be compared to our approach in this article.

This paper is organized as follows. Section 2 briefly reviews loo bounds for support

vector classification. We derive various loo bounds for SVR in Section 3. Implemen-
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tation issues are in Section 4 and experiments are in Section 5. Conclusions are in

Section 6.

2 Leave-one-out Bounds for Classification: a Re-

view

Given training vectors xi ∈ Rn, i = 1, . . . , l, and a vector y ∈ Rl such that yi ∈
{1,−1}, an SVM formulation for two-class classification is:

min
w,b,ξ

1

2
wTw +

C

2

l
∑

i=1

ξ2
i (2.1)

subject to yi(w
Tφ(xi) + b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, . . . , l.

Next, we briefly review two loo bounds.

2.1 Radius Margin (RM) Bound for Classification

By defining

w̃ ≡
[

w√
Cξ

]

, (2.2)

Vapnik and Chapelle (2000) have shown that the following radius margin (RM) bound

holds:

loo ≤ 4R̃2‖w̃‖2 = 4R̃2eT α, (2.3)

where loo is the number of loo errors and e is a vector of all ones. In (2.3), α is the

solution of the following dual problem:

max
α

eT α − 1

2
αT (Q +

I

C
)α

subject to 0 ≤ αi, i = 1, . . . , l, (2.4)

yT α = 0,

where Qij = yiyjK(xi,xj). At optimum, ‖w̃‖2 = eT α. Define

φ̃(xi) ≡
[

φ(xi)
ei√
C

]

,

where ei is a zero vector of length l except the ith component is one. Then R̃ in (2.3)

is the radius of the smallest sphere containing all φ̃(xi), i = 1, . . . , l.

The right-hand side of (2.3) is a function of parameters, which will then be mini-

mized for parameter selection.
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2.2 Span Bound for Classification

Span bound, another loo bound proposed in (Vapnik and Chapelle 2000), is tighter

than the RM bound. Define S2
t as the optimal objective value of following problem:

min
λ

‖φ̃(xt) −
∑

i∈F\{t} λiφ̃(xi)‖2 (2.5)

subject to
∑

i∈F\{t} λi = 1,

where F = {i | αi > 0} is the index set of free components of an optimal α of (2.4).

Under the assumption that the set of support vectors remains the same during the

leave-one-out procedure, the span bound is:

l
∑

t=1

αtS
2
t . (2.6)

(2.5) indicates that St is smaller than 2R̃, the diameter of the smallest sphere con-

taining all φ̃(xi). Thus, (2.6) is tighter than (2.3).

Unfortunately, S2
t is not a continuous function (Chapelle, Vapnik, Bousquet, and

Mukherjee 2002), so a modified span bound is proposed:

l
∑

t=1

αtS̃
2
t , (2.7)

where S̃2
t is the optimal objective value of

min
λ

‖φ̃(xt) −
∑

i∈F\{t} λiφ̃(xi)‖2 + η
∑

i∈F\{t} λ2
i

1
αi

(2.8)

subject to
∑

i∈F\{t} λi = 1.

η is a positive parameter that controls the smoothness of the bound. From (2.5) and

(2.8), S2
t ≤ S̃2

t , so (2.7) is also an loo bound. Define D as an l × l diagonal matrix

where Dii = η/αi and Dij = 0 for i 6= j. Define a new kernel matrix K̃ with

K̃(xi,xj) = φ̃(xi)
T φ̃(xj).

We let

D̃ =

[

DFF 0F
0T
F 0

]

and M =

[

K̃FF eF
eT
F 0

]

, (2.9)

where K̃FF is the sub-matrix of K̃ corresponding to free support vectors and eF (0F)

is a vector of |F| ones (zeros). By defining

M̃ = M + D̃, (2.10)
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Chapelle, Vapnik, Bousquet, and Mukherjee (2002) showed that

S̃2
t = K̃(xt,xt) − hT (M̃ t)−1h =

1

(M̃−1)tt

− D̃tt, (2.11)

where M̃ t is the sub-matrix of M̃ with the tth column and row removed and h is the

tth column of M̃ excluding M̃tt.

Note that Chapelle, Vapnik, Bousquet, and Mukherjee (2002) did not give a formal

proof on the continuity of (2.7). We address this issue in Section 4.1.

3 Leave-one-out Bounds for Regression

First, the Karash-Kunh-Tucker (KKT) optimality condition of (1.2) is listed here for

further analysis: A vector α is optimal for (1.2) if and only if it satisfies constraints

of (1.2) and there is a scalar b such that

−(K̃(α − α∗))i + b = yi + ε, if αi > 0,

−(K̃(α − α∗))i + b = yi − ε, if α∗
i > 0, (3.1)

yi − ε ≤ −(K̃(α − α∗))i + b ≤ yi + ε, if αi = α∗
i = 0,

where (K̃(α − α∗))i is the ith element of K̃(α − α∗). From (3.1), αiα
∗
i = 0 when

the KKT condition holds. General discussion about KKT conditions can be seen in

optimization books (e.g., (Bazaraa, Sherali, and Shetty 1993)).

3.1 Radius Margin Bound for Regression

To study the loo error for SVR, we introduce the leave-one-out problem without the

tth data:

min
wt,bt,ξt,ξt∗

1

2
(wt)T (wt) +

C

2

∑

i6=t

(ξt
i)

2 +
C

2

∑

i6=t

(ξt∗
i )2

subject to −ε − ξt∗
i ≤ (wt)T φ(xi) + bt − yi ≤ ε + ξt

i , (3.2)

i = 1, . . . , t − 1, t + 1, . . . , l.

Though ξt and ξt∗ are vectors with l − 1 elements, we define ξt
t = ξt∗

t = 0 to make

them have l elements. The approximate function of (3.2) is

f t(x) = (wt)T φ(x) + bt,
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so the loo error for SVR is defined as

loo ≡
l
∑

t=1

|f t(xt) − yt|. (3.3)

The loo error is well defined if the approximation function is unique. Note that though

w (and wt) is unique due to the strictly convex term wTw (and (wt)Twt), multiple

b (or bt) is possible (see, for example, the discussion in (Lin 2001a)). Therefore, we

make the following assumption:

Assumption 1 (1.2) and the dual problem of (3.2) all have free support vectors.

We say a dual SVR has free support vectors if (α, α∗) is optimal and there are some

i such that αi > 0 or α∗
i > 0 (i.e., αi + α∗

i > 0 as αiα
∗
i = 0). Under this assumption,

(1.3) and (3.1) imply wT φ(xi) + b = yi + ε if αi > 0 (or = yi − ε if α∗
i > 0). As

the optimal w is unique, so is b. Similarly, bt is unique as well. We then introduce a

useful lemma:

Lemma 1 Under Assumption 1,

1. If αt > 0, f t(xt) ≥ yt.

2. If α∗
t > 0, f t(xt) ≤ yt.

The proof is in Appendix A. If αt > 0, the KKT condition (3.1) implies that f(xt) is

also larger or equal to yt. Thus, this lemma reveals the relative position of f t(xt) to

f(xt) and yt.

The next lemma gives an error bound on each individual leave-one-out test.

Lemma 2 Under Assumption 1,

1. If αt = α∗
t = 0, |f t(xt) − yt| = |f(xt) − yt| ≤ ε.

2. If αt > 0, f t(xt) − yt ≤ 4R̃2αt + ε.

3. If α∗
t > 0, yt − f t(xt) ≤ 4R̃2α∗

t + ε.

The proof is in Appendix B. Then, when αt > 0, |f t(xt) − yt| = f t(xt) − yt from

Lemma 1. It follows |f t(xt) − yt| ≤ 4R̃2αt + ε from Lemma 2. After extending this

argument to the cases of α∗
t > 0 and αt = α∗

t = 0, we have

6



Theorem 1 Under Assumption 1, the leave-one-out error (3.3) is bounded by

4R̃2eT (α + α∗) + lε. (3.4)

We discuss the difference on proving bounds for classification and regression. In

classification, the RM bound (2.3) is from the following derivation: If the tth training

data is wrongly classified during the loo procedure, then

1 ≤ 4αtR̃
2, (3.5)

where αt is the tth element of the optimal solution of (2.4). If the data is correctly

classified, the loo error is zero and still smaller than 4αtR̃
2. Therefore, 4R̃2eT α is

larger than the number of loo errors. On the other hand, since there is no “wrongly

classified” data in regression, we use Lemma 2 instead of (3.5) and Lemma 1 is

required.

3.2 Span Bound for L2-SVR

Similar to the above discussion, we can have the span bound for L2-SVR:

Theorem 2 Under the same assumptions of Theorem 1 and the assumption that the

set of support vectors remains the same during the loo procedure, the loo error of

L2-SVR is bounded by
l
∑

t=1

(αt + α∗
t )S

2
t + lε, (3.6)

where S2
t is the optimal objective value of (2.5) with F replaced by {i | αi + α∗

i > 0}.

The proof is in Appendix C. The same as the case for classification, (3.6) may not

be continuous, so we propose a similar modification like (2.7):

l
∑

t=1

(αt + α∗
t )S̃

2
t + lε. (3.7)

S̃2
t is the optimal objective solution of

min
λ

‖φ̃(xt) −
∑

i∈F\{t} λiφ̃(xi)‖2 + η
∑

i∈F\{t} λ2
i

1
(αi+α∗

i
)

(3.8)

subject to
∑

i∈F\{t} λi = 1,

where η is a positive parameter and F = {i | αi + α∗
i > 0}. The calculation of S̃2

t is

the same as (2.11).
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3.3 LOO Bounds for L1-SVR

L1-SVR is another commonly used form for regression. It considers the following

objective function

min
w,b,ξ,ξ∗

1

2
wTw + C

l
∑

i=1

ξi + C
l
∑

i=1

ξ∗i (3.9)

under the constraints of (1.1) and nonnegative constraints on ξ, ξ∗: ξi ≥ 0, ξ∗i ≥ 0, i =

1, . . . , l. The name “L1” comes from the linear loss function. The dual problem is

min
α,α∗

1

2
(α − α∗)T K(α − α∗) + ε

l
∑

i=1

(αi + α∗
i ) +

l
∑

i=1

yi(αi − α∗
i ) (3.10)

subject to
l
∑

i=1

(αi − α∗
i ) = 0, 0 ≤ αi, α

∗
i ≤ C, i = 1, . . . , l,

Two main differences between (1.2) and (3.10) are that K̃ is replaced by K and αi, α
∗
i

are upper-bounded by C. To derive loo bounds, we still require Assumption 1. With

some modifications in the proof (details in Appendix D.1), Lemma 1 still holds. For

Lemma 2, results are different as now αi, α
∗
t ≤ C and ξt plays a role:

Lemma 3

1. If αt = α∗
t = 0, |f t(xt) − yt| = |f(xt) − yt| ≤ ε.

2. If αt > 0, f t(xt) − yt ≤ 4R2αt + ξt + ξ∗t + ε.

3. If α∗
t > 0, yt − f t(xt) ≤ 4R2α∗

t + ξt + ξ∗t + ε.

The proof is in Appendix D.2. Note that R is now the radius of the smallest sphere

containing all φ(xi), i = 1, . . . , l. Using Lemmas 1 and 3, the bound is

4R2eT (α + α∗) + eT (ξ + ξ∗) + lε.

Regarding the span bound, the proof for Theorem 2 still holds. However, S2
t is

redefined as the optimal objective value of the following problem:

min
λ

‖φ(xt) −
∑

i∈F\{t} λiφ(xi)‖2 (3.11)

subject to
∑

i∈F\{t} λi = 1,

where F = {i | 0 < αi + α∗
i < C}. Then an loo bound is

l
∑

t=1

(αt + α∗
t )S

2
t +

l
∑

t=1

(ξt + ξ∗t ) + lε. (3.12)
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4 Implementation Issues

In the rest of this paper, we consider only loo bounds using L2-SVR.

4.1 Continuity and Differentiability

To use the bound, α and α∗ must be well defined functions of parameters. That is,

we need the uniqueness of the optimal dual solution. As K̃ contains the term I/C

and hence is positive definite, α and α∗ are unique (Chang and Lin 2002, Lemma 4).

To discuss continuity and differentiability, we make an assumption about the

kernel function:

Assumption 2 The kernel function is differentiable respect to parameters.

For continuity, we have known that the span bound is not continuous, but others

are:

Theorem 3

1. (α, α∗) and R̃2 are continuous, and so is the radius margin bound.

2. The modified span bound (3.7) is continuous.

The proof is in Appendix E. To minimize leave-one-out bounds, differentiability

is important as we may have to calculate the gradient. Unfortunately, loo bounds

for L2-SVR are not differentiable. An example for the radius margin bound is in

Appendix F. This situation is different from classification, where the radius margin

bound for L2-SVM is differentiable (see more discussion in (Chung, Kao, Sun, Wang,

and Lin 2003)). However, we may still use gradient-based methods as gradients exist

almost everywhere.

Theorem 4 Radius margin and modified span bounds are differentiable almost ev-

erywhere. If around a given parameter set, zero and non-zero elements of (α, α∗) are

the same, then bounds are differentiable at this parameter set.

The proof is in Appendix G. The above discussion applies to bounds for classifi-

cation as well. For differentiable points, we calculate gradients in Section 4.2.

4.2 Gradient Calculation

To have the gradient of loo bounds, we need the gradient of α + α∗, R̃2, and S̃2
t .
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4.2.1 Gradient of α + α∗

Define α̂F ≡ α∗
F − αF and recall the definition of M in (2.9). For free support

vectors, KKT optimality conditions (3.1) imply that

M

[

α̂F
b

]

=

[

p
0

]

,

where

pi =

{

yi − ε if α̂i > 0,

yi + ε if α̂i < 0.

We have
∂(αi + α∗

i )

∂θ
= zi

∂α̂i

∂θ
, (4.1)

where

zi =

{

1 if α̂i > 0,

−1 if α̂i < 0.

Except ε, all other parameters relate to M but not p, so for any such parameter θ,

M

[

∂α̂F

∂θ
∂b
∂θ

]

+
∂M

∂θ

[

α̂F
b

]

= 0.

Thus,

[

∂α̂F

∂θ
∂b
∂θ

]

= −M−1

[

∂K̃
∂θ

0F
0T
F 0

] [

α̂F
b

]

= −M−1

[

∂K̃
∂θ

α̂F
0

]

. (4.2)

If θ is ε,
[

∂α̂F

∂ε
∂b
∂ε

]

= M−1

[

∂p

∂ε

0

]

,

and
∂pi

∂ε
=

{

−1 if α̂i > 0,

1 if α̂i < 0.

4.2.2 Gradient of S̃2
t

Now S̃2
t is defined as (2.11) but Dtt = η/(αt + α∗

t ) for t ∈ F . Using (2.11),

∂S2
t

∂θ
= − 1

(M̃−1)2
tt

∂(M̃−1)tt

∂θ
+

η

(αt + α∗
t )

2

∂(αt + α∗
t )

∂θ
.

Note that
∂(M̃−1)tt

∂θ
=

(

∂M̃−1

∂θ

)

tt

=

(

M̃−1 ∂M̃

∂θ
M̃−1

)

tt

, (4.3)
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and ∂(αt + α∗
t )/∂θ can be obtained using (4.1) and (4.2). Furthermore, in (4.3),

∂M̃

∂θ
=

[

∂K̃
∂θ

+ ∂D̃
∂θ

0F
0T
F 0

]

,

where
(

∂D̃

∂θ

)

ii

= − η

(αi + α∗
i )

2

∂(αi + α∗
i )

∂θ
, i ∈ F .

4.2.3 Gradient of R̃2

R̃2 is the optimal object value of

max
β

l
∑

i=1

βiK̃(xi,xi) − βT K̃β (4.4)

subject to 0 ≤ βi, i = 1, . . . , l,

l
∑

i=1

βi = 1.

(see, for example, (Vapnik 1998)). From (Bonnans and Shapiro 1998), it is differen-

tiable and the gradient is

∂R̃2

∂θ
=

l
∑

i=1

βi
∂K̃(xi, xi)

∂θ
− βT ∂K̃

∂θ
β.

5 Experiments

In this section, different parameter selection methods including the proposed bounds

are compared. We consider the same real data used in (Lin and Weng 2004) and

some statistics are in Table 1. To have a reliable comparison, for each data set, we

randomly produce 30 training/testing splits. Each training set consists of 4/5 of the

data and the remaining are for testing. Parameter selection using different methods

are applied on each training file. We then report the average and standard deviation

of 30 mean squared errors (MSE) on predicting test sets. A method with lower MSE

is better.

We compare two proposed bounds with three other parameter selection methods:

1. RM (L2-SVR): the radius margin bound (3.4).

2. MSP (L2-SVR): the modified span bound (3.7).

3. CV (L2-SVR): a grid search of parameters using five-fold cross validation.
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Table 1: Data Statistics: n is the number of features and l is the number of data
instances.

Problem n l
pyrim 27 74
triazines 60 186
mpg 7 392
housing 13 566
add10 10 1,000
cpusmall 12 1,000
spacega 6 1,000
abalone 8 1,000

4. CV (L1-SVR): the same as the previous method but L1-SVR is considered.

5. BSVR: a Bayesian framework which improves the smoothness of the evidence

function using a modified SVR (Chu, Keerthi, and Ong 2003).

All methods except BSVR use the Radial Basis Function (RBF) kernel

K(xi,xj) = e−‖xi−xj‖2/(2σ2), (5.1)

where σ2 is the kernel parameter. BSVR implements an extension of the RBF kernel:

K(xi,xj) = κ0e
−‖xi−xj‖2/(2σ2) + κb, (5.2)

where κ0 and κb are two additional kernel parameters. Both kernels satisfy Assump-

tion 2 on differentiability.

Implementation details and experimental results are in the following subsections.

5.1 Implementations of Various Model Selection Methods

RM and MSP are differentiable almost everywhere, so we implement quasi-Newton,

a gradient-based optimization method, to minimize them. The parameter η in the

modified span bound (2.7) is set to be 0.1. Section 5.3 will discuss the impact of

using different η. Following most earlier work on minimizing loo bounds, we consider

parameters in the log scale: (ln C, lnσ2, ln ε). Thus, if f is the function of parameters,

the gradient is calculated by
∂f

∂ ln θ
= θ

∂f

∂θ
,
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Table 2: Mean and standard deviation of 30 MSEs (using 30 training/testing splits).

RM MSP L2 CV L1 CV BSVR

Problem MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD

pyrim 0.015 0.010 0.007 0.008 0.007 0.007 0.007 0.007 0.007 0.008

triazines 0.042 0.005 0.021 0.006 0.021 0.005 0.023 0.008 0.021 0.007

mpg 8.156 1.598 7.045 1.682 7.122 1.809 7.146 1.924 6.894 1.856

housing 23.14 7.774 9.191 2.733 9.318 2.957 11.26 5.014 10.40 3.950

add10 6.491 1.675 1.945 0.254 1.820 0.182 1.996 0.194 2.298 0.256

cpusmall 34.02 13.33 14.57 4.692 14.73 3.754 15.63 5.344 16.17 5.740

spacega 0.037 0.007 0.013 0.001 0.012 0.001 0.013 0.001 0.014 0.001

abalone 10.69 1.551 5.071 0.678 5.088 0.646 5.247 0.806 5.514 0.912

and formulas in Section 4.2. Suppose θ is the parameter vector to be determined.

The quasi-Newton method is an iterative procedure to minimize f(θ). If k is the

index of the loop, the kth iteration for updating θk to θk+1 is as the following

1. Compute a search direction p = −Hk∇f(θk).

2. Find θk+1 = θk + λp using a line search to ensure sufficient decrease.

3. Obtain Hk+1 by

Hk+1 =

{

(I − stT

tT s
)Hk(I − tsT

tT s
) + ssT

tT s
if tT s > 0,

Hk otherwise,
(5.3)

where

s = θk+1 − θk and t = ∇f(θk+1) −∇f(θk).

Here, Hk serves as the inverse of an approximate Hessian of f and is set to be the

identity matrix in the first iteration. The sufficient decrease by the line search usually

means

f(θk + λp) ≤ f(θk) + σ1λ∇f(θk)Tp, (5.4)

where 0 < σ1 < 1 is a positive constant. We find the largest value λ in a set

{γi | i = 0, 1, . . .} such that (5.4) holds (γ = 1/2 used in this paper). We confine

the search in a fixed region, so each parameter θi is associated with a lower bound

li and upper bound ui. If in the quasi-Newton method, θk
i + λpi is not in [li, ui], it

is projected to the interval. For ln C and ln σ2, we set li = −8 and ui = 8. For ln ε,
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li = −8, but ui = 1. We could not use too large ui as a too large ε may cause all

data to be in the ε-insensitive tube and hence α = α∗ = 0. Then, Assumption 1

does not hold and the loo bound may not be valid. More discussion on the use of

quasi-Newton method is in (Chung, Kao, Sun, Wang, and Lin 2003, Section 5)

Table 3: Average (ln C, lnσ2, ln ε) of 30 runs.

RM MSP L2 CV L1 CV
Problem ln C ln σ2 ln ε ln C ln σ2 ln ε ln C ln σ2 ln ε ln C lnσ2 ln ε
pyrim 4.0 1.0 -2.6 1.0 2.9 -8.0 6.4 3.1 -7.3 2.1 3.4 -6.6
triazines -1.4 -0.6 -1.8 -0.8 3.0 -8.0 3.5 4.4 -7.2 0.6 4.0 -4.7
mpg -0.7 0.4 -1.0 4.7 1.1 -7.1 3.6 0.6 -6.6 5.6 0.4 -1.7
housing -1.5 1.1 -1.0 5.7 1.2 -6.9 6.6 1.6 -6.1 7.5 1.4 -1.7
add10 0.9 4.6 -1.0 8.0 3.3 -8.0 8.0 3.0 -7.8 7.9 2.9 -1.2
cpusmall -1.1 -0.5 -1.0 7.9 1.6 -5.6 7.9 2.4 -7.0 8.0 1.7 -2.1
spacega -6.5 -6.2 -1.7 7.4 3.1 -8.0 7.3 0.0 -6.8 6.0 1.1 -4.6
abalone -8.0 7.0 -1.0 3.7 0.6 -8.0 4.1 0.9 -6.8 6.8 1.2 -2.1

The initial point of the quasi-Newton method is

(ln C, lnσ2, ln ε) = (0, 0,−3).

The minimization procedure stops when

‖∇f(θk)‖ < (1 + f(θk)) × 10−5, or
f(θk−1) − f(θk)

f(θk−1)
< 10−5 (5.5)

happens. Each function (gradient) evaluation involves solving an SVR and is the main

computational bottleneck. We use LIBSVM (Chang and Lin 2001) as the underlying

solver.

For CV, we try 2,312 parameter sets with (ln C, ln γ, ln ε) = [−8,−7, . . . , 8] ×
[−8,−7, . . . , 8] × [−8,−7, . . . ,−1]. Similar to the case of using loo bounds, here we

avoid considering too large ε. The one with the lowest five-fold CV accuracy is used

to train the model for testing.

For BSVR, we directly use the authors’ gradient-based implementation with the

same stopping condition (5.5). Note that their evidence function is not differentiable

either.

5.2 Experimental Results

Table 2 presents mean and standard deviation of 30 MSEs. CV (L1- and L2-SVR),

MSP, and BSVR are similar but RM is worse. In classification, Chapelle, Vapnik,
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Table 4: Computational time (in second) for parameter selection.

RM SP L2 CV L1 CV
pyrim 0.6 0.3 84.3 99.27
triazines 2.5 5.8 310.8 440.0
mpg 10.7 63.0 1536.7 991.59
housing 23.3 159.4 2368.9 1651.5
add10 160.6 957.1 6940.2 5312.7
cpusmall 204.7 931.8 10073.7 6087.0
spacega 53.6 771.9 4246.9 15514.42
abalone 68.0 1030.4 12905.0 7523.3

Table 5: Number of function and gradient evaluations of the quasi-Newton method
(average of 30 runs).

RM MSP
Problem FEV GEV FEV GEV
pyrim 34.7 13.5 32.2 13.5
triazines 29.8 10.4 30.0 13.2
mpg 38.2 5.0 21.6 11.7
housing 40.5 5.0 33.2 13.2
add10 44.0 4.96 27.8 5.4
cpusmall 43.9 5.0 35.6 6.66
spacega 28.6 9.96 30.1 9.93
abalone 19.0 3.0 19.9 10.3

Bousquet, and Mukherjee (2002) showed that radius margin and span bounds perform

similarly. From our experiments on the radius margin bound, parameters are more

sensitive in regression than in classification. One possible reason is that the loo error

for SVR is a continuous but not a discrete measurement.

The good performance of BSVR indicates that its Bayesian evidence function is

accurate, but the use of a more general kernel function may also help. On the other

hand, even though MSP uses only the RBF kernel, it is competitive with BSVR. Note

that as CV is conducted on a discrete set of parameters, sometimes its MSE is slightly

worse than that of MSP or BSVR, which considers parameters in a continuous space.

Table 3 presents the parameters obtained by different approaches. We do not give
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those by BSVR as it considers more than three parameters. Clearly these methods

obtain quite distinct parameters even though they (except RM) give similar testing

errors. This observation indicates that good parameters are in a quite wide region.

In other words, SVM is sensitive to parameters but is not too sensitive. Moreover,

different regions that RM and MSP lead to also cause the two approaches to have

quite different running time. More details are in Table 4 and the discussion below.

To see the performance gain of the bound-based methods, we compare the com-

putational time in Table 4. The experiments were done on a Pentium IV 2.8 GHz

computer using the linux operating system. We did not compare the running time of

BSVR as the code is available only on MS windows. Clearly, using bounds saves a

significant amount of time.

For RM and MSP, the quasi-Newton implementation requires much fewer SVRs

than CV. Table 5 lists the average number of function and gradient evaluations of the

quasi-Newton method. Note that the number of function evaluations is the same as

the number of SVRs solved. From Table 4, MSP is slower than RM though they have

similar numbers of function/gradient evaluations. As they do not land at the same

parameter region, their respective SVR training time is different. In other words,

the individual SVR training time here is related to parameters. Now MSP leads to

a good region with smaller testing errors but training SVRs with parameters in this

region takes more time.

From Table 4, the computational time of CV using L1-and L2-SVR is not close.

As they have different formulas (c.g. C in L1-SVR and C/2 in L2-SVR), we do not

expect them to be very similar.

5.3 Discussion

The smoothing parameter η of the modified span bound was simply set to be 0.1 for

experiments. It is important to check how η affects the performance of the bound.

Figure 1 presents the relation between η and the test error. From (2.8), large η causes

the modified bound to be away from the original one. Thus, the performance is worse

as shown in Figure 1. However, if η is reasonably small, the performance is quite

stable. Therefore, the selection of η is not difficult.

It is also interesting to investigate how tight the proposed bounds are in practice.

Figure 2 compares different bounds and the loo value. We select the best σ2 and ε

from CV and show values of bounds and loo via changing C. Clearly, the span bound

is a good approximation of loo, but RM is not when C is large. This situation has
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Figure 1: Effect of η on testing errors: using the first training/testing split of the
problems add10, mpg, housing, and cpusmall.

happened in classification (Chung, Kao, Sun, Wang, and Lin 2003). The reason is

that St can be much smaller than 2R̃ under some parameters. Recall that R̃ is the

radius of the smallest sphere containing φ̃(xi), i = 1, . . . , l, so R̃ is large if there are

two far away points. However, the span bound finds a combination of xi, i /∈ F\{t},
to be as close to xt.

6 Conclusions

In this article, we derive loo bounds for SVR and discuss their properties. Exper-

iments demonstrate that the proposed bounds are competitive with Bayesian SVR

for parameter selection. A future study is to apply the proposed bounds on feature

selection. We also would like to implement non-smooth optimization techniques as

bounds here are not really differentiable. The implementation considering L1-SVR is

also interesting.

Experiments demonstrate that minimizing the proposed bound is more efficient

than cross validation on a discrete set of parameters. For a model with more than

two parameters, a grid search is time consuming, so a gradient-based method may be

more suitable.
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A Proof of Lemma 1

We consider the first case, αt > 0. Let (wt, bt, ξt, ξt∗) and (w, b, ξ, ξ∗) be the optimal

solutions of (3.2) and (1.1), respectively. Though ξt and ξt∗ are vectors with l − 1

elements, recall that we define ξt
t = ξt∗

t = 0 to make ξt and ξt∗ have l elements.

Note that the only difference between (3.2) and (1.1) is that (1.1) possesses the

following constraint:

−ε − ξ∗t ≤ wT φ(xt) + b − yt ≤ ε + ξt. (A.1)

We then prove the lemma by a contradiction. If the result is wrong, there are αt > 0

and f t(xt) < yt. From the KKT condition (3.1), αt > 0 implies ξt > 0 and f(xt) =

yt + ε + ξt > yt + ε > yt. Then, we have

f(xt) = wTφ(xt) + b > yt > f t(xt) = (wt)T φ(xt) + bt.

Therefore, there is 0 < p < 1 such that

(1 − p)(wT φ(xt) + b) + p((wt)T φ(xt) + bt) = yt. (A.2)

Using the feasibility of the two points,

(ŵ, b̂, ξ̂, ξ̂
∗
) = (1 − p)(w, b, ξ, ξ∗) + p(wt, bt, ξt, ξt∗)

is a new feasible solution of (3.2) without considering the tth element of ξ̂t and ξ̂∗t .

Since the objective function is convex and 0 < p < 1, we have
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1

2
ŵT ŵ +

C

2

∑

i6=t

(ξ̂i)
2 +

C

2

∑

i6=t

(ξ̂∗i )
2

≤ (1 − p)

(

1

2
wTw +

C

2

∑

i6=t

(ξi)
2 +

C

2

∑

i6=t

(ξ∗i )
2

)

+

p

(

1

2
(wt)T (wt) +

C

2

∑

i6=t

(ξt
i)

2 +
C

2

∑

i6=t

(ξt∗
i )2

)

≤ 1

2
wTw +

C

2

∑

i6=t

(ξi)
2 +

C

2

∑

i6=t

(ξ∗i )
2. (A.3)

The last inequality comes from the fact that (wt, bt, ξt, ξt∗) is optimal for (3.2) and if

the constraint (A.1) of (1.1) is not considered, (w, b, ξ, ξ∗) is feasible for (3.2).

In this case, αt > 0, which implies ξt > 0 and ξ∗t = 0 from KKT conditions (3.1).

Since ξt 6= 0, ξ̂t 6= 0 as well. As ξ̂t and ξ̂∗t are not considered for deriving (A.3), we can

redefine ξ̂t = ξ̂∗t = 0 such that (ŵ, b̂, ξ̂, ξ̂
∗
) satisfies (A.1) and thus is also a feasible

solution of (1.1). Then, from (A.3), ξ̂t = 0 < ξt, and ξ̂∗t = ξ∗t = 0, we have

1

2
ŵT ŵ +

C

2

l
∑

i=1

(ξ̂i)
2 +

C

2

l
∑

i=1

(ξ̂∗i )
2

<
1

2
wTw +

C

2

l
∑

i=1

(ξi)
2 +

C

2

l
∑

i=1

(ξ∗i )
2. (A.4)

Therefore, (ŵ, b̂, ξ̂, ξ̂
∗
) is a better solution than (w, b, ξ, ξ∗) of (1.1), a contradiction.

The proof of the other case is similar. 2

B Proof of Lemma 2

For easier description, in this proof we introduce a different representation of SVR

dual:

min
ᾱ

1

2
ᾱT Q̄ᾱ + pT ᾱ (B.1)

subject to zT ᾱ = 0,

ᾱi ≥ 0, i = 1, . . . , 2l,

where

ᾱ =

[

α

α∗

]

,p =

[

εe + y
εe − y

]

, z =

[

−e
e

]

,
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and

Q̄ =

[

K + I/C −K − I/C
−K − I/C K + I/C

]

. (B.2)

We proceed the proof by considering three cases:

1) αt = α∗
t = 0

If αt = α∗
t = 0, then

α1, . . . , αt−1, αt+1, . . . , αl, (B.3)

and

α∗
1, . . . , α

∗
t−1, α

∗
t+1, . . . , α

∗
l , (B.4)

is a feasible and optimal solution of the dual problem of (3.2) because it satisfies the

KKT condition. Since there are free support vectors, b can be uniquely determined

from (3.1) using some nonnegative αi or α∗
i . It follows that b = bt and f(xt) = f t(xt).

From (3.1),

|f t(xt) − yt| = |f(xt) − yt| ≤ ε.

2) αt > 0

In this case, we mainly use the formulation (B.1) to represent L2-SVR with the

optimal solution ᾱ. We also represent the dual of (3.2) by a form similar to (B.1) and

denote ᾱt as any its unique optimal solution. Note that (3.2) has l − 1 constraints,

so ᾱt has 2(l − 1) elements. Here, we define ᾱt
t = ᾱt

t+l = 0 to make ᾱt a vector with

2l elements. The KKT condition of (B.1) can be rewritten as:

(Q̄ᾱ)i + bzi + pi = 0, if ᾱi > 0,

(Q̄ᾱ)i + bzi + pi > 0, if ᾱi = 0.
(B.5)

Next, we follow the procedure of (Vapnik and Chapelle 2000) and (Joachims 2000).

In (B.1), the approximate value of the training vector xt can be written as:

f(xt) = −
2l
∑

i=1

ᾱiQ̄it + b,

which equals f(xt) defined in (1.3). Here, we intend to consider

f ′(xt) = −
∑

i6=t,t+l

ᾱiQ̄it + b (B.6)

as an approximation of f t(xt) since both f ′ and f t do not consider the tth training

vector. However, (B.6) is not applicable since (B.3) and (B.4) is not a feasible solution

of dual of (3.2) when αt > 0. Therefore, we construct γ from ᾱ where γ is feasible

for the problem with the tth data removed from (B.1).
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Define a set F t = {i | ᾱi > 0, i 6= t, t + l}. In order to make γ a feasible solution,

let γ = ᾱ − η, where η satisfies

ηi ≤ ᾱi, i ∈ F t,

ηi = 0, i 6∈ F t, i 6= t, i 6= t + l, (B.7)

ηi = ᾱi, i = t, i = t + l,

and

zT η = 0. (B.8)

For example, we can set all η1, . . . , ηl to zero except ηt = αt. Then, using
∑2l

i=l+1 ᾱi ≥
αt, we can find η which satisfies (B.7) and

2l
∑

i=l+1

ηi = αt. (B.9)

Denote F as the objective function of (B.1). Then,

F (γ) − F (ᾱ) =
1

2
(ᾱ − η)T Q̄(ᾱ − η) + pT (ᾱ − η)−

1

2
(ᾱ)T Q̄(ᾱ) − pT ᾱ

=
1

2
ηT Q̄η − ηT (Q̄ᾱ + p).

(B.10)

From (B.5) and (B.7), for any i ∈ F t∪{t}, (Q̄ᾱ+p)i = −zib and for any i 6∈ F t∪{t},
ηi = 0. Using (B.8), (B.10) is reduced to

F (γ) − F (ᾱ) =
1

2
ηT Q̄η. (B.11)

Similarly, from ᾱt, we construct a vector δ that is a feasible solution of (B.1). Let

F̄ t = {i | ᾱt
i > 0, i 6= t, t + l}. In order to make δ feasible, define δ = ᾱt − µ, where

µ satisfies

µi ≤ ᾱt
i, i ∈ F̄ t,

µi = 0, i 6∈ F̄ t, i 6= t, i 6= t + l, (B.12)

µi = −ᾱi, i = t, i = t + l,

and

zT µ = 0. (B.13)
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The existence of µ easily follows from Assumption 1. With the condition zT ᾱt = 0,

this assumption implies that at least one of ᾱt
l+1, . . . , ᾱ

t
2l is positive. Thus, while ᾱt

t is

increased from zero to ᾱt, we can increase some positive ᾱt
l+1, . . . , ᾱ

t
2l so that zT ᾱt = 0

still holds.

Next, define δ = ᾱt −µ and note that δ is a feasible solution of (1.2). It follows:

F (δ) − F (ᾱt) =
1

2
(ᾱt − µ)T Q̄(ᾱt − µ) + pT (ᾱt − µ)−

1

2
(ᾱt)T Q̄(ᾱt) − pT ᾱt

=
1

2
µT Q̄µ − µT (Q̄ᾱt + p).

(B.14)

From (B.5),

(Q̄ᾱt + p)i = −zib
t, ∀i ∈ F̄ t, (B.15)

where ᾱt and bt are optimal for (3.2) and its dual. By (B.12), (B.13), and (B.15),

µT (Q̄ᾱt + p) = − bt
2l
∑

i6=t,t+l

µizi + µt(Q̄ᾱt + p)t + µt+l(Q̄ᾱt + p)t+l

= − ᾱt(Q̄ᾱt + p + btz)t − ᾱt+l(Q̄ᾱt + p + btz)t+l

=ᾱt(f
t(xt) − yt − ε) + ᾱt+l(yt − f t(xt) − ε).

Thus, (B.14) is simplified to

ᾱt(f
t(xt) − yt − ε) + ᾱt+l(yt − f t(xt) − ε)

=F (ᾱt) − F (δ) +
1

2
µT Q̄µ.

(B.16)

Here we claim that ᾱt+l = 0 when ᾱt > 0 since from (B.5),

αtα
∗
t = ᾱtᾱt+l = 0. (B.17)

Note that F (δ) ≥ F (ᾱ) as ᾱ is the optimal solution of (B.1). Similarly, F (γ) ≥
F (ᾱt). Combining (B.17), (B.16), and (B.11),

ᾱt(f
t(xt) − yt − ε)

= F (ᾱt) − F (δ) +
1

2
µT Q̄µ

≤ F (γ) − F (ᾱ) +
1

2
µT Q̄µ

=
1

2
ηT Q̄η +

1

2
µT Q̄µ.

(B.18)
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Let Bη be the set containing all feasible η. That is, all η satisfy (B.7) and (B.8).

Similarly, Bµ is the set containing all feasible µ. Then,

ᾱt(f
t(xt) − yt − ε) ≤ min

η∈Bη

1

2
ηT Q̄η + min

µ∈Bµ

1

2
µT Q̄µ, (B.19)

since (B.18) is valid for all feasible η and µ.

Recall K̃ = K + I/C and define gi = ηi − ηi+l for any i = 1, . . . , l. From the

definition of (B.1) and (B.2),

ηT Q̄η =

l
∑

i=1

l
∑

j=1

gigjK̃ij = g2
t K̃tt + 2gt

∑

i6=t

giK̃it +
∑

i6=t

∑

j 6=t

gigjK̃ij .

Moreover, we can rewrite

ηT Q̄η = g2
t (K̃tt − 2

∑

i6=t

λiK̃it +
∑

i6=t

∑

j 6=t

λiλjK̃ij), (B.20)

where

λi = −gi

gt

, i = 1, . . . , l. (B.21)

When αt > 0, αt+l = 0 from (B.17). Therefore, gt is not zero since ηt+l = 0 and

gt = ᾱt. From (B.8),
l
∑

i=1,i6=t

λi = 1. (B.22)

Note that

ηiηi+l = 0. (B.23)

from (B.7) and (B.17). Therefore, from K̃ij = φ̃(xi)
T φ̃(xj), and (B.23), so (B.20),

(B.21), and (B.22) imply

min
η∈Bη

ηT Q̄η = g2
t d

2(φ̃(xt), Λt) = ᾱ2
t d

2(φ̃(xt), Λt), (B.24)

where

Λt = {
l
∑

i=1,i6=t

λiφ̃(xi) |
∑

i6=t

λi = 1, λi ≥ − ᾱi

gt

if ᾱi ≥ 0, λi ≤
ᾱi+l

gt

if ᾱi+l ≥ 0},

and d(φ̃(xt), Λt) is the distance between φ̃(xt) and the set Λt in the feature space.

Define a subset of Λt as:

Λ+
t = {

l
∑

i=1,i6=t

λiφ̃(xi) |
∑

i6=t

λi = 1, λi ≥ 0, λi ≥ − ᾱi

gt
if ᾱi ≥ 0, λi ≤

ᾱi+l

gt
if ᾱi+l ≥ 0}.
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Recall that in (B.9), one way to find feasible ᾱ−η is to decrease some free ᾱl+1, . . . , ᾱ2l.

With gt = ηt = ᾱt > 0, this is achieved by using positive λi: ᾱi+l − λigt. Thus, Λ+
t is

nonempty. As Λ+
t is a subset of the convex hull by φ̃(xi), i = 1, . . . , l, i 6= t,

d2(φ̃(xt), Λt) ≤ d2(φ̃(xt), Λ
+
t ) ≤ max

i6=t
‖φ̃(xt) − φ̃(xi)‖2 ≤ 4R̃2. (B.25)

(B.24) then implies

min
η∈Bη

ηT Q̄η ≤ 4ᾱ2
t R̃

2. (B.26)

Similarly,

min
µ∈Bµ

µT Q̄µ ≤ 4ᾱ2
t R̃

2. (B.27)

Combining the above inequalities and (B.19), and canceling out ᾱt, we have

f t(xt) − yt ≤ 4R̃2ᾱt + ε = 4R̃2αt + ε. (B.28)

3) α∗
t > 0

The result can be proved through a similar procedure for the case of αt > 0. 2

C Proof of Theorem 2

Define η̄ = −µ̄ = ᾱ − ᾱt. Under the assumption the set of support vectors remains

the same during the loo procedure, η̄ ∈ Bη and µ̄ ∈ Bµ. Then, (B.18) becomes an

equality:

ᾱt(f
t(xt) − yt − ε) = η̄T Q̄η̄ = min

η∈Bη

ηT Q̄η = ᾱ2
t d

2(φ̃(xt), Λt).

Since η̄ = ᾱ − ᾱt and the sets of support vectors of ᾱ and ᾱt are the same,

d2(φ̃(xt), Λt) = d2(φ̃(xt), Λ
′
t),

where

Λ′
t = {

∑

i6=t,αi+α∗

i
>0

λiφ̃(xi) |
∑

i6=t

λi = 1}.

The reason is that, using the assumption, we do not need to consider the constraints

associated with free support vectors in the definition of Λt. Therefore, it follows that

loo ≤
l
∑

t=1

(αt + α∗
t )S

2
t + lε,

where S2
t is the optimal objective value of (2.5) with F replaced by {i | i 6= t, αi+α∗

i >

0}.

26



D LOO Bounds for L1-SVR

D.1 Modifications in the Proof of Lemma 1

In Lemma 1, αt > 0 implies ξt > 0, which is used for the strict inequality in (A.4).

However, for L1-SVR, ξt may be zero even if αt > 0. To prove the inequality, we

consider (A.3) in which the equality actives only if

1

2
(wt)T (wt) + C

∑

i6=t

ξt
i + C

∑

i6=t

ξt∗
i =

1

2
wTw + C

∑

i6=t

ξi + C
∑

i6=t

ξ∗i .

Therefore, (w, b, ξ, ξ∗) is optimal for (3.2) as well. Using Assumption 1, (w, b) =

(wt, bt), so

f t(xt) = f(xt) ≥ yt

contradicts the assumption that f t(xt) < yt.

D.2 Modifications in the Proof of Lemma 2

The proof for the case of αt = α∗
t = 0 is exactly the same, so we focus on the case of

αt > 0. Similar to the L2 case, we consider a form like (B.1) and ᾱ becomes the dual

variable.

Now F t is redefined as {i | 0 < ᾱi < C, i 6= t, t + l}. We claim that η still exists

so that

0 ≤ ᾱi − ηi ≤ C, i ∈ F t,

ηi = 0, i 6∈ F t, i 6= t, i 6= t + l, (D.1)

ηi = ᾱi, i = t, i = t + l,

and

zT η = 0 (D.2)

are satisfied. In order to decrease ᾱt to zero, one may decrease some free ᾱl+1, . . . , ᾱ2l

so that (B.9) is satisfied. However, for L1-SVR, it is possible that after all free

ᾱl+1, . . . , ᾱ2l are decreased to 0, ᾱt is not zero yet. At this point we must increase

some free ᾱ1, . . . , ᾱl. Since we keep eT ᾱ = 0 and all ᾱl+1, . . . , ᾱ2l have been updated

to zero or remain at C,

ᾱt +
∑

i=1,...,l,i 6=t,
0<ᾱi<C

ᾱi = ∆C, (D.3)
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where ∆ ≥ 1 is an integer. (D.3) implies that one can reduce ᾱt to zero and increase

free ᾱi, i = 1, . . . , l without exceeding the upper bound.

In Appendix B, from (B.10) to (B.11), we use the property that for any i ∈ F t∪{t},
(Q̄ᾱ + p)i = −zibi. Now this equality may not hold when i = t. If ᾱt = C,

(Q̄ᾱ + p)t = −ztbt − ξt,

and ξ∗t = 0, so (B.11) becomes

F (γ) − F (ᾱ) =
1

2
ηT Q̄η + ᾱt(ξt + ξ∗t ). (D.4)

For ᾱt, now F t = {i | 0 < ᾱt
i < C, i 6= t, t + l}. Using Assumption 1, F t 6= ∅. By

a similar argument on the existence of η, there is µ such that

0 ≤ ᾱt
i − µi ≤ C, i ∈ F̄ t,

µi = 0, i 6∈ F̄ t, i 6= t, i 6= t + l, (D.5)

µi = −ᾱi, i = t, i = t + l,

and

zT µ = 0. (D.6)

Thus, (B.16) holds. With (D.4), an inequality similar to (B.19) is

ᾱt(f
t(xt) − yt − ε) ≤ min

η∈Bη

1

2
ηT Q̄η + min

µ∈Bµ

1

2
µT Q̄µ + ᾱt(ξt + ξ∗t ).

We then use the same derivation from (B.20) to (B.27), but in the definition of Λt

and Λ+
t , λi is confined by

0 ≤ ᾱi + λigt ≤ C and 0 ≤ ᾱi+l − λigt ≤ C, i = 1, . . . , l. (D.7)

In the discussion near (D.3), a feasible ᾱ − η can be obtained by decreasing some

free ᾱl+1, . . . , ᾱ2l, an operation which uses positive λi in ᾱi+l − λigt. We may have

to increase some free ᾱ1, . . . , ᾱl as well. This also requires positive λi in ᾱi + λigt.

Therefore, Λ+
t 6= ∅, so (B.26) (and similarly (B.27)) follows.

Finally, (B.28) becomes

f t(xt) − yt ≤ 4R2αt + ξt + ξ∗t + ε.
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E Proof of Theorem 3

We consider the formula (B.1). ᾱ is continuous if for any θ′, limθ→θ′ ᾱ(θ) = ᾱ(θ′).

If this is wrong, there is a convergent sequence {ᾱ(θi)} such that limi→∞{θi} = θ′

but limi→∞ ᾱ(θi) = ᾱ′ 6= ᾱ(θ′). Note that the existence of the convergent sequence

requires that {ᾱ(θi)} are in a compact set. This property has been discussed in (Lin

2001b) for L2-SVM. Since ᾱ(θi) and ᾱ(θ) are both optimal solutions at θi and θ,

respectively,

1

2
ᾱ(θi)

T Q̄(θi)ᾱ(θi) + pT ᾱ(θi) ≤
1

2
ᾱ(θ′)T Q̄(θi)ᾱ(θ′) + pT ᾱ(θ′), and

1

2
ᾱ(θ′)T Q̄(θ′)ᾱ(θ′) + pT ᾱ(θ′) ≤ 1

2
ᾱ(θi)

T Q̄(θi)ᾱ(θi) + pT ᾱ(θi).
(E.1)

With Assumption 2 that all kernel elements are continuous, limi→∞ Q̄(θi) = Q̄(θ′).

Taking the limit of (E.1),

1

2
ᾱ(θ′)T Q̄(θ′)ᾱ(θ′) + pT ᾱ(θ′) =

1

2
(ᾱ′)T Q̄(θ′)ᾱ′ + pT ᾱ′.

Thus, ᾱ′ is an optimal solution, too. Since the optimal solution is unique under θ′,

ᾱ = α(θ′), a contradiction. Therefore, α is continuous.

About R̃2, it is the optimal objective value of (4.4). By the same procedure, β is

continuous, and so is R̃2. Therefore, the radius margin bound 4R̃2eT (α + α∗) + lε is

continuous.

Next, we prove the continuity of the modified span bound. As we have proved

that ᾱ is continuous, it is sufficient to consider S̃2
t only. Define any sequence that

converges to θ′ as {θi}. There are corresponding sequences {ᾱ(θi)} and {S̃2
t (θi)}. If

for any convergent {θi}, {S̃2
t (θi)} converges to S̃2

t (θ
′), then S̃2

t is continuous at θ′.

Thus, the convergence of {S̃2
t (θi)} to S̃2

t (θ
′) is what we are going to show next.

Note that for any ᾱ, we can define two index sets:

F = {i | 0 < ᾱi} and L = {i | ᾱi = 0}. (E.2)

They include the indices of free and lower-bounded elements of ᾱ. Thus, for any ᾱ(θ),

there are associated Fθ and Lθ. Usually we call these sets the face of ᾱ(θ). Later if

we state that the faces of ᾱ(θ1) and ᾱ(θ2) are identical, it means that Fθ1
= Fθ2

and

Lθ1
= Lθ2

.

Because there is only a finite number of possible faces of ᾱ, we can separate {ᾱ(θi)}
into a finite number of subsequences such that all elements of each subsequence have
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the same face. As it suffices to prove that for any such subsequence, {S̃2
t (θi)} converges

to S̃2
t (θ

′), without loss of generality, we assume that {ᾱ(θi)} are all at the same face.

Since it is a convergent sequence and ᾱ(θ) is a continuous function, there is a fixed

(maybe empty) set J ⊂ {1, . . . , l} such that αj(θ) + α∗
j (θ) > 0 for any θ ∈ {θi}, j ∈ J

and

lim
i→∞

αj(θi) + α∗
j (θi) = 0. (E.3)

Now, we calculate the limit of (M̃ t)−1 which was defined in (2.11). We decompose

M̃ t to four blocks

M̃ t =

[

A1 A2

AT
2 A3

]

.

Here, we rearrange M̃ t such that

A1 = K̃JJ + D̃JJ = K̃JJ + DJJ ,

Hence, the first |J | columns and rows of M̃ t correspond to indices satisfying (E.3).

A3 is the sub-matrix of M̃ t without the first |J | columns and rows. We have

[

A1 A2

AT
2 A3

]−1

=

[

A−1
1 (I + A2B

−1AT
2 A−1

1 ) −A−1
1 A2B

−1

−B−1AT
2 A−1

1 B−1

]

, (E.4)

where B = A3 − AT
2 A−1

1 A2. From (E.3), it follows every diagonal element of A1

converges to infinity when {θi} approaches θ′. Therefore, from Lemma 2.3.3 of (Golub

and Van Loan 1996),

lim
i→∞

A1(θi)
−1 = A1(θ

′)−1 = O, (E.5)

where O is a |J | × |J | zero matrix. According to (E.4) and (E.5),

lim
i→∞

M̃ t(θi)
−1 =

[

O O1

OT
1 A3(θ

′)−1

]

,

and

lim
i→∞

h(θi) =

[

hJ(θ′)
h′(θ′)

]

,

where O1 is a |J |×q zero matrix if q is the number of columns of A3. hj(θ
′) and h′(θ′)

are sub-vectors of h(θ′) with the first |J | and the remaining elements, respectively.

Then,

lim
i→∞

S̃2
t (θi) = lim

i→∞
h(θi)

T M̃ t(θi)
−1h(θi) = h′(θ′)T A3(θ

′)−1h′(θ′) = S̃2
t (θ

′).

Therefore, for any {θi} which converges to θ′, {S̃2
t (θi)} converges to S̃2

t (θ
′) so S̃2

t is

continuous at θ′.
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F An Example that eT (α + α∗) of L2-SVR Is Not

Differentiable

Consider an L2-SVR problem with ε = 0.1,

K̃ =





1 + 1
C

0.3 0.6
0.3 1 + 1

C
0.3

0.6 0.3 1 + 1
C



 , (F.1)

and

y =
[

0.4 −0.1 0.9
]T

.

(F.1) can be the kernel matrix when using the RBF kernel. For example, if σ = 1/
√

2,

then

‖x1 − x2‖ =
√

− log 0.3 ≈ 1.0973,

‖x1 − x3‖ =
√

− log 0.6 ≈ 0.7147,

‖x2 − x3‖ =
√

− log 0.3 ≈ 1.0973,

There are x1, x2, and x3 which form a triangle satisfying the above.

Assume δ is a small positive number. If C = 2 + δ, then the optimal solution is

α =
[

5C(C−2)
∆

13C(2C+5)
∆

0
]T

and α∗ =
[

0 0 31C2+55C
∆

]T
,

where

∆ = 6(4C + 5)(2C + 5).

It follows:

lim
C→2+

∂eT (α + α∗)

∂C
=

55

351
.

If C = 2 − δ, then the optimal solution is

α =
[

0 4C
7C+10

0
]T

and α∗ =
[

0 0 4C
7C+10

]T
.

Then,

lim
C→2−

∂eT (α + α∗)

∂C
=

5

36
.

Therefore, eT (α + α∗) of L2-SVR may not be a differentiable function of C.
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G Proof of Theorem 4

We prove these bounds are piecewise differentiable. Such a property implies that the

function is locally Lipschitz continuous and hence differentiable almost everywhere

(Clarke 1983). First we define piece-wise differentiable functions:

Definition 1

1) Ck is a function class in which every function is differentiable k times.

2) A function f : Rn → Rm is called a PCk function (kth piecewise differentiable),

1 ≤ k ≤ ∞, if f is continuous and for every point x ∈ Rn, there exists a neighborhood

W of x and a finite collection of Ck-function f i : W → Rm , i = 1, . . . , N , such that

f(x) ∈ {f1(x), . . . , fN(x)}, ∀x ∈ W.

PC1 functions are also called piecewise differentiable functions. There are some useful

properties about PCk functions.

Theorem 5

1. A function f(x) : V → Rm defined on the open set V ⊂ Rn is piecewise

differentiable if and only if its component functions fi(x) : V → R, i = 1, . . . , m

are also piecewise differentiable.

2. (Ulbrich 2000, Proposition 2.20) The class of PCk-functions is closed under

composition, finite summation, and multiplication.

We then have a lemma to prove that ᾱ(θ) is a piece-wise differentiable function.

Lemma 4 If in Assumption 2, the kernel function is k-times differentiable, ᾱ(θ),

the optimal solution of (B.1), is a PCk function.

Proof. From Definition 1, a function is PCk if, at any point, there is a neighborhood

such that the function in this neighborhood consists of a finite number of k-times

differentiable functions. Below we construct finite k-times differentiable functions, so

ᾱ(θ) is composed of them for any θ.

As ᾱ is an optimal solution of (B.1), its KKT optimality condition (3.1) can be

rewritten as

(Q̄ᾱ)i + pi + zib ≥ 0, if ᾱi = 0,

= 0, if 0 < ᾱi. (G.1)
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Assume ᾱ is obtained under a parameter set θ1 and is at the face F and L defined in

(E.2). We first consider the case where F 6= ∅. The KKT condition of free support

vectors can be written as:

Q̄FFᾱF + Q̄FLᾱL + bzF = −pF . (G.2)

If we combine (G.2) and the linear constraint, zT ᾱ = 0, ᾱF and b are the solution

of the following linear system:
[

Q̄FF zF
zT
F 0

] [

ᾱF
b

]

=

[

−pF
0

]

. (G.3)

As F and L are the face of ᾱ, the above equation uses the fact that αi equals to 0

for every i ∈ L.

From (G.3),
[

ᾱF
b

]

= M−1h, (G.4)

where

M =

[

Q̄FF zF
zT
F 0

]

and h =

[

−pF
0

]

.

Next, we build a function γF (θ) = (M−1h)F which is made by removing the last

component of (G.4). We claim that γF(θ) is a k-times differentiable function since

the matrix M is invertible and both M and h are k-times differentiable functions of

θ. Furthermore, we can construct a k-times differentiable function γ(θ) as follows:

γ(θ) =

[

γF(θ)
0L

]

, (G.5)

where 0L is the vector containing |L| zeros. For the other case where F = ∅, we can

construct γ(θ) = 0L, which is also a k-times differentiable function.

Notice that when θ = θ1, γ(θ1) = ᾱ(θ1). Moreover, for all parameters whose

corresponding optimal solutions are at the same face, α’s are the same as values of

a k-times differentiable function. That is, for any parameter θ2 where ᾱ(θ2) is at the

same face as ᾱ(θ1), γ(θ2) = ᾱ(θ2).

Next, we collect all possible functions like γ(θ), which can cover ᾱ(θ) at any value

of θ. As l is the number of training data, there is a finite number of possible faces:

F i,Li, i = 1, . . . , N, (G.6)

where N ≤ 22l. For each face, we construct a function γi(θ), which, following the

explanation earlier, is a k-times differentiable function.
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Therefore, for any θ′ we have

ᾱ(θ′) ∈ {γ1(θ′), γ2(θ′), . . . , γN(θ′)}.

Since ᾱ(θ) is continuous by Theorem 3, ᾱ(θ) ∈ PCk following from Definition 1. 2

Thus, using Theorem 5, the radius margin bound is a PCk function. Next, we

discuss S̃2
t . Since ᾱ ∈ PCk for every θ′, there exists a neighborhood W of θ′ and a

finite collection of Ck-functions ᾱi, i = 1, . . . , N , such that

ᾱ(θ) ∈ {ᾱ1(θ), . . . , ᾱN(θ)}, ∀θ ∈ W.

For any ᾱi function, we construct a Ck function S̃i by (2.11). Note that the first

item is a Ck function from Assumption 2, and only the second term involves with ᾱ.

Then,

S̃2
t (θ) ∈ {S̃1(θ), . . . , S̃N(θ)}, ∀θ ∈ W.

Since we have shown that S̃2
t is continuous, S̃2

t ∈ PCk. Furthermore, from Theorem

5,
∑l

t=1 αtS̃
2
t is a PCk function.

In the above analysis, if around a given parameter set, all (α, α∗) share the same

face, then the bound is the same as a differentiable function in a neighborhood of this

parameter set. Thus, the bound is differentiable there.
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