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The snowflake plot is a scatter plot that displays relative timings of three
neurons. It has had rather limited use since its introduction by Perkel,
Gerstein, Smith, and Tatton (1975), in part because its triangular coordi-
nates are unfamiliar and its theoretical properties are not well studied.
In this letter, we study certain quantitative properties of this plot: we use
projections to relate the snowflake plot to the cross-correlation histogram
and the spike-triggered joint histogram, study the sampling properties of
the plot for the null case of independent spike trains, study a simulation
of a coincidence detector, and describe the extension of this plot to more
than three neurons.

1 Introduction

The snowflake plot (or joint configuration scatter diagram) of Perkel,
Gerstein, Smith and Tatton (1975) is a scatter plot that displays the relative
timings of firings from three simultaneously recorded neurons. It assumes
that the relationships between the neurons can be fully described by the
differences between their firing times. The plot uses a triangular coordi-
nate system that treats the neurons symmetrically, and it is bounded by a
hexagonal box—hence, its name. A point in the plot corresponds to the three
differences between the firing times of the three neurons.
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Perkel et al. (1975) studied the geometry of the plot and did many sim-
ulations to show the patterns in the snowflake plot under different depen-
dence structures; however, there has been no rigorous theoretical study of
the properties of this plot yet. One possible reason for the limited interest
in the snowflake plot is that it is rather computer intensive; only recently
have computers become powerful enough to allow quick construction of
this plot and to do simulation studies to understand its properties better.

There are also concerns about whether the snowflake plot can be helpful
in analyzing data. One reason is that it can contain artifacts that complicate
interpretations and can make it more difficult to understand and use. Next,
the triangular system used to plot the snowflake is not as familiar as the
Cartesian system, so what patterns one should expect given a certain circuit
of three neurons are not immediately clear. This is especially hard for the
more complex circuits.

Nevertheless, the snowflake plot can be helpful (Perkel et al., 1975) as
a potential screening device for higher-order correlations, which are hard
to detect by other displays. An important example is coincidence detection
(Perkel et al., 1975), in which a neuron fires in response to receiving (nearly)
coincident spike inputs (Abeles, 1982b; see section 5 below). The simplest
circuit that resembles a coincidence detector is a neuron that receives inputs
from two neurons, and the threshold of the receiving neuron is such that
two coincident input spikes suffice to reach threshold. Such a relation of two
synchronous spikes followed (with some small delay) by an output spike
cannot be detected by mere pairwise analysis, for example, using a cross-
correlation histogram (CCH). Instead, methods are required that allow the
study of more than two neurons at a time as provided in the snowflake plot.

How the snowflake plot works for excitatory or inhibitory connections
has been studied using simulations (Perkel et al., 1975). If neuron A excites
neuron B and if a third neuron C is independent of the others, then there
will be an excess of cases when a spike from neuron A is followed by a spike
from neuron B. This will be reflected in the snowflake plot as a narrow
band of increased density of the points. Note, however, that for each pair of
spikes from neurons A and B, we need a spike (although unrelated) from
neuron C to draw the point in the snowflake. Thus, we need neuron C to fire
persistently to bring out the relationship between Aand B in the snowflake
plot (Perkel et al., 1975). For this reason, the authors suggest the use of the
snowflake plot in addition to the CCH and autocorrelation histogram.

A related development is the joint peristimulus time scatter diagram
of Gerstein and Perkel (1969, 1972) and joint peristimulus time histogram
(JPSTH) of Aertsen, Gerstein, Habib, and Palm (1989) for two neurons that
are subject to repeated stimulation. The same concept is used by Prut et al.
(1998) for detecting synchrony among three neurons. Here the trigger event
is a spike emitted by a neuron instead of a stimulus. Prut et al. (1998) call
the resulting matrix of raw counts a threefold correlation matrix, or the
counts matrix instead of JPSTH. Since the term counts matrix is a rather
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generic name and since it is a histogram, we will call it the spike-triggered
joint histogram (STJH) instead. Finally, in their work, the three neurons are
treated asymmetrically, with one neuron playing the role of a trigger and the
other two neurons being the reference units. In that case, if two neurons fire
after the third neuron fires and if we do not have prior knowledge about
the connections between neurons, we may need three separate STJHs to
detect the dependence structure. While this is not difficult for just three
neurons, it can become cumbersome when studying many more neurons in
groups of three.

Many of the ideas that we explore in this article about projection to ex-
plain the relationship between different plots and extensions to more than
three neurons were qualitatively stated in earlier work (Perkel et al., 1975;
Gerstein & Perkel, 1972; Kristan & Gerstein, 1970; Abeles & Gerstein, 1988).
This article provides quantitative results that put the early qualitative work
on a rigorous mathematical basis. After reviewing some basics in section 2,
we show in section 3 that the CCH and the snowflake plot are results of
orthogonal projections—the CCH from two- to one-dimensional space and
the snowflake plot from three- to two-dimensional space. In section 4, we
show that the snowflake plot is a generalization of the STJH in the sense that
it treats neurons symmetrically because the STJH can be viewed as a result
of a nonorthogonal projection from three- to two-dimensional space; finally,
we show that the snowflake is the union of all three projections (STJHs of
three neurons) so it gives us the same information as the three STJHs at
once. Hence, the snowflake plot can bring simplification in computations.
In section 5, we will study in detail the example of a simulated coincidence
detector convergent circuit using the snowflake. In section 6, we derive an-
alytically the distribution of the points on the snowflake plot under the null
assumption that the neurons fire independently from three homogeneous
Poisson processes, and we discuss its properties. In section 7 we discuss the
geometry of a higher-dimensional version of the snowflake plot for four or
more neurons and end with a discussion in section 8.

2 Snowflake Plot Basics

We begin with a brief account of the geometry and construction of the
snowflake plot; this material is extracted from Perkel et al. (1975). Let A,
B, and C denote the times of spikes from three neurons. Since (B − A) +
(C − B) + (A− C) = 0, we can plot the point (A, B, C) on a plane using a
triangular coordinate system (see point P in Figure 1A). The Cartesian co-
ordinates of the plotted point P are

(
2C − (A+ B)√

3
, B − A

)
. (2.1)
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Figure 1: Geometry of the snowflake plot. (A) The triangular coordinate system
for the snowflake plot. (B) The coincidence lines (solid) divide the hexagon into
six triangles. Each triangle corresponds to a particular set of timing sequences:
the top triangle contains sequences ACB, then to the right ABC, BAC, BCA, CBA,
and CAB.

Figure 1B shows again the axis of the triangular system. The lines that
are perpendicular to them (solid) are called coincidence lines; for example,
at the B − A = 0 line, neurons A and B fire at the same time.

The solid lines (see Figure 1B) divide the hexagon into six sectors. Each
sector of the snowflake is characterized by the order of firings; for example,
ABC refers to the sector representing triples in which A precedes B, which in
turn precedes C . Furthermore, each point on the snowflake plot corresponds
to a precise sequence of the three neurons A, B, and C (see Figure 1B) defined
by the order of the three neurons and two time differences between them.

Following Perkel et al. (1975), we often consider only those triples
(A, B, C) that satisfy

|B − A| < L , |C − B| < L , and |A− C | < L , (2.2)

for some time interval, or span L , that is shorter than the recording period τ .
The plot of such points will again form a snowflake; that is, they will all lie
inside a smaller hexagon centered at the origin. Such a restriction is useful
when the dependence among the neurons that is of interest is over small
time intervals.

3 Snowflake Plot Generalizes the CCH

Aertsen et al. (1989) show the correspondence between the CCH and JPSTH.
The CCH can be viewed as an orthogonal projection from the
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Figure 2: Orthogonal projection of points of the snowflake plot onto the vertical
axis. (A) P = ( 1√

3
(2C − B − A), B − A), P ′ = B − A. (B) The snowflake plot and

the histogram of all projected points. Neuron A fires at times 1, 5, 9; B fires at 2,
4, 7, 9; C fires at 1, 2, 5, 9. The total time is τ = 10. (C) The raw CCH of A and
B. The histogram from B and the raw CCH have the same shape; they are equal
up to a constant multiple, nC = 4, which is the number of times neuron C fired.

two-dimensional space spanned by times when neurons Aand B fired onto
the one-dimensional space spanned by the vector (−1, 1)—that is, onto the
hyperplane x + y = 0—up to a scale constant 1√

2
. The projection is simply

B − A = (−1, 1)
(

A
B

)
.

Similarly, the snowflake plot can be considered an orthogonal projection
from the cube [0, τ ]3 onto the plane x + y + z = 0:

( 1√
3
(2C − B − A)

B − A

)
=

(− 1√
3

− 1√
3

2√
3

−1 1 0

) 
 A

B
C


 .

Thus, the snowflake plot is a generalization of the CCH, from two to
three neurons. This approach suggests that if we can find the joint spike
density function in the cube, we can—at least in principle—then find the
induced density of the projection on any hyperplane, for example, in the
snowflake plot; in section 6, we use this approach to study the null case of
three independent Poisson spike trains.

Moreover, we can project the snowflake plot onto, for example, the verti-
cal axis (see Figure 2A) and create a histogram of the points in the projection.
Then the number of points occurring in the interval (t1, t2] is equal to the
number of points in the cross-correlation histogram multiplied by nC , the
number of times neuron C fired (which is independent on t1, t2). The reason
is that each possible difference (B − A) is represented by nC points in the
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Figure 3: The projection when L = 5 < τ = 10. Here we are interested only in
the points within the span L = 5, which is illustrated by the hexagon. All points
within the hexagon define the snowflake plot. All other points should not be
plotted; however, for illustrative purposes, we draw them here. Neuron A fires
at times 1, 5, 9; B fires at 2, 4, 7, 9; C fires at 1, 2, 5, 9; the total time is τ = 10. This
histogram is not equal to the raw CCH in Figure 2C.

snowflake plot. For illustration, see Figure 2B, where neuron C fired four
times: the histogram of the projection is hence equal to raw counts CCH (of
A and B) multiplied by 4.

However, the details are different when we work with the plot of points
within the span L , with L < τ . Consider again the projection of the points
onto the vertical axes and a histogram of the points in that projection. Then
the projection of the snowflake plot is not equal to the CCH (up to a constant
multiple) (see Figure 3). The reason is that each difference (B − A) is plotted
in this smaller snowflake only if there is a close spike (within span L) from
the third neuron C .

4 Three STJHs Embedded in the Snowflake Plot

Consider now the case of three neurons, where one of the three plays the
role of a stimulus. Prut et al. (1998) used the idea of JPSTH for detecting
the synchrony among three neurons. Here we will show that the snowflake
plot can be divided into three parts, each corresponding to one STJH. This
suggests that the plot can be considered as a generalization of the STJH by
treating the three neurons symmetrically. This can be beneficial if we do not
have prior information about which neuron is a trigger, for example, when
many neurons are recorded and examined in groups of three.

The analysis for spatiotemporal patterns by Prut et al. (1998) was moti-
vated by predictions of the synfire chain model (Abeles, 1982a, 1991): “In
such a model, every time the chain is activated, the participating cells will
fire in a sequential manner. The temporal spacing between the spikes will
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Figure 4: Precise firing sequence (PFS). Here, S1, S2, and S3 are three different
neurons.

Figure 5: The geometry in STJH where neuron A is a trigger. For P, we have
C − A > B−A; hence, C > B; hence, the PFS is ABC . For Q, we have C − A <

B − A; hence, C < B; hence, the PFS is ACB.

correspond to the relative location of the parent cells along the chain. Such a
sequence of spikes is termed a precise firing sequence (PFS)” Prut et al., 1998,
pp. 2857–2858), Studies have detected PFSs in cortical activity of the frontal
lobe (Abeles, Bergman, Margalit, & Vaadia, 1993; Villa & Fuster, 1992).

We will use Prut et al.’s notation. A precise firing sequence is defined
by its unit composition and time delays between spikes. The three units are
denoted by S1, S2, S3. Unit S1 fires first, unit S2 fires t1 time units after S1 fires,
and unit S3 fires t2 time units after S1 fires, where t1 < t2 (i.e. t1 = S2 − S1,
t2 = S3 − S1) (see Figure 4). So the PFS can be written as (S1, S2, S3; t1, t2).
Call the first unit the trigger and the other two units reference units. Units
S1, S2, S3 are either three different neurons, or they can represent one
neuron.

For three neurons A, B, and C , assume that A is a trigger (i.e., S1 = A). We
can plot C − Aon the x-axis and B − Aon the y-axes (see Figure 5). All such
points create a spike-triggered type of diagram (scatter plot). If we create
a grid above it and count the number of points in each square, we get the
STJH. Moreover, the triangle to the right of the main diagonal represents
the PFSs: (A, B, C; t1 = B − A, t2 = C − A) (since C − A > B − A so B < C ;
see point P in Figure 5); analogously, the other triangle represents the PFSs:
(A, C, B; t1 = C − A, t2 = B − A) (see point Q in Figure 5). The PFSs also

http://www.mitpressjournals.org/action/showImage?doi=10.1162/0899766053723041&iName=master.img-000.png&w=179&h=70
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C

B

A

Figure 6: Solid lines divide the snowflake plot into three parts, each defined by
a trigger unit (e.g., B means that B is a trigger).

divide the snowflake plot into triangles (see the six triangles, ABC , ACB,
BAC, BCA, CAB, CBA, in Figure 1B). In this respect, the snowflake plot
contains the same information as the three STJHs—where each STJH is
defined by a different trigger neuron—at once.

We now show that there is a nice transformation from the snowflake plot
onto the STJHs. Let us divide the snowflake plot into three parts (see parts
A, B, and C in Figure 6). Each part is determined by the trigger neuron, the
one that fired first in the sequence.

From the definition of the snowflake plot, there is a one-to-one correspon-
dence between part A of the snowflake plot and the STJH from Figure 5. Note
that each point in our STJH has coordinates [xSTJH , ySTJH ] = [C − A, B − A].
Then

xSNOW = 1√
3

[2(C − A) − (B − A)] = 2√
3

xSTJH ,A − 1√
3

ySTJH ,A (4.1)

and

ySNOW = B − A = ySTJH ,A (4.2)

since

1√
3

(2C − B − A) = 1√
3

[(C − B) + (C − A)]

= 1√
3

[(C − A) − (B − A) + (C − A)]

= 1√
3

[2(C − A) − (B − A)] ,

where (xSTJH ,A, ySTJH ,A) are coordinates of the point in the STJH with A
being a trigger, and (xSNOW , ySNOW ) are coordinates of the same point in the
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Figure 7: Transformation (see equation 4.3) of the points in the STJH to the
snowflake. (A) Points (0, 0), (1, 0), (0, 1) and (1, 1). (B) The four points after scal-
ing. (C) The four points after scaling and shearing.

snowflake plot. In the same way we can get a transformation between parts
B, C , and corresponding STJHs.

Note that our transformation matrix (in equations 4.1 and 4.2) is

[ 2√
3

− 1√
3

0 1

]
=

[ 2√
3

0

0 1

] [
1 − 1

2

0 1

]
, (4.3)

the composition (product) of two affine transformations: first, a shear matrix
that preserves the horizontal axis with shear factor −1/2, followed by a
scaling (in this case, rescaling the horizontal axis by the factor 2/

√
3). Hence,

it is also an affine transformation.
Figure 7 provides an example. Figure 7A shows four points (0, 0),

(0, 1), (1, 0), and (1, 1). Figure 7B shows these points after applying the
scaling, where the point (1, 0) transforms into (1.155, 0), because

[ 2√
3

0

0 1

] [
1

0

]
=

(
1.155

0

)
.

Similarly, the points (0, 0), (0, 1), (1, 1) transform into (0, 0), (0, 1) and
(1.155, 1), respectively. Figure 7C shows the four points after applying the
second transformation: it is a shearing, which transforms into (1.155, 0).
Also, the points (0, 0), (0, 1), (1.155, 1) transform into (0, 0), (−0.5, 1), and
(0.655, 1), respectively.

In summary, each of the three STJHs is represented by one-third of a
snowflake plot; hence, the three STJHs give exactly the same information as
the snowflake plot.
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Figure 8: Simulation of the circuit with the coincidence detector neuron.

5 Example

In this section, we show the use of the snowflake with an example: a simu-
lated circuit with a coincidence detector neuron. Such a circuit has already
been discussed by Perkel et al. (1975). However they used an integrate-
and-fire (IF) model to simulate the data. We use a different approach: we
inject the coincidence-induced spikes into the spike train of the coincidence
detector, as described below and depicted in Figure 8.

We define a coincidence detector as a neuron (neuron C) that fires (with
a latency 3 to 4 ms) if it sees an A spike followed by a B spike or vice
versa within 5 ms. Also, we assume that the coincidence detector is not
perfect; that is, it can fire (with some low probability) even when there is no
coincidence.

In our simulations, we generated A and B independently as Poisson
processes with the same intensity—15 spikes per second. Neuron C was
made to fire (with a latency 3 to 4 ms) if it saw a near coincidence (within
5 ms) between A and B spikes. Finally, we injected (see Grün, Diesmann,
& Aertsen, 2002; Kuhn, Aertsen, & Rotter, 2003) low-intensity background
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spikes into the C spike train. (For more details about the simulation, see
appendix A.)

The simulated data are shown in Figure 9. The coincidence detector is an
example of a PFS in the following sense. This circuit can be described by a set
of two kinds of PFSs: (A, B, C; t1, t2), and (B, A, C; t3, t4). In (A, B, C; t1, t2),
neuron A fires first; in (B, A, C; t3, t4), neuron B fires first.

Figure 9 shows the raw CCHs, raw STJHs, and the corresponding
snowflake plot. The first STJH (see Figure 9E) shows that the PFSs
(A, B, C; t1, t2) take place where 0 < t1 < 5 and t2 ∈ (t1 + 3, t1 + 4) ms. The
second STJH (Figure 9F) says that (B, A, C; t3, t4) also takes place with t3 < 5
and t4 ∈ (t3 + 3, t3 + 4). The first STJH corresponds to part A (see Figure 6)
of the snowflake plot (contains the upper part of the chevron), the second
corresponds to part B (contains the lower part of the chevron), the third to
part C. This example illustrates the correspondence among the three JSTHs
and the snowflake plot.

6 The Null Distribution

In this section, we analyze the null case of the three neurons firing indepen-
dently according to homogeneous Poisson processes, with possibly different
rates. In practice, the null distribution can then be subtracted from data to
detect deviations from it in the snowflake plot. In appendix C, we calculated
the mean and variance of counts in bins of the cube [0, τ ]3, which allows us
to study the variability of the snowflake.

In appendix B, we show that the joint spike intensity function over the
snowflake plot is λAλBλC fX,Y(x, y), where λA, λB , and λC are the intensities
of neurons A, B, and C , respectively:

fX,Y (x, y) =




√
3

2τ 3 (τ − y) in sector ACB
√

3
2τ 3 (τ −

√
3

2 x − 1
2 y) in sector ABC

√
3

2τ 3 (τ −
√

3
2 x + 1

2 y) in sector BAC
√

3
2τ 3 (τ + y) in sector BCA
√

3
2τ 3 (τ +

√
3

2 x + 1
2 y) in sector CBA

√
3

2τ 3 (τ +
√

3
2 x − 1

2 y) in sector CAB,

τ is the recording period, and (x, y) are the Cartesian coordinates used in
equation 2.1.

The density fX,Y has a tent-like shape (see Figure 10A). To illustrate this
result, we simulated three independent neurons with individual intensities
of 10 spikes per second and recording period 15 seconds. The neurons fired
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A B

C D

E F G

Figure 9: Simulated coincidence detector. Neurons A and B are from two inde-
pendent Poisson processes with intensities 15 spikes per sec. If neuron C sees
an A spike followed by a B spike within 5 ms, then C fires within 3 to 4 ms
after the B spike. C also fires if it sees a B spike followed by an A spike (see
appendix A). The total time of simulation is 1 minute; neuron A fired 897 times
and neuron B fired 932 times. Neuron C fired 125 times, with 12 background
and 113 coincidence-induced spikes. (A) Raw CCH of A and B. (B) Raw CCH
of B and C . (C) Raw CCH of A and C . (D) Snowflake plot of the simulated data.
(E) Spike-triggered scatter diagram of B and C (A is a trigger). STJH can be
obtained as a histogram above the plot. (F) Spike-triggered scatter diagram of
A and B (C is a trigger). (G) Spike-triggered scatter diagram of A , and B (C is a
trigger).

http://www.mitpressjournals.org/action/showImage?doi=10.1162/0899766053723041&iName=master.img-001.jpg&w=312&h=374
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Figure 10: (A) The density fX,Y for the independence case with τ = 15 sec. The
value at the center is 0.003849. (B) The 3D histogram for the independence
case with τ = 15 sec. Data are obtained from a simulation of three independent
Poisson processes with intensities of 10 spikes per second. The neurons A, B,
and C fired 146, 147, and 152 times, respectively. Bin size is 1 ms2. The height
of each bin is equal to number of points in the snowflake plot divided by the
total number of points, 146 × 147 × 152. The value at the center is 0.003774.
(C) Contour plot of the 3D histogram in B.

146, 147, and 152 times. We created bins over the snowflake plot and plotted
the relative counts (See the histogram and contour plot in Figures 10B and
10C). We also derived the joint spike intensity function over the span L,

fX,Y/L (x, y) = λAλBλC
3L3

τ 3

(
τ

L
− 2

3

)
fX,Y(x, y) I {(x, y) ∈ span L},

where I is the indicator function. Figure 11 shows the intensity function for
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Figure 11: The density function fX,Y/L for the independence case; τ = 15 sec,
L = 1 sec.

the case of L = 1 sec and total recording time 15 sec. It is not constant, and
it also has a maximum at origin. However, the shorter L is or the larger τ

is, the more nearly constant the density appears near origin. This explains
the observation in Perkel et al. (1975) that the distribution of the points in
the snowflake plot should have approximately constant density over the
hexagon.

To assess the applicability of this null distribution result to trains other
than the Poisson, we also simulated three independent spike trains, this
time with gamma (α, β) distributed interspike intervals, of orders α = 2
and 3 (the Poisson train has intervals that are gamma with order 1), and
scale parameter β = 100/α so that the mean interspike interval for all three
cases is 100 ms. The three-dimensional histograms and the corresponding
contour plots are given in Figure 12. Note that both resemble those from
the Poisson process. Note that as the order increases, the contours appear
smoother; this may reflect the fact that the coefficient of variation of the
gamma, 1/

√
α, decreases as α increases.

Furthermore, our theoretical calculations in appendix C show that for
Poisson spike trains, the expected number of points in any small cube con-
tained in [0, τ ]3 depends on intensities only through their product λAλBλC ,
which is an overall measure of the density of points in the cube, and that the
variance depends on the intensities separately. We also show in appendix C
that for a fixed value of this product, the variance of the points in any small
cube is minimized if the three intensities are equal. Because the snowflake
plot is a linear projection of the points in the cube onto a plane, these quali-
tative properties are inherited by the plot. This supports the observation in
Perkel et al. (1975) that the points in the snowflake appear more random over
the hexagon if the neurons’ spiking intensities are equal. It also suggests that
large differences between intensities cause larger variability across samples.
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Figure 12: Two simulations of three independent gamma trains and the corre-
sponding 3D histograms and contour plots on the snowflake plot. Total simula-
tion time is τ = 15 sec. The two simulations have different parameters of scale
and order; however, they give the same mean interspike interval, 100 ms (as
was also the case in Figure 10). (A) Trains simulated from gamma (2,100/2).
The neurons fired 159, 148, and 136 times. (B) Trains simulated from gamma
(3,100/3). The neurons fired 152, 148, and 138 times.

7 Geometry for More Than Three Neurons

Simultaneous recordings of more than three neurons are increasingly com-
mon; see, for example Beggs and Plenz (2004), Buzsaki (2004), Hoffman and
McNaughton (2002), and Warren, Fernandez, and Normann, (2001). Hence,
we explored the idea of generalizing the snowflake for more neurons. In
this section, we show how the data from k neurons can be projected onto a
(k − 1)-dimensional space, where k ≥ 4, assuming that relative spike timings
contain all information about the dependencies among neurons. Although
we cannot visualize the projection (except for four neurons), an analysis that
is similar to the three-neurons case is possible. In particular, one can derive
the joint density in the projection and subtract it from the projected data to
search for patterns. This can be especially useful for exploratory analysis.
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In the case of three neurons (i.e., in the snowflake plot), the angle between
the axes of triangular system is arccos (−1/2) = 120◦. From section 3, we
have that the snowflake plot is the result of projecting (up to a constant,
1/

√
2) the cube onto the plane x + y + z = 0 using the projection matrix

given there. For the case of k neurons, the projection matrix has vectors

√
2(1, 1, 1, . . . , 1, 1, −(k − 1)) /

√
k(k − 1)√

2(1, 1, 1, . . . , 1, −(k − 2), 0)/
√

(k − 2)(k − 1)
. . .

(1, 1, 1, −3, 0, . . . , 0)/
√

6
(1, 1, −2, 0, 0, . . . , 0)/

√
3

(1, −1, 0, 0, 0, . . . , 0).

Once again, they are perpendicular, and their norm is again
√

2. These vec-
tors, together with vector

√
2(1, 1, 1, . . . . , 1)/

√
k, form a Helmert matrix (see

Mardia, Kent, & Bibby, 1979) up to a constant
√

2.
Note that the point (1, 1, . . . , 1, 1, 0) projects onto

√
2

(
(k − 1)√
k(k − 1)

, 0, . . . , 0

)
,

and (1, 1, . . . , 1, 0, 1) projects onto

√
2

(
−1√

k(k − 1)
,

(k − 2)√
(k − 1)(k − 2)

, 0, . . . , 0

)
.

In general, the points (1, 1, . . . , 1, 1, 0) and (1, 1, . . . , 1, 0, 1) represent the
(k − 1)-way coincidences; that is, some (k − 1) of the neurons fire simulta-
neously, and the remaining one fire at some different time. The projections
of these points give us information about the coincidence lines in the pro-
jection. For example, the angle between these two coincidence lines is

arccos


 − k−1

k(k−1)/2

k−1√
k(k−1)/2

√
1+k(k−2)√
k(k−2)/2


 = arccos

(
− 1

k − 1

)
.

So for k = 3 neurons, the angle between coincidence lines is arccos (−1/2) =
120◦; for k = 4, arccos (−1/3) = 109.47◦; and for large k,

lim
k−→∞

arccos (−1/(k − 1)) = π

2
;
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thus, the angle between coincidence lines becomes perpendicular as
k → ∞.

Finally, we show how to derive the axes for the case of four neurons.
Note that the coincidence line ABC must be perpendicular to the plane
where the values B − A are varying; also, the coincidence line AB D must
be perpendicular to the plane where values B − A are varying. This gives
us enough information to find the axes B − A as being perpendicular to the
two coincidence lines:

vB−A = ( 0, 0, 1.414)
vA−C = ( 0, −1.225, −0.707)
vD−A = ( 1.155, 0.408, 0.707)
vC−B = ( 0, 1.225, −0.707)
vB−D = (−1.155, −0.408, 0.707)
vD−C = ( 1.155, −0.815, 0).

Notice that vA−C = −(vB−A + vC−B), so the vectors vB−A, vC−B, vA−C lie in
a common plane (x = 0) and have an equal angle, 120◦. Hence the projection
onto the plane x = 0 is again the (snowflake) hexagon. Furthermore, it can
be shown that angles among vB−A, vA−D, vD−B are 120◦; among vA−C , vC−D,
and vD−A, they are 120◦. Finally, the angle between vB−A and vD−C is 90◦;
the same holds for vA−C and vB−D and for vD−A and vC−B .

8 Discussion

In this article, we have begun a quantitative study of the snowflake plot of
Perkel et al. (1975). Our findings can be summarized as follows.

First, we used the unifying idea of projections of spike trains to show
how the snowflake plot relates to the cross-correlogram (CCH) and the joint
peristimulus time histogram (JPSTH). We treated the CCH and the
snowflake plot as results of orthogonal projections—the CCH from two-
onto one-dimensional space, the snowflake plot from three- onto two-
dimensional space. We also showed how the snowflake plot generalizes
the spike-triggered joint histogram (STJH) symmetrically: The snowflake is
the union of all three STJHs of the three neurons.

Second, we analytically derived the distribution of points on the
snowflake plot under the assumption that the neurons fire independently
from homogeneous Poisson processes. The joint spike density function over
the snowflake plot has a tent-like shape. However, if we are interested in the
firings that lie within some span, then the analytical density of the points
in the snowflake converges to a constant density as total observation time
increases and span decreases.

Third, we studied the geometry of the snowflake for more than three
neurons. Although one cannot easily visualize the projections, except for
four neurons, an analysis similar to that for three neurons can be done. One
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can derive the joint density in the projection in the null case and subtract
it from the projected data to search for patterns. This can be useful for
exploratory analysis to analyze several spike trains simultaneously.

How does the snowflake help us in analyzing data? It can be used for
screening purposes to find potential PFSs and as a graphical device to vi-
sualize the PFSs. The idea is to create a grid above the snowflake plot and
construct a histogram. The advantage is that all three STJHs (i.e., the raw
counts matrices in Prut et al., 1998) are in one histogram, but the disadvan-
tage is that the display is triangular rather than orthogonal.

However, to find the raw counts is only the beginning of the process of
detecting spatiotemporal patterns. One then needs to calculate the corrected
counts (corrected for the expected counts) and derive a test to identify them
as significant events. Prut et al. (1998) developed a method that allows the
identification of significant events, which is based on counting. However,
there is still a long way to go in order to evaluate significance, since higher-
order correlations need to be evaluated, and therefore one needs to correct
for by chance coincidence of lower-order correlations (see Schneider & Grün,
2003; Nakahara & Amari 2002; Gütig, Aertsen, & Rotter, 2003). If the interest
is only to identify deviations from full independence, one can apply the same
procedure as in the unitary events analysis (see the joint surprise in Grün
et al., 2002). Analytical work will be of limited value because significance
calculations for such models are quite complicated; it is more likely that
simulation approaches that use shuffled or jittered trains (see Brown, Kass, &
Mitra, 2004) will be needed, but these must be executed with care (Gerstein,
2004).

There are other avenues of research besides of the evaluation of signif-
icance in the snowflake plot. A thorough study about the artifact of the
snowflake plot—the woven pattern (Perkel et al., 1975)—is needed. It is
caused by multiple entries, where one firing of a neuron is represented
by multiple points in the plot. The artifact is always present, but it is less
visible if the span L is small. Also of interest would be to generalize the
independence assumption and find the distribution of the points in the
snowflake plot. Another generalization can be made in modifying the Pois-
son assumption. Furthermore, the derivations of the joint spike density can
be generalized for more than three neurons.

Appendix A: Simulation of a Coincidence Detector

To simulate the homogeneous Poisson process with intensity λ, one can use
a direct method. Consider a spike at time t, t ∈ [0, τ ]. Then we can draw a
random number, E , from exponential distribution with mean time interval
1/λ. This defines the next spike at time t + E . This method can give the
times of spikes with any precision in principle.

An equivalent way of simulating a Poisson process is to first draw the
total number, n, of spikes from Poisson distribution with parameter λτ .



1474 G. Czanner, S. Grün, and S. Iyengar

Then we can draw a random sample of size n from uniform distribution
over the interval [0, τ ]. Finally, we sort the sample in increasing order to get
the Poisson process.

We took the following steps to simulate a coincidence detector based on
Poisson trains (see also Figure 8):

1. We simulated neurons A and B as two independent realizations of
Poisson processes with intensities λA = λB = 15 spikes per second. In
order to simulate the Poisson process, we used the second algorithm
above.

2. We created the spike train C1 by looking for coincidences between
A and B. If an A spike is followed by a B spike (within 5 ms), we
create a C1 spike at the time of the B spike. Analogously, if a B spike
is followed by an A spike (within 5 ms), we create a C1 spike at the
time of the A spike.

3. We applied a latency of 3.5 ms to each C1 spike to get the C2 spike
train.

4. The train C3 is a noisy version of C2. It is obtained by jittering each
spike of C2 independently and uniformly over a time window of
±0.5 ms around its original position.

5. We simulated the background process C0 as Poisson process with
intensity 0.2 spike per second, independent of the spike trains A and
B. This will be the background process for neuron C .

6. We injected the spikes of C0 into the train C1 to create the spike train
C . In the theory of point processes, this is also called the superposition
of point processes.

Appendix B: Derivation of Null Distribution of Snowflake Plot

We now derive the joint density function fX,Y(x, y) (see section 6) of the
points on the snowflake plot when the three neurons are firing indepen-
dently according to homogeneous Poisson processes with possibly different
rates.

We showed in section 3 that the snowflake plot is an orthogonal projection
of the observations from the cube [0, τ ]3 onto the plane x + y + z = 0. Hence,
we first compute the joint spike density function in the cube; then we derive
the induced probability distribution of the projection.

We first recall the following fact about a homogeneous Poisson process
with n points in the interval [0, τ ] (Karlin & Taylor, 1975): conditional on
n, the points have the same distribution as uniform order statistics of size
n in the interval [0, τ ]. Hence, conditional on the number of spikes in each
of the three spike trains, the distribution of the points in the cube is the
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same as the distribution of a random vector (U1, U2, U3), where U1, U2, U3

are independent and identically distributed with uniform distribution on
[0, τ ]. We next project this distribution onto the plane x + y + z = 0.

Now construct the random vector

(X, Y, Z) =
(

2√
3

[
U3 − U1 + U2

2

]
, U2 − U1, U3

)
. (B.1)

To find the distribution of the snowflake plot (X, Y), we first find the distri-
bution of (X, Y, Z) and then integrate out Z. The inverse transformation of
equation B.1 is

(U1, U2, U3) = (−X
√

3/2 − Y/2 + Z, −X
√

3/2 + Y/2 + Z, Z),

which has Jacobian determinant = −√
3/2; hence, the joint probability dis-

tribution function of (X, Y, Z) is

fXYZ(x, y, z) =
√

3
2τ 3 I {0 ≤ −x

√
3/2 − y/2 + z ≤ τ, 0 ≤ −x

√
3/2 + y/2

+ z ≤ τ, 0 ≤ z ≤ τ },

where I is the indicator function: I {0 ≤ x ≤ τ } = 1 if 0 ≤ x ≤ τ and zero
otherwise. Next, we integrate out z from fXYZ(x, y, z). This is equivalent
to finding the intersection of the three intervals [x

√
3/2 + y/2, τ + x

√
3/2 +

y/2], [x
√

3/2 − y/2, τ + x
√

3/2 − y/2], and [0, τ ] for each combination of
(x, y). Now fix a sector: for example, if (x, y) ∈ sector ACB, then 0 ≤ y ≤ τ ,
x
√

3 ≤ y, −x
√

3 ≤ y. Since 0 ≤ y, we have

[
x
√

3/2 + y/2, τ + x
√

3/2 + y/2
] ⋂ [

x
√

3/2 − y/2, τ + x
√

3/2 − y/2
]

=
[
x
√

3/2 + y/2, τ + x
√

3/2 − y/2
]
.

Next, since −x
√

3 ≤ y and x
√

3 ≤ y, we have x
√

3/2 + y/2 ≥ 0 and τ +
x
√

3/2 − y/2 ≤ τ . Hence,

[
x
√

3/2 + y/2, τ + x
√

3/2 − y/2
] ⋂

[0, τ ]

=
[
x
√

3/2 + y/2, τ + x
√

3/2 − y/2
]
.
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Finally, the length of the last interval is τ − y, so fXY(x, y) =
√

3
2τ 3 (τ − y) in

the sector ACB. The proof for the other sectors is similar.

Appendix C: Null Mean and Variance of Counts in Cubes

Suppose that the three neurons are firing according to independent Poisson
processes with intensities λA, λB , and λC . Denote the firing times of the three
neurons by (A i , B j , Ck), with 1 ≤ i ≤ nA, 1 ≤ j ≤ nB , and 1 ≤ k ≤ nC . Next,
define the statistic

N{(a , b] × (c, d] × (e, f ]}

=
nA∑

i=1

nB∑
j=1

nC∑
k=1

I {(Ai , B j , Ck) ∈ (a , b] × (c, d] × (e, f ])}

=
nA∑

i=1

I {Ai ∈ (a , b]}
nB∑
j=1

I {B j ∈ (c, d]}
nC∑

k=1

I {Ck ∈ (e, f ]},

which counts the number of points in the cube (a , b] × (c, d] × (e, f ]. Thus,
conditional on the number of spikes, this count is the product of three in-
dependent binomial variates, say, X ∼ Bin(nA, b−a

τ
), Y ∼ Bin(nB, d−c

τ
), and

Z ∼ Bin(nC ,
f −e
τ

). Thus, the conditional mean of N = N{(a , b] × (c, d] ×
(e, f ]} is

E(N|nA, nB, nC ) = 1
τ 3 nAnBnC (b − a )(d − c)( f − e),

and since ni are independent Poisson variates with means τni for i =
A, B, C , the unconditional mean is E(N) = λAλBλC (b − a )(d − c)( f − e).
Thus, the conditional mean depends on the number of spikes nA, nB, nC

through their product only, and the unconditional mean depends on inten-
sities λA, λB, λC through their product only. In both cases, they are propor-
tional to the volume of the box (a , b] × (c, d] × (e, f ].

Next, the computation and study of the conditional variance of N is
rather lengthy, so we sketch the details here and refer to Czanner (2004) for
the technical details. The conditional variance is

var(N|nA, nB, nC ) = var(XYZ) = E
[
(XYZ)2] − [E(XYZ)]2

.

To simplify notation, suppose that b − a = d − c = f − e = h, so the box is
a cube. Using the independence of X, Y, and Z and binomial moments, we
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get var(N|nA, nB, nC ) is

nAnBnC h3(1 − h)3

τ 6

[
1 + h

1 − h
(nA + nB + nC )

+
(

h
1 − h

)2

(nAnB + nBnC + nC nA)

]
,

which depends on nA, nB, nC separately, not just on their product.
This conditional variance is smallest if nA = nB = nC (assuming (b − a ) =

(d − c) = ( f − e) = h and nAnBnC = K0 where K0 is a given positive con-
stant that measures the overall density of points in the cube). First, notice
that the variance has the form

H(nA, nB, nC ) = nAnBnC [K1 + K2(nAnB + nBnC + nC nA)

+K3(nA + nB + nC )] ,

for some positive constants K1, K2, K3 when the counts are all nonzero and
h is not 0 or 1. To minimize H subject to the constraint nAnBnC = K0, we
treat the counts as continuous variables and use Lagrange multipliers to
show that the minimum occurs when nA = nB = nC .

Finally, to get the unconditional variance, we use the fact that for
any two random variables or vectors U and V, var[U] = E (Var[U|V]) +
var (E[U|V]). Now if we let U = N and V = (nA, nB, nC ), and use the mo-
ments of the Poisson distribution, we get that the unconditional variance of
N is

var(N) = λAλBλC [K4 + K5(λA + λB + λC ) + K6(λAλB + λAλC + λBλC )]

where K4, K5, and K6 are all positive constants depending on τ and h only.
Note that the unconditional variance has the same form as the conditional
variance, so that for a given value of the product λAλBλC , the unconditional
variance is minimized when λA = λB = λC .
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