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Disambiguating Different Covariation Types

Carlos D. Brody ∗
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CA 91125, U.S.A.

Covariations in neuronal latency or excitability can lead to peaks in spike
train covariograms that may be very similar to those caused by spike tim-
ing synchronization (see companion article). Two quantitative methods
are described here. The first is a method to estimate the excitability com-
ponent of a covariogram, based on trial-by-trial estimates of excitability.
Once estimated, this component may be subtracted from the covariogram,
leaving only other types of contributions. The other is a method to de-
termine whether the covariogram could potentially have been caused by
latency covariations.

1 Introduction

A companion article, “Correlations Without Synchrony,” contained else-
where in this issue, has described how covariations in neuronal latency or
excitability can lead to peaks in covariograms1 that are very similar to peaks
caused by spike synchronization. Since such peaks should be interpreted
very differently to spike synchronization peaks, it is important to tell them
apart. This note describes two methods that attempt to do this. The central
idea is to use trial-by-trial information (e.g., number of spikes fired by each
cell in each trial) as well as trial-averaged information (e.g., the joint peri-
stimulus time histogram JPSTH) in trying to distinguish the various cases
from each other. Friston (1995; see also Vaadia, Aertsen, & Nelken, 1995)
has previously proposed a method to identify excitability covariations. It
is in its use of trial-by-trial data that the excitability covariations method
proposed here is most importantly different from that proposed by Friston.

The two methods described in this article differ in both the conclusions
that can be drawn from them and their computational complexity. The ex-
citability covariations method is computationally very simple, and when it
indicates the presence of excitability covariations, it does so unequivocally.
The latency covariations method is much more computationally demand-
ing, and although it can determine whether latency covariations could po-

∗ Present address: Instituto de Fisiologı́a Celular, UNAM, México D. F. 04510, México.
1 Both here and in the companion article covariogram is used as an abbreviation for

shuffle-corrected cross-correlogram, and is represented with the letter V.
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tentially have generated the covariogram being analyzed, it cannot prove
that they did so.

The notational conventions used here are as follows: Sr
i (t) is the binned

spiking response of cell i during trial r, the symbol 〈〉 represents averaging
over trials r, the symbol¯ represents cross-correlation, and cov(a, b) repre-
sents the covariance of two scalars a and b. The covariogram of two spike
train sets is defined as V = 〈Sr

1 ¯ Sr
2〉 − 〈Sr

1〉 ¯ 〈Sr
2〉, and the unnormalized

JPSTH matrix is J(t1, t2) = 〈Sr
1(t1)Sr

2(t2)〉 − 〈Sr
1(t1)〉〈Sr

2(t2)〉.

2 Excitability Covariations

Let us model the responses of a cell as the sum of a stimulus-induced com-
ponent plus a background firing rate (see the companion article in this issue)

Fr(t)︸︷︷︸
Firing rate during trial r

= ζ rZ(t)︸ ︷︷ ︸
Stimulus induced

+ βrB︸︷︷︸
Background

. (2.1)

Fr(t) is the model’s expected response when its parameters are fixed at val-
ues appropriate for trial r, Z(t) is the typical stimulus-induced firing rate, B
is a constant function over the time of a trial, representing the typical back-
ground firing rate, and two gain factors, ζ r and βr, which may be different
for different trials r, represent possible changes over trials in the state of
the cell. Again following the companion article, when two such model cells
(indexed by the subscripts 1 and 2) interact only through their gain fac-
tors, their covariogram is described as being due to excitability covariations
and is:

V = cov(ζ1, ζ2) Z1 ¯ Z2 + cov(ζ1, β2) Z1 ¯ B2

+ cov(β1, ζ2) B1 ¯ Z2 + cov(β1, β2) B1 ¯ B2. (2.2)

Now let us take the experimental data, and in order to estimate the ex-
citability component of a covariogram, let us characterize each of the two
recorded cells using models of the form of equation 2.1. We must fit the
parameters ζ r, βr, Z(t), and B to each cell. This can be done separately for
each cell.

It will be assumed that spikes during a short time preceding each trial
have been recorded; this time will be written as t < t0. (For sensory neurons,
t0 may be set to be the stimulus start time, but when recording from more
central or motor neurons during complex behavioral tasks, it is necessary to
set t0 to be the very beginning of the entire trial—possibly far removed from
the time period of interest, making the appropriateness of the estimate to be
made questionable.) The mean background B can then be estimated from the
average number of spikes per bin during t < t0. In turn, the mean stimulus-
induced component Z(t) can be estimated from the PSTH (peristimulus time
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histogram), labelled P(t)), as

Z(t) = P(t)− B. (2.3)

Let Sr(t) be the experimentally observed spike train in trial r. To be con-
sistent with the number of pretrial spikes observed in that trial r, set βr so
that ∑

t<t0

βrB =
∑
t<t0

Sr(t), (2.4)

and to be consistent with the total number of spikes observed in trial r, set
ζ r so that∑

t

[
βrB+ ζ rZ(t)

] =∑
t

Sr(t). (2.5)

Doing this for all trials sets all the necessary parameters that characterize the
cell’s response. The characterization is in terms of firing rates (Z(t) and B)
and across-trial changes in the firing rates (ζ r andβr). Once these parameters
are set for both cells, the modeled excitability covariogram can be calculated
from equation 2.2.

The excitability covariogram can be compared to the experimental co-
variogram, and subtracting it from the experimental covariogram can be
thought of as removing the excitability components. Figure 1 illustrates the
application of this straightforward procedure to two artificial cases: one
with pure excitability covariations and one with both excitability and spike
timing covariations (see the companion article).

3 Previous Work on Excitability Corrections

Excitability covariations lead to (unnormalized) JPSTH matrices which are
linear sums of separable components. That is, if t1 and t2 are the running
times for cell 1 and 2, each of the JPSTH components can be factored into a
function of t1 times a function of t2 (see equation 3.4 in the companion ar-
ticle and Friston, 1995). Given that a particular JPSTH matrix, and ensuing
covariogram, are suspected of having been caused by excitability covaria-
tions, the question is, How can the JPSTH be split into a sum of separable
components? An infinity of possible solutions exists.

Friston (1995; see also Vaadia et al., 1995) has described one solution
choice, based on singular value decomposition (SVD) of the JPSTH ma-
trix. The SVD, a well-known process, decomposes any matrix into a sum
of separable, mutually orthogonal components by finding the sequence
of such components that capture the most amount of squared power in
the matrix. For example, the first component will be the separable ma-
trix with the smallest possible sum of squared differences between its el-
ements and those of the original matrix; the next component operates on
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the same principle after having subtracted the first component from the
original matrix; and so on. Using the SVD has two major advantages: (1)
the first component is guaranteed to be the best single separable descrip-
tion of the original JPSTH matrix, in the squared-error sense just described;
and (2) as many components as are necessary to describe the JPSTH matrix
will be produced.2 However, using the SVD has at least one major disad-
vantage (Friston, 1995): the components it produces will be orthogonal to
each other. There is no reason to suppose that physiological components
would be orthogonal in this sense. Furthermore, it must be remembered
that while excitability covariations imply JPSTH separability, the converse
is not necessarily true. The JPSTH is obtained through averaging over tri-
als, and the average of a set of matrices being well described by a few
separable components does not imply that each of the matrices that were

2 As Vaadia et al. (1995) point out in their reply to Friston (1995), if too many compo-
nents are needed to describe the JPSTH matrix, a spike timing synchronization interpre-
tation may be far simpler and more parsimonious than the SVD-derived one.
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averaged (the individual trials) was also well described by the same com-
ponents.

An alternative choice of separable components was made here. We re-
quired that only four components (which need not be orthogonal to each
other) be used and that they be based on two time-independent and two
time-dependent functions: B1, B2, Z1(t), and Z2(t). The form of these func-
tions was estimated by assuming that the B’s represent background fir-
ing rates and the Z’s stimulus-induced responses. Most importantly, these
physiological–interpretation-based assumptions allowed estimating the
magnitude of each component from trial-by-trial information available in
the data (equations 2.4 and 2.5). In contrast, the SVD method ignores trial-
by-trial information. In most cases, one stimulus-induced component will
be dominant, and the approximation of describing the data using only one
B and one Z per cell will be a good one. However, if there is more than one
important stimulus-induced excitability component, the method proposed

Figure 1: Facing page. (A) Covariogram of artificial spike trains, generated using
excitability covariations only. On each trial, the time-varying firing rate of two
independent Poisson cells was first multiplied by the same scalar gain factor
ζ , drawn anew from each trial from a gaussian with unit mean and standard
deviation. ζ was set to zero if negative. For details of spike train generation,
see Figure 3 of the companion article. Overlaid on the covariogram as a thick
dashed line is the excitability covariogram estimate from equation 2.2, using
the procedure described in the text. Thin dashed lines are significance limits.
(B) Same covariogram as (A) after subtraction of the estimated excitability com-
ponent. (C) Covariogram of artificial spike trains constructed with both spike
timing and excitability covariations (see the companion article). Although the
shape does not obviously indicate two separate components, we can use more
than just the shape to separate the two. The thick dashed line is the excitabil-
ity covariogram estimate. Spike train details: On each of two hundred trials, a
scalar ζ was drawn from a gaussian with unit mean and unit standard devia-
tion (ζ was set to zero if negative). A spike train was then drawn from a Poisson
source with time-varying firing rate ζ · (70 Hz) · ((t−120)/30) ·exp((150− t)/30)
if t > 120, zero otherwise, with t in milliseconds. Spike times were then jit-
tered twice, by a gaussian with zero-mean and 12 ms standard deviation; the
result of the first jittering was assigned to cell 1, the result of the second to
cell 2. Finally, 10 Hz background uncorrelated firing was added to both cells.
(D) Same covariogram as in (C) after subtraction of the excitability compo-
nent. A clear peak, indicative of a covariation other than an excitability co-
variation, can be seen. Since the spike trains were artificial, we know that
this is a spike timing covariation and can predict the expected covariogram
shape based on knowledge of the spike timing covariation parameters used
to construct the rasters. The predicted shape is shown as a thick gray line.
It matches the residual covariogram well. Subtracting the excitability covar-
iogram estimate has accurately revealed the spike timing component of the
covariogram.
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here will not describe the data well; in such cases, the SVD method may be the
more robust one.3

3 The referees informed me that although the fact remains unpublished, the JPSTH
software used and distributed by Aertsen and colleagues contains an excitability correc-
tion term equal to cov(n1,n2)P1(t1)P2(t2), where cov(n1,n2) is the covariance in the total
spike counts of the two cells and P1 and P2 are the two cells’ PSTHs. In the absence of back-
ground firing, the JPSTH equivalent of equation 2.2 reduces to Aertsen et al.’s term. Thus,
taking proper account of background firing when it is present is the principal extension
provided here. The large number of covariograms in the literature to which a correction
such as Aertsen and colleagues’ or the one described here have not been applied (see the
companion article) attests to the unfortunate fact that most investigators remain unaware
of the need for them.
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4 Latency Covariations

When estimating excitability covariations, the number of spikes fired provides
a convenient measure of excitability for each individual trial and for each cell.
For latency covariations, there may not be such a straightforward measure of
latency available. Let us assume for the moment that there is one and that the
estimated latency of cell i during trial r has been labeled tr

i . Then, removing the
effect of latency variations from the covariogram is simply a matter of back-
shifting the spike trains: take the original spike trains Sr

1(t) and Sr
2(t) and shift

them in time so as to build the covariogram of the set of spike trains Sr
1(t − tr

1)

and Sr
2(t− tr

2).
Even when estimates of tr

i are not directly available, we may wish to ask
whether the observed covariogram could have been caused by latency covaria-
tions. For this to be the case, there must exist a set of time shifts tr

i such that:

• The covariogram of Sr
1(t− tr

1) and Sr
2(t− tr

2) is zero within sampling noise.

• The covariogram predicted by the averages 〈Sr
1(t− tr

1)〉 and 〈Sr
2(t− tr

2)〉
and the shifts tr

i must be similar to the original covariogram. Recalling that
〈〉 represents averaging over trials r and defining P̂i(t) = 〈Sr

i (t− tr
i )〉, the

predicted covariogram is

V = P̂1(t)¯ P̂2(t)− 〈P̂1(t+ tr
1)〉 ¯ 〈P̂2(t+ tr

2)〉.
The first condition ensures that the particular spike trains obtained from the
experiment are consistent with their covariogram’s being due to latency co-
variations; the second condition ensures that the covariogram is well predicted

Figure 2: Facing page. Latency search results. (A) Original rasters of artificial spike
trains, constructed with latency covariations. Two independent Poisson cells
were simulated; the raster pair for each trial was then shifted in time by a random
amount, drawn anew for each trial, from a gaussian distribution with mean 0 ms
and standard deviation 15 ms. For details of spike train generation, see Figure 2
of the companion article. (B) Covariogram of original rasters. Overlaid on it as
a thick dashed line is the prediction derived from the latency search results (see
condition 2.2 in the text). Thin dashed lines are significance limits. (C) Original
JPSTH. Gray scale is correlation coefficient. (D) Rasters from (A), back-shifted by
the latencies estimated from the search. (E) Covariogram of back-shifted spike
trains, as in (D); no significant peaks are left. (F) JPSTH of back-shifted spike
trains as in (D). (G) Scatter plot of estimated latencies versus applied latencies
(the latter known since these spike trains were artificial). In both construction
and estimation, the latencies of both cells were the same. (H) Covariogram
of spike trains constructed with spike timing covariations (see the companion
article). Overlaid on it as a thick dashed line is the prediction derived from the
latency search procedure, run on these rasters even though they were known to
contain spike timing covariations only. (I) Covariogram of spike trains used in
(H) after applying the latency search procedure. Although the peak is reduced,
it is still clearly there.
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by global (latency) interactions only, and not through individual spike timing
coordination between the two cells. Note that the existence of a set of time shifts
satisfying conditions 2.1 and 2.2 merely shows that latency covariations could
have generated the covariogram. It does not prove that they did so.

In the example illustrated in Figure 2, time shifts satisfying condition 2.1
were found by searching for the minimum of the cost function G = ∫ V2(τ )dτ ,
where V(τ ) is the covariogram of the set of spike trains Sr

1(t − tr
1) and Sr

2(t −
tr
2). The minimization was an iterated line search along coordinate dimensions,

with the search space reduced by using the restriction tr
1 = tr

2, based on the
assumption that the largest latency covariation peaks, and hence the best match
to the covariogram, would be achieved when the latency shifts in both neurons
were perfectly correlated.4 For each trial r, the cost function was evaluated at
values of tr ranging from −100 to +100 ms, in steps of 10 ms; tr was then set to
the shift that generated the smallest value of G; and the search then proceeded
to test shifts for the next trial. G typically asymptoted at a minimum after four
or five loops through the whole set of trials. Using spike train sets that had
200 trials for each cell, search time using C on a 266 MHz Pentium running
under Linux was approximately 10 minutes. Panel E in Figure 2 shows how
the covariogram satisfies condition 2.1 after the minimization. The result of this
search also satisfied condition 2.2, as shown in panel B.

Panels H and I in Figure 2 are based on spike trains constructed without
latency covariations, using instead spike timing covariations only (see the com-
panion article). The latency search process was run on these spike trains; as can
be seen on both panels H and I, it cannot fully account for the covariogram. How-
ever, these panels also show that the latency search generated a covariogram
that began to approximate the original one; for weaker yet still significant spike
timing covariations, the latency search process could have been successful. This
underscores that a positive result from the latency search can be taken as sug-
gestive but never conclusive. It is only the negative result that can be taken as
conclusive, since it demonstrates that the covariogram was not due to latency
interactions alone.
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4 In fact the artificial rasters used here were constructed with tr
1 = tr

2, so the assumption
was known to be correct. Peter König (personal communication) has suggested initializing
the search by aligning the rasters so as to minimize the width of individual PSTHs. This
would generate a sharp shuffle corrector K and would thus be consistent with a tall latency
covariations peak (see section 3.1 in the companion article).
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All simulations and analyses were done in Matlab 5 (Mathworks, Inc., Nat-
ick, MA), except for the latency search, which also used some subroutines
hand-compiled into C. The code for all of these, including the code to repro-
duce each of the figures, can be found at http://www.cns.caltech.edu/∼carlos/
correlations.html.
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