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Fast global oscillations in networks of integrate-and-fire
neurons with low firing rates

Nicolas Brunel1 and Vincent Hakim2

LPS3, Ecole Normale Supérieure
24 rue Lhomond, 75231 Paris Cedex 05, France

Abstract

We study analytically the dynamics of a network of sparsely connected in-
hibitory integrate-and-fire neurons in a regime where individual neurons emit
spikes irregularly and at a low rate. In the limit when the number of neu-
rons N → ∞, the network exhibits a sharp transition between a stationary
and an oscillatory global activity regime where neurons are weakly synchro-
nized. The activity becomes oscillatory when the inhibitory feedback is strong
enough. The period of the global oscillation is found to be mainly controlled
by synaptic times, but depends also on the characteristics of the external in-
put. In large but finite networks, the analysis shows that global oscillations of
finite coherence time generically exist both above and below the critical inhi-
bition threshold. Their characteristics are determined as functions of systems
parameters, in these two different regimes. The results are found to be in good
agreement with numerical simulations.

February 1, 2008

1 Introduction

Oscillations are ubiquitous in neural systems and have been the focus of several
recent studies (for reviews see e.g. Gray 1994, Singer and Gray 1995, Buzsáki and
Chrobak 1995, Ritz and Sejnowski 1997). In particular, fast global oscillations in the
gamma frequency range (> 30 Hz) have been reported in the visual cortex (Gray et al
1989, Eckhorn et al 1993, Kreiter and Singer 1996), in the olfactory cortex (Laurent
and Davidowitz 1994) and in the hippocampus (Bragin et al 1995). Even faster
oscillations (200Hz) occur in the hippocampus of the rat (Buzsáki et al 1992, Ylinen
et al 1995). In some experimental data, (see e.g. Eckhorn et al 1993, Csicsvari et al
1998, Fisahn et al 1998) individual neuron recordings show irregular spike emission,
at a rate which is low compared to the global oscillation frequency4. This raises the
question of whether a network composed of neurons firing irregularly at low rates can
exhibit fast collective oscillations, which theoretical analyses and modelling studies
may help to answer.

1email: brunel@lps.ens.fr
2email: hakim@lps.ens.fr
3Laboratory associated with CNRS, Paris 6 and Paris 7 Universities
4 Fast oscillations may be due in some cases to a synchronized subset of cells with high firing

rates. The observation of cells with the required property has been recently reported in (Gray and
McCormick 1996).
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Previous studies of networks of spiking neurons have mostly analyzed, or sim-
ulated, synchronized oscillations in regimes in which neurons behave themselves as
oscillators, with interspike intervals strongly peaked around their average value (see
e.g. Mirollo and Strogatz 1990, Abbott and van Vreeswijk 1993, van Vreeswijk et al
1994, Gerstner 1995, Hansel et al 1995, Gerstner et al 1996, Wang and Buzsáki 1996,
Traub et al 1996). Several oscillatory regimes have been found with either full or
partial synchronization. A regime particular to globally coupled systems has been
described where the network breaks into a few fully synchronized clusters (Golomb
and Rinzel 1994, van Vreeswijk 1996). In some simulations of networks with de-
tailed biophysical characteristics, cells fire sparsely and irregularly during a global
oscillation (Traub et al 1989, Kopell and LeMasson 1994, Wang et al 1995), but the
complexity of individual neurons in these models makes it difficult to clearly under-
stand of the origin of the phenomenon. The possible appearance of fast oscillations
in a network where all neurons fire irregularly with an average frequency which is
much lower than the population frequency therefore remains an intriguing question.
It is the focus of the present work.

Recurrent inhibition plays an important role in the generation of synchronized
oscillations as shown by in vivo (McLeod and Laurent 1996) and in vitro experiments
(Whittington et al 1995) in different systems. This has been confirmed by several
modelling studies (van Vreeswijk et al 1994, Gerstner et al 1996, Wang and Buzsáki
1996, Traub et al 1996). It has also been recently shown using simple models that
networks in which inhibition balance excitation (Tsodyks and Sejnowski 1995, Amit
and Brunel 1997a, van Vreeswijk and Sompolinsky 1996) are naturally composed of
neurons with low and irregular firing. Simulations (Amit and Brunel 1997b) have
shown that, in one such model composed of sparsely connected integrate-and-fire
(IF) neurons, the highly irregular single neuron activity is accompanied by damped
fast oscillations of the global activity.

In order to study the coexistence of individual neurons with low firing rates and
fast collective oscillations in its simplest setting, we analyze in the present paper
a sparsely connected network entirely composed of identical inhibitory IF neurons.
Our aim is to provide a clear understanding of this type of synchrony and to precisely
determine :
- i) under which conditions collective excitations of high frequencies arise in such
networks
- ii) what controls the different characteristics (amplitude, frequency, coherence
time,...) of the global oscillation.

Simulation results are presented first which shows that the essence of the phe-
nomenon is present even in this simple system. Both the neurons firing rates and
the auto-correlation of the global activity are very similar to those reported in (Amit
and Brunel 1997b).

We begin by presenting simple arguments which give an estimation of the firing
rate of individual neurons and the frequency of the global oscillation and which
lead to think that the global oscillation only appears above a well-defined parameter
threshold.

In order to make the analysis more precise and complete, we then generalize the
analytic approach of Amit and Brunel (1997a) which was restricted to the compu-
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tation of firing rates in stationary states. The sparse random network connectivity
leads the firing patterns of different neurons to be only weakly correlated. As a con-
sequence, the network state can be described by the instantaneous distribution of
membrane potentials of the neuronal population, together with the firing probability
in this population. We obtain the coupled temporal evolution equations for these
quantities, the time-independent solution of which coincides with the stationary so-
lution of (Amit and Brunel 1997a).

A linear stability analysis shows that this time-independent solution becomes
unstable only when the strength of recurrent inhibition exceeds a critical level, in
agreement with our simple arguments. When this critical level is reached, the sta-
tionary solution becomes unstable and an oscillatory solution develops (via a Hopf
bifurcation). The time scale of the period of the corresponding global oscillations is
set by a synaptic time, independently of the firing rate of individual neurons, but
the period precise value also depends on the characteristics of the external input.

The analysis is then pushed to higher orders. We obtain a reduced evolution
equation describing the network collective dynamics. The effects coming from the
finite size of the network are also discussed. We show that having a large but finite
number of neurons gives a small stochastic component to the collective evolution
equation. As a result, it is shown that cross-correlations in a finite network present
damped oscillations both above and below the critical inhibition level. Below the
critical level, the noise controls the oscillation amplitude which decreases as the
number of neurons is increased (at a fixed number of connections per neuron). Above
the critical level, the main effect of the noise is to produce a phase diffusion of the
global oscillation. An increase in the number of neurons results in an increase of
the global oscillation coherence time and in a reduced damping in average cross-
correlations.

Finally, the effect of some of our simplifying assumptions is studied. We shortly
discuss the effect of allowing variability in synaptic times and number of synaptic
connections from neuron to neuron. We also consider the effect of introducing a more
detailed description of postsynaptic currents into the model. The technical aspects
of our computations are detailed in several appendices.

2 Description of the network and simulations

We analyse the dynamics of a network composed of N identical inhibitory single com-
partment integrate-and-fire (IF) neurons. Each neuron receives C randomly chosen
connections from other neurons in the network. It also receives Cext connections
from excitatory neurons outside the network (see Fig. 1). We consider a sparsely
connected case with ǫ = C/N ≪ 1.

Each neuron is simply described by its membrane potential. Let us suppose
that neuron i receives an inhibitory (excitatory) connection from neuron j. When
the presynaptic neuron j emits a spike at time t, the potential of the postsynaptic
neuron i is decreased (increased) by J at time t + δ and returns exponentially to
the resting potential in a time τ which represents the integration time constant of
the membrane. In this simple model, the single time δ is meant to represent the
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Figure 1: Schematic diagram of the connections in the network of N neurons; each
neuron (indicated as an open disk) receives C inhibitory connections (indicated as
black) from within the network and Cext excitatory connections (indicated as grey)
from neurons outside the network.

Presynaptic spike

PSC (RI(t))

PSP (V (t))

Figure 2: Comparison of the synaptic response characteristics in our model and in a
more realistic model. The top trace shows the presynaptic spike. The middle trace
shows the corresponding postsynaptic current (PSC). The bottom trace shows the
corresponding postsynaptic potential (PSP) for a neuron initially at resting poten-
tial. Full lines: our model, in which the synaptic current is described by a delta
function a time δ after the presynaptic spike. Dashed lines: a more realistic synaptic
response, in which the PSC is described by an α-function with latency (transmission
delay) τL and synaptic time constant τS (t− τL) exp(−(t− τL)/τS)/τS. Our synaptic
characteristic time δ can roughly be identified with the sum of latency and synaptic
decay time, τL + τS. See the discussion in Section 4.3.
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transmission delays but also and most importantly, the longer time needed to ob-
tain the full hyperpolarization of the post-synaptic neuron corresponding to a given
presynaptic spike. Therefore, finding the correspondence between δ and the different
synaptic time scales of a more realistic description needs some care. As pictorially
shown in Fig. 2, δ should roughly be identified to the characteristic duration of the
synaptic currents. In the following, we thus refer to δ, which plays a crucial role in
the generation of global oscillations, as the ”synaptic time”. The correspondence be-
tween δ and the different synaptic time scales of a more realistic description is further
elaborated in Section 4.3 where synaptic current of finite duration are considered.

Mathematically, the depolarization Vi(t) of neuron i (i = 1, . . . , N) at its soma
obeys the equation,

τ V̇i(t) = −Vi(t) + RIi(t) (1)

where Ii(t) are the synaptic currents arriving at the soma. These synaptic currents
are the sum of the contributions of spikes arriving at different synapses (both local
and external). These spike contributions are modelled as delta functions in our basic
IF model:

RIi(t) = τ
∑

j

Jij

∑

k

δ(t − tkj − δ) (2)

where the first sum on the r.h.s is a sum on different synapses (j = 1, . . . , C + Cext),
with postsynaptic potential (PSP) amplitude (or efficacy) Jij , while the second sum
represents a sum on different spikes arriving at synapse j, at time t = tkj +δ, where tkj
is the emission time of k-th spike at neuron j. For simplicity, we take PSP amplitudes
equal at each synapse, i.e. Jij = Jext > 0 for excitatory synapses and Jij = −J for
inhibitory ones. External synapses are activated by independent Poisson processes
with rate νext.

A firing threshold θ, completes the description of the IF neuron : when Vi(t)
reaches θ, an action potential is emitted by neuron i, and the depolarization is reset
to Vr < θ after a refractory period τrp during which the potential is insensitive
to stimulation. A typical value would be τrp ∼ 2ms. We are interested here in
network states in which the frequency is much lower than the corresponding maximal
frequency 1/τrp ∼ 500Hz. In this regime, we have checked that the exact value of
τrp does not play any role. Thus in the following we set τrp to zero, for the sake of
simplicity.

The outcome of a typical simulation is shown in Figs. 3. Neurons are driven
by the random external excitatory input above threshold; however, since feedback
interactions are inhibitory, the global activity stays at rather low levels (about 5Hz
for the parameters indicated in Fig. 3). For weak external noise levels (σext =
1mV), the global activity (total number of firing neurons in 0.4ms bins) is strongly
oscillatory with a period of about 7 ms, as testified by Fig. 3C. On the other hand,
increasing the external noise level strongly damps and decreases the amplitude of
the global oscillation. Note that the global activity should roughly correspond to
the local field potential (LFP) often recorded in neurophysiological experiments. On
the other hand, even when the global activity is strongly oscillatory, individual firing
is extremely irregular as shown in the rasterfile of 50 neurons, Fig. 3C (above the
LFP), and in the inter-spike interval histogram (to the right of the spike rasters). In
each oscillatory event only a small fraction of the neurons fire.
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Figure 3: Left: Time evolution of the global activity (LFP) during a 100ms interval
of the dynamics of a network of 5,000 neurons (total number of firing neurons in
0.4ms bins), together with spike rasters of 50 neurons, for different values of the
external noise: σext = 5mV (A), 2.5mV (B), and 1 mV (C). Right: autocorrelation
of the global activity (AC) and inter-spike interval (ISI) histogram averaged over
1000 neurons, corresponding to the left pictures. Note the different time scales of
AC and ISI in abscissa. Parameters: θ = 20mV, Vr = 10mV, τ = 20ms, δ = 2ms,
C = 1000, J = 0.1mV, µext = 25mV. 6



This oscillatory collective behavior is also shown by fast oscillations in the tem-
poral autocorrelation (AC) of the global activity which are damped on a longer time
scale (Fig. 3, to the right of the LFP). It is also reflected in the cross-correlations
(CC) between the spike trains of a pair of neurons, which are typically equal to the
AC of the global activity.

These simulation results raise several questions on the origin and characteristics
of the observed oscillations. What is the mechanism of the fast oscillation? In which
parameter region is the network oscillating? What are the network parameters which
control the amplitude and the different time scales (frequency, damping time con-
stant) of the global oscillation? How do they scale with the network size? The model
is simple enough and an analytical study gives precise answers to these questions as
shown in the following sections.

3 An analysis of the network dynamics

Several features simplify the analysis as noted in a previous study (Amit and Brunel
1997a) of the neuron mean firing rates. First, as a consequence of the network sparse
random connectivity (C ≪ N), two neurons share a small number of common inputs
and pair correlations can be neglected in the limit C/N → 0. Second, we consider a
regime where individual neurons have a firing rate ν low compared to their inverse
integration time 1/τ and receive a large number of inputs per integration time τ , each
input making a contribution small compared to the firing threshold (J ≪ θ)5. In this
situation, the synaptic current of a neuron can be approximated by an average part
plus a fluctuating gaussian part, and the spike trains of all neurons in the network
can be self consistently described by Poisson processes with a common instantaneous
firing rate ν(t) but otherwise uncorrelated from neuron to neuron (that is, between
t and t + dt, a spike emission has a probability ν(t)dt of occurring for each neuron
but these events occur statistically independently in different neurons)

The synaptic current at the soma of a neuron (neuron i) can thus be written as,

RIi(t) = µ(t) + σ
√

τηi(t) (3)

The average part µ(t) is related to the firing rate at time t− δ and is a sum of local
and external inputs

µ = µl + µext with µl = −CJν(t − δ)τ, µext = CextJextνextτ (4)

Similarly the fluctuating part, σ
√

τηi(t), is given by the fluctuation in the sum of
internal and external poissonian inputs of rate Cν and Cextνext. Its magnitude is
given by

σ2 = σ2
l + σ2

ext with σl = J
√

Cν(t − δ)τ , σext = Jext

√

Cextνextτ (5)

5Typical numbers in cortex are C = 5000, τ = 20ms, ν = 5Hz, J = 0.1mV, θ = 20mV so that
Cντ is typically several hundreds while θ/J is of order 100 (Abeles 1991, Braitenberg and Shutz
1991). In the simulation shown in Fig. 3 Cντ ∼ 100, θ/J ∼ 200.
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and ηi(t) is a gaussian white noise uncorrelated from neuron to neuron, 〈ηi(t)〉 = 0
and 〈ηi(t)ηj(t

′)〉 = δi,jδ(t − t′).
Before describing our precise results, it may be useful to give simple estimates

which show how the neuron firing rates, the collective oscillation frequency and the
oscillatory threshold can be obtained from Eqs.(3-5).

Let us first consider the stationary case. The case of interest corresponds to
µ < θ. When expression (3) is used for the synaptic current, the dynamics of the
neuron depolarization (1) is a stochastic motion in the harmonic potential (V − µ)2

truncated at the firing threshold V = θ. The neuron firing rate ν0 is the escape rate
from this potential. For a weak noise, it is given by the inverse of the time scale of
the motion 1/τ diminished by an Arrhenius activation factor. So, one obtains the
simple estimate (up to an algebraic prefactor),

ν0 ∼
1

τ
exp

(

−(θ − µ)2

σ2

)

(6)

This becomes a self-consistent equation for ν0 once µ and σ are expressed in terms
of ν0 using Eq. (4,5). The simple estimate (6) is made precise below by following
Kramers’s classic treatment of the thermal escape over a potential barrier (Chan-
drasekhar 1943).

The origin of the collective oscillation can also be simply understood. An increase
of activity in the network due to a fluctuation provokes an increase in the average
feedback inhibitory input. Thus after a period of about one synaptic time the activity
should decrease due to the increase of the inhibitory input. This decrease will itself
provoke a decrease in the inhibitory input, and a corresponding increase in the
activity after a new period equal to the synaptic time. This simple argument predicts
a global oscillation period of about a couple of times the synaptic time δ, not too
far from the period observed in the simulations. However, it does not seem to have
been noted previously that a global oscillation of period δ can in fact occur only
if it is not masked by the intrinsic noise in the system. The resulting oscillation
threshold can be simply estimated in the limit where δ is short compared to the
time scale of the depolarization dynamics. During a short time interval δ, a neuron
membrane potential receives from the local network an average input of magnitude
Cν0δJ . The fluctuation in its membrane potential in the same time interval (due

to intrinsic fluctuations in the total incoming current) is σ
√

δ/τ . The change in the
average local input can be detected only if it is larger than the intrinsic potential
fluctuations. A global oscillation can therefore occur only when

CJν0τ

σ
= −µl

σ
>∼
√

τ

δ
.

These simple estimations are confirmed by the analysis presented below and
replaced by precise formulas.

3.1 Dynamics of the distribution of neuron potentials

When pair correlations are neglected, the system can be described by the distribution
of the neuron depolarization P (V, t), i.e. the probability of finding the depolarization
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of a randomly chosen neuron at V at time t. This distribution is the (normalized)
histogram of the depolarization of all neurons at time t in the large N limit N → ∞.
The stochastic equation (1,3) for the dynamics of a neuron depolarization can be
transformed into a Fokker-Planck equation describing the evolution of their proba-
bility distribution (Chandrasekhar 1943)

τ
∂P (V, t)

∂t
=

σ2(t)

2

∂2P (V, t)

∂V 2
+

∂

∂V
[(V − µ(t))P (V, t)] (7)

The two terms in the r.h.s. of (7) correspond respectively to a diffusion term coming
from the current fluctuations and a drift term coming from the average part of the
synaptic input. σ(t) and µ(t) are related to ν(t − δ), the probability per unit time
of spike emission at time t − δ, by Eq. (4,5). Note that the Fokker-Planck equation
has been used previously in studies of globally coupled oscillators (Sakaguchi et al
1988, Strogatz and Mirollo 1991, Abbott and van Vreeswijk 1993, Treves 1993).

The resetting of the potential at the firing threshold (V = θ) imposes the ab-
sorbing boundary condition P (θ, t) = 0. Moreover, the probability current through
θ gives the probability of spike emission at t,

∂P

∂V
(θ, t) = −2ν(t)τ

σ2(t)
(8)

At the reset potential V = Vr, P (V, t) is continuous but the entering probability
current imposes the following derivative discontinuity,

∂P

∂V
(V +

r , t) − ∂P

∂V
(V −

r , t) = −2ν(t)τ

σ2(t)
(9)

At V = −∞, P should tend sufficiently quickly toward zero to be integrable, i.e.

lim
V →−∞

P (V, t) = 0 lim
V →−∞

V P (V, t) = 0. (10)

Last, P (V, t) is a probability distribution and should satisfy the normalization
condition

∫ θ

−∞
P (V, t)dV = 1 (11)

3.2 Stationary states

We first consider stationary solutions P (V, t) = P0(V ). Time independent solutions
of Eq. (7) satisfying the boundary conditions (8,9,10) are given by

P0(V ) = 2
ν0τ

σ0
exp

(

−(V − µ0)
2

σ2
0

)

∫

θ−µ0
σ0

V −µ0
σ0

Θ
(

u − Vr − µ0

σ0

)

eu2

du (12)

with
µ0 = −CJν0τ + µext, σ2

0 = CJ2ν0τ + σ2
ext (13)
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Figure 4: The neuron firing rate vs σext: simulation (⋄); solution of Eq. (14)(full line);
solution of the approximate asymptotic form (15) (dashed line). Others parameters
are fixed as in Fig. 2 : τ = 20ms, J = 0.1mV, C = 1000, N = 5000, θ = 20mV,
Vr = 10mV, µext = 25mV, δ = 2ms.

(in (12), Θ(x) denotes the Heaviside function, Θ(x) = 1 for x > 0 and Θ(x) = 0
otherwise). The normalization condition (11) provides the self-consistent condition
which determines ν0

1

ν0τ
= 2

∫
θ−µ0

σ0

Vr−µ0
σ0

dueu2
∫ u

−∞
dve−v2

=
∫ +∞

0
due−u2

[

e2yθu − e2yru

u

]

(14)

with yθ = θ−µ0

σ0
, yr = Vr−µ0

σ0
. In the regime (θ − µ0) ≫ σ0, Eq. (14) becomes

ν0τ ≃ (θ − µ0)

σ0

√
π

exp

(

−(θ − µ0)
2

σ2
0

)

(15)

In Fig. (4), the firing rates obtained by solving Eq. (14) and (15) are compared with
those obtained from simulations of the network. It shows an almost linear increase
in the rates as a function of σext in the range 3-6Hz and a good agreement between
Eq. (14) and the results of simulations. The asymptotic expression (15) is also rather
close to the simulation results in this range of σ.

3.3 Linear stability of the stationary states

We can now investigate in which parameter regime the time independent solution
(P0(V ), ν0) is stable. To simplify the study of the Fokker-Planck equation (7), it is
convenient to rescale P , V and ν by

P =
2τν0

σ0
Q, y =

V − µ0

σ0
, ν = ν0(1 + n(t)) (16)
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y is the difference between the membrane potential and the average input in the sta-
tionary state, in units of the average fluctuation of the input in the stationary state.
n(t) corresponds to the relative variation of the instantaneous frequency around the
stationary frequency. After these rescalings, Eq.(7) becomes

τ
∂Q

∂t
=

1

2

∂2Q

∂y2
+

∂

∂y
(yQ) + n(t − δ)

(

G
∂Q

∂y
+

H

2

∂2Q

∂y2

)

, (17)

where G is the ratio between the mean local inhibitory inputs and σ0, and H is
the ratio between the variance of the local inputs and the total variance (local plus
external):

G =
CJτν0

σ0
=

−µ0,l

σ0
, H =

CJ2τν0

σ2
0

=
σ2

0,l

σ2
0

, (18)

These parameters are a measure of the relative strength of the recurrent inhibitory
interactions.

Eq. (17) holds on the two intervals −∞ < y < yr and yr < y < yθ. The boundary
conditions on Q are imposed at yθ = θ−µ0

σ0
and yr = Vr−µ0

σ0
. Those on the derivatives

of Q read,

∂Q

∂y
(yθ, t) =

∂Q

∂y
(y+

r , t) − ∂Q

∂y
(y−

r , t) = − 1 + n(t)

1 + Hn(t − δ)
(19)

The linear stability of the stationary solution is studied in detail in Appendix
A. This can be done in a standard way (Hirsch and Smale, 1974) by expanding
Q = Q0 + Q1 + . . . and n = n1 + . . . around the steady state solution. The linear
equation obtained at first order has solutions which are exponential in time, Q1 =
exp(wt/τ)Q̂1, n1 ∼ exp(w/τ)n̂1, where w is a solution of the eigenvalue equation
(66) of the Appendix. The stationary solution becomes unstable when the real part
of w becomes positive.

When the synaptic time δ becomes much smaller than τ , the roots w of this
equation become large. We consider the regime δ/τ ≪ 1 but δ/τ ≫ 1/C, which is
the relevant case in simulations and correspond to the realistic regime. δ/τ ≫ 1/C
is needed because otherwise the equations giving G and H become inconsistent with
the condition τν0 ≪ 1. At the oscillatory instability onset, w is purely imaginary w =
iωc, where ωc/τ is the frequency of the oscillation which develops. The eigenvalue
equation takes in the limit δ/τ → 0, ω → ∞ the form

[
G√
ωc

(i − 1) + H ] exp(−iωcδ/τ) = 1. (20)

In this limit, the instability line in the parameter space (G, H) is obtained paramet-
rically as

G =
√

ωc sin

(

ωcδ

τ

)

H = sin

(

ωcδ

τ

)

+ cos

(

ωcδ

τ

)

11
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Figure 5: Left: instability line in the plane (H, G
√

δ/τ). Full line: instability line for
parameters of Fig.3, and δ = 0.1τ . Long-dashed line: δ = 0.05τ . Short-dashed line:
asymptotic limit δ/τ → 0. The stationary state (SS) is unstable to the right of the
instability line, where an oscillatory instability develops (OS). Right: instability line
in the plane (µext, σext). Full line: parameters of Fig.2, and δ = 0.1τ . Short-dashed

line is constructed taking the asymptotic instability line in the plane (H, G
√

δ/τ ),

and calculating the corresponding instability line in (µext, σext) with δ = 0.1τ . The
stationary state (SS) becomes unstable above the instability line. The long dashed
line shows the average (µext) and the fluctuations (σext) of the external inputs when
the frequency of a Poissonian external input through synapses of strength Jext =
0.1mV is varied. For low external frequencies the network is in its stationary state.
When the external frequency increases the network goes to its oscillatory state (OS).

H is by definition constrained to be between 0 and 1 (it is the ratio between local and
total variances): H = 0 corresponds to the limit of very large external fluctuations,
σext ≫ σl, while H = 1 corresponds to σext = 0. We find that the frequency of the
oscillation varies from

ωc

τ
=

3π

4δ
when H = 0, to

ωc

τ
=

π

2δ
when H = 1. (21)

This corresponds to an oscillation with a period between 8δ/3 and 4δ, not too far
from the value 2δ obtained by simple arguments. At the same time the critical value
of G goes from

Gc =

√

3πτ

8δ
when H = 0, to

Gc =

√

πτ

2δ
when H = 1.

Again we find that it is proportional to
√

τ/δ as anticipated.
This instability line can be translated in terms of the parameters µext, σext, and

calculated numerically using Eq. (66) for any value of the network parameters. This
line of instability in the plane (µext, σext) is shown in the right part of Fig. 5. The
stationary solution is unstable above the full line. Thus, if the external input is
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Poissonian, an increase in the frequency of external stimulation will typically bring
the network from the stationary to the oscillatory regime, as indicated by the dashed
line in Fig. 5, which represents the average (µext) and the fluctuations (σext) of the
external inputs when the frequency of a Poissonian external input through synapses
of strength Jext = 0.1mV is varied.

3.4 Weakly non-linear analysis

The linear stability analysis of the previous section shows that a small oscillation
grows when one crosses the instability line in the plane µext, σext. But it does not
say much on the resulting characteristics of the resulting finite amplitude oscillation.
In order to describe it and to be able to quantitatively compare analytic results to
simulation data, one needs to compute the non linear terms which saturate the in-
stability growth. This can be done in a standard manner (Bender and Orszag, 1987)
by computing terms beyond the linear order in an expansion around the stationary
state. The explicit computation is detailed in Appendix B. The collective oscillation
is determined by the deviation n1 of the neuron firing rate from its stationary value:

n1(t) = n̂1(t) exp(iωct/τ) + n̂⋆
1(t) exp(−iωct/τ)

n̂1 determines the amplitude of the collective oscillation as well as the nonlinear
contribution to its frequency in the vicinity of the instability line.

The analysis shows that the dynamics of the (small) deviation around the sta-
tionary firing rate can be described by the reduced equation

τ
dn̂1

dt
= An̂1 − B|n̂1|2n̂1 (22)

in which A and B are complex numbers. The value of A comes from the linear
stability analysis. If Re(A) < 0 a small initial value of n1 decays and the stationary
state is stable. On the contrary, if Re(A) > 0 a global oscillation develops. When
|n̂1| grows, the second nonlinear term on the r.h.s. of (22) becomes important. It is
found here that Re(B) > 0 (a ”normal” or ”supercritical” Hopf bifurcation) so that
the nonlinear term saturates the linear growth. The characteristics of the oscillatory
final state comes from the balance between the two terms.

The explicit expression of A and B is given in Eqs. (91,92) as a ratio of hyper-
geometric functions of the network parameters. A depends linearly on the deviation
of the parameters G and H from their critical values, i.e. G − Gc, H − Hc. In the
limit δ/τ → 0, the expressions of A and B simplify. For example, when H = 0 (large
external fluctuations), we find in the limit δ/τ → 0

A =
τ

δ

(1 + 2i/3π)

(1 + 4/9π2)

G − Gc

Gc

≃ τ

δ
(1.35 + 0.29i)

G − Gc

Gc

B =
τ

δ

(

9π2

4 + 9π2

)[

13 − 5
√

2

10
− 9 − 5

√
2

15π
+ i

(

13 − 5
√

2

15π
+

9 − 5
√

2

10

)]

≃ τ

δ
(0.53 + 0.30i) (23)
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Generally, the complex numbers A and B can be written in terms of their real
and imaginary parts, A = Ar + iAi, B = Br + iBi. On the critical line, i.e. for
G = Gc, H = Hc, Ar = Ai = 0; above the critical line an instability develops,
Ar > 0, proportionnally to G−Gc and H −Hc. The amplitude of this instability is
controlled by the cubic term. The stable limit cycle solution of Eq. (22), above the
critical line, is

n̂1(t) = R exp
(

i∆ω
t

τ

)

(24)

where

R =

√

Ar

Br
and ∆ω = Ai − Bi

Ar

Br

The autocorrelation (AC) of the global activity, normalized by ν0, is, when Ar >
0,

C(s) = lim
T→∞

1

T − s

∫ T−s

0
(1 + n1(t))(1 + n1(t + s))dt (25)

= 1 + 2R2 cos [(ωc + ∆ω)s/τ ]

The AC is a cosine function of frequency (ωc +∆ω)/τ and amplitude R2. Compared
with the AC function observed in the simulation, Fig. 3C, we see a qualitative dif-
ference: there is no damping of the oscillation. The next Section shows that the
damping is due to finite size effects. We analyze them before comparing quantita-
tively the analytical results with simulations.

3.5 Finite size effects and phase diffusion of the collective

oscillation

We discuss the effect of having a large but only finite number of neurons in the
network. It is well-known that for stochastic dynamics, a sharp transition can only
occur in the limit N → ∞ and that it will be smoothened by finite size effects. In
the sparse connectivity limit, which allows to treat the quenched random geometry
of the lattice in an annealed fashion6 the fluctuations in the input of a given neuron
i can be seen as the result of the randomness of two different processes: the first is
the spike emission process S(t) of the whole network; and the second, for each spike
emitted by the network, is the presence or absence of a synapse between the neuron
that emitted the spike and the considered neuron: if a spike is emitted at time t,
ρi(t) = 1 with probability C/N , and 0 otherwise. The input to the network is then

RIi(t) = −Jτρi(t)S(t − δ)

Both processes can be decomposed between their mean and their fluctuation,

ρi(t) =
C

N
+ δρi(t), S(t) = Nν(t) + δS(t)

6Here we do not consider the correlations due to the quenched connectivity for finite ǫ. These
correlations would give small corrections to the parameters calculated in the limit ǫ →0, but do not
give rise to qualitatively new effects for the global activity such as the phase diffusion phenomenon
discussed in this section.
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Thus the input becomes

RIi(t) = µ(t) − JτNν(t)δρi(t) − Jτ
C

N
δS(t)

in which µ(t) is given by Eq. (4). The input is the sum of a constant part µ,
and of two distinct random processes superimposed on µ: the first is uncorrelated
from neuron to neuron, and we have already seen in Section 3 that it can be de-
scribed by N uncorrelated Gaussian white noises σ

√
τηi(t), i = 1, . . . , N where

< ηi(t)ηj(t
′) >= δijδ(t− t′). The second part is independent of i: it comes from the

intrinsic fluctuations in the spike train of the whole network which are seen by all
neurons. This part becomes negligible when ǫ = C/N → 0, but can play a role as we
will see when C/N is finite. The global activity in the network is essentially a Pois-
son process with instantaneous frequency Nν(t). Such a Poisson process has mean
Nν(t), which is taken into account in µ, and variance Nν(t)δ(t−t′). The fluctuating
part of this process is well approximated by a Gaussian white noise

√
Nν0ξ(t), where

ξ(t) satisfies < ξ(t) >= 0, < ξ(t)ξ(t′) >= δ(t − t′). Note that for simplicity we take
the variance of this noise to be independent of time, which is the case for n1(t) ≪ 1.
These fluctuations are global and perceived by all neurons in the network. Thus, the
mean synaptic input received by the neurons becomes

CJτν(t) + J
√

ǫCν0τ
√

τξ(t) + µext

Inserting this mean synaptic input in the drift term of the Fokker-Planck equation,
we can rewrite Eq. (17) as

τ
∂Q

∂t
=

∂

∂y
{[y + Gn(t − δ) + η

√
τξ(t)]Q} +

1

2

∂2Q

∂y2
(26)

where η denotes the intensity of the noise stemming from these global fluctuations.
η tends to zero as the network size increases

η =
√

ǫ
σl

0

σ0
(27)

Taking into account this global noise term in the derivation of the reduced equa-
tion, we obtain, after some calculations described in Appendix C,

τ
dn̂1

dt
= An̂1 − B|n̂1|2n̂1 + D

√
τζ(t) (28)

in which A, B and D are given by Eqs. (91,92,94), and ζ is a complex white noise
such that < ζ(t)ζ⋆(t′) >= δ(t−t′). D is proportional to η, i.e. to both the square root
of the connection probability and to the ratio between local and total fluctuations.

Thus, the effect of the finite size of the network is to add a small stochastic
component to the evolution equation of n1, Eq. (28). Its main effect is to produce a
phase diffusion of the collective oscillation 7his global phase diffusion in a network of
finite size is well-known (see e.g. (Rappel and Karma, 1996) for a simple example)
which leads to the damping of the oscillation in the autocorrelation function.

7T
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Amplitude of the autocorrelation

From the reduced Eq. (28), one can compute exactly the autocorrelation at zero time
C(0) as shown in Appendix C. This gives :

• In the stationary regime far from the critical line, Ar < 0, |D|/|Ar| ≪ 1:

C(0) − 1 ∼ |D|2
|Ar|

∼ O
(

C

N

)

(29)

The amplitude of the fluctuations in the global activity are proportional to
C/N and thus vanish when the connection probability goes to zero.

• On the critical line, Ar = 0

C(0) − 1 =
2|D|√
πBr

∼ O





√

C

N



 (30)

The amplitude of the fluctuations are proportional to the square root of the
connection probability.

• In the oscillatory regime far from the critical line, Ar > 0, |D|/Ar ≪ 1 :

C(0) − 1 ∼ 2Ar

Br
∼ O (1) (31)

In this regime the amplitude of the oscillation is to leading order independent
of the noise amplitude.

Oscillations below the critical line

In the stationary regime far from the critical line, the fluctuations of activity n1

provoked by the noise term can be considered small and thus we can neglect the
cubic term. It is then easy to calculate the autocorrelation (AC) of the activity,

C(s) = 1 +
|D|2
|Ar|

exp

(

−|Ar|s
τ

)

cos
(

[ωc + Ai]
s

τ

)

(32)

It is a damped cosine function. The damped oscillation has frequency (ωc+Ai)/τ and
damping time constant proportional to τ/|Ar|. The amplitude of the autocorrelation
function is proportional to C/N .

Oscillations above the critical line

In the oscillatory regime far from the critical line, we find in Appendix C an AC
function of the form

C(s) = 1 + 2
Ar

Br

cos ((ωc + ∆ω)s/τ) exp

(

−γ2(s)

2

)

(33)
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It is again a damped cosine function. The damping factor exp (−γ2(s)/2) is different
from an exponential only at short times s ∼ δ. At longer times, s ≫ δ, we obtain
again an exponential

exp

(

−γ2(s)

2

)

= exp

(

−|D|2
4R2

(

1 +
B2

i

B2
r

)

s

τ

[

1 +
|D|2
2Ar

+ O
(

|D|4
)

])

The damping time constant is proportional to leading order in |D| to 1/|D|2 ∼ N/C,
i.e. to the inverse of the connection probability. When N goes to infinity at C fixed
the ‘coherence time’ of the oscillation increases linearly with N .

This ‘phase diffusion’ effect is the main finite size effect above the critical line.
Both the amplitude and frequency of the oscillation are essentially unaffected by
these finite size effects.

3.6 Comparison between simulations and theory

The autocorrelation (AC) of the global activity was computed for each set of pa-
rameters from a simulation of 20 seconds. Few longer simulations were performed
as a check. The autocorrelation obtained in the longer simulations are essentially
identical to the one obtained in the 20s simulation.

Since the analysis predicts AC functions described by damped cosine functions,
a least square fit of all AC functions was performed with such functions. Thus the
full AC is reduced to three parameters, its amplitude at zero lag C0, its frequency
ω, and its damping time constant (or coherence time) τc

C(s) = 1 + C0 exp

(

−|s|
τc

)

cos(ωs)

We then compared the result of the fitting procedure with the analytical expressions.
We have varied the magnitude of the external noise σext from 0 to 5 mV. This

brings the network from the ‘oscillatory’ to the ‘stationary’ state.
In Fig. 6 we plot together the results of simulations and theory. In these figures

the diamonds are the simulation results; the dashed lines, the analytical results. In
A, the short-dashed line indicates the amplitude in the limit N → ∞, while the
long-dashed line indicates the amplitude calculated analytically taking into account
finite size effects. Last, the crosses are obtained simulating numerically the reduced
equation, Eq. 28. We find that, in the ‘stationary’ regime as well as in the oscillatory
regime close to the bifurcation point, the amplitude of the oscillation obtained in
the simulation is in very good agreement with the calculation (Fig. 6.A). On the
other hand, as the amplitude of the oscillation becomes of the same order as the
average frequency, C0 ∼ 1, higher order effects become important and the calculation
overestimates the amplitude of the AC. For the frequency of the oscillation (Fig. 6.B),
the calculation reproduces quite well the results of the simulations, except for very
low noise levels, for which we are rather far from the bifurcation point. Note that
the frequency ranges for this set of parameters from 70 to 180Hz, depending on the
level of external noise. Thus, without varying the time constants τ and δ, we find
that the same network is able to sustain a collective oscillation at quite different
frequencies.
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Figure 6: Parameters of the AC function vs σext. A. Amplitude of the AC at zero
lag. B. Frequency. C. Damping time constant. Diamonds: simulation of the full
network. Crosses : simulation of the reduced equation. Dashed lines: theory. In
A, the short-dashed line represents the amplitude in the limit N → ∞ Parameters:
τ = 20ms, J = −0.1mV, C = 1000, N = 5000, θ = 20mV, Vr = 10mV, µext = 25mV,
δ = 2ms.

18



Last, the approximate analytical expressions for the damping time constant agree
well with the simulation away from the bifurcation point, as expected (Fig. 6.C). On
the other hand, the simulation of the reduced equation is in good agreement with
the network simulations in the whole range of σext.

In Fig. 7 we compare the full AC functions from theory (simulation of the reduced
equation) and network simulations in three regimes, to show the good agreement
between both.

4 Extensions

In the previous sections a very simple network has been analyzed and the question of
the effect of some of our simplifying assumptions legitimately arises. In particular,
we have chosen exactly identical neurons. It can be wondered how the results are
modified when some variations in neuron properties are taken into account. In order
to address this question, we show how the previous analysis can be generalized in two
cases. Since we have seen that the oscillation frequency is tightly linked to synaptic
times, the effect of a fluctuation in synaptic times is investigated first. We then
consider the effect of a fluctuation in the number of connections per neuron which
has been found to result in a wide spectrum of neuron steady discharge rates (Amit
and Brunel, 1997b). In both cases, it is reassuring to find that the picture obtained
from the simple model analysis remains accurate. We finally consider a model with
synaptic currents of finite duration to analyse more precisely which time scale plays
the role of our ”synaptic time” in this more realistic case.

4.1 Effect of inhomogeneous synaptic times

The analysis can easily be extended to the case in which time constants at each
synaptic site are drawn randomly and independently from an arbitrary probability
density function (pdf) Pr(δ) (see Appendix D). In the following we consider the case
of a uniform pdf between 0 and 2δ.

Fig. 8 shows how the instability line is modified by random synaptic times. The
region where the oscillatory instability appears shrinks to the area above the dashed
line. As the distribution of synaptic times widens, the stationary state becomes
more stable. The introduction of random synaptic times also slightly reduces the
frequency of the oscillation.

The critical line is thus quite sensitive to the distribution of synaptic times. In
fact, distributions of synaptic times can be found such that the stationary state is
always stable (e.g. for an exponential distribution Pr(δ) = exp(−δ/δ0)/δ).

4.2 Effect of inhomogeneous connectivity

The analysis can also be extended to the case when the number of connections
impinging on a neuron is no longer fixed at C, but rather connections are drawn at
random independently at each site. In that case the number of connections received
by a neuron is a random variable with mean C and standart deviation ∼

√
C.
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Figure 7: AC for: A. σext = 2mV. B. σext = 3mV. C. σext = 4mV. Parameters as
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reduced equation).
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Figure 8: Instability line in the plane (µext, σext) for τ = 20ms, J = 0.1mV, C = 1000,
θ = 20mV, Vr = 10mV, δ = 2ms. Full line: all synaptic times equal to δ. Dashed
line: synaptic times drawn from a uniform distribution from 0 to 2δ.
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Figure 9: Effect of inhomogeneity in the connections on the instability line in the
plane (µext, σext) for τ = 20ms, J = −0.1mV, C = 1000, θ = 20mV, Vr = 10mV,
δ = 2ms. Full line: all neurons receive C connections. Dashed line: connections are
drawn randomly and independently at each synaptic site with probability C/N .
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Figure 10: Left: Distribution of spike rates (Histogram: simulation. Dashed line:
theory). The distribution is similar to a Gaussian, unlike the distributions observed
in (Amit and Brunel 1997b), which are much wider, due to the balance between
excitation and inhibition. Right: Relative amplitude of CC between individual neu-
rons and the global activity vs neuronal firing rate (Diamonds: simulation. Full line:
theory). τ = 20ms, J = −0.1mV, C = 1000, θ = 20mV, Vr = 10mV, δ = 2ms,
µext = 25mV, σext = 2.58mV.

This inhomogeneity in the connectivity provokes a significant inhomogeneity in the
individual spike rates even for C large, because differences between the average
input received by two neurons are of the same order as the SD of the synaptic input.
The distribution of frequencies for an arbitrary network of excitatory and inhibitory
neurons has been obtained in (Amit and Brunel 1997b). The main steps leading to
this distribution are described in appendix E. Next we study how inhomogeneity
affects the dynamical properties of the network. Fig. 9 shows that the instability line
is almost unaffected by the inhomogeneity. The frequency of the global oscillation
is also very close to the one of the homogeneous case.

Amit and Brunel (1997b) had shown by simulations that the degree of synchro-
nization of a neuron with the global activity is strongly affected by its spike rate:
neurons with low firing frequencies tend to be more synchronized with the global
activity than neurons with high frequencies. In appendix E we calculate analytically
the degree of synchronization of individual neurons as a function of their frequency.
The result is shown in Fig. 10 in which the relative amplitude C(ν) of the cross-
correlation between neurons firing at frequency ν and the global activity obtained
analytically is compared with the result of simulations. It shows indeed that low-rate
neurons are more synchronized with the global activity than high-rate neurons. The
relative amplitude of the cross-correlation between two neurons of frequency ν1 and
ν2 is given by the product of the two amplitudes, C(ν1)C(ν2). Note that the hetero-
geneity in rates and cross-correlations is not very pronounced here, because near the
critical line the fluctuations in the external input dominate the local fluctuations,
which tends to suppress this heterogeneity. In a network with both excitatory and
inhibitory neurons with an external excitatory input of the same order than the in-
ternal excitatory contribution, this heterogeneity is much more pronounced (Amit
and Brunel 1997b).
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4.3 Effect of more realistic synaptic responses

Our analysis has been carried out for synaptic currents which are described by a
delta pulse. One may wonder how the analysis generalizes for more realistic postsy-
naptic currents. We consider a function f(t) describing the shape of the postsynaptic
current when a spike is emitted at time t = 0 (see e.g. Gerstner 1995 for a review of
different types of synaptic responses). f(t) is chosen such as

∫

dtf(t) = 1

An example often used in modelling studies and shown in Fig. 2 is the α-function
with a latency τL and a characteristic synaptic time τS:

f(t) =







t−τL

τ2
S

exp
(

− t−τL

τS

)

for t > τL

0 otherwise.
(34)

The total synaptic current arriving at neuron i is now

RIi(t) = τ
∑

j

Jij

∑

k

f
(

t − tkj
)

In the diffusion approximation the synaptic current becomes

RIi(t) = µ(t) + Ξi(t)

in which the average part is given as a function of the frequency ν and the synaptic
response function f by

µ(t) = µext − CJ
∫

dt′ν(t′)f(t − t′)τ.

On the other hand, the fluctuating part Ξi(t) can no longer be approximated by
a pure white noise and exhibits temporal correlations at the scale of the width
of the PSC function f(t). These temporal correlations in the currents complicate
significantly the analysis, since the evolution of the distribution of the membrane
potentials is no longer given by a simple one-dimensional Fokker-Planck equation.
For the case of the α-function, we would need to solve the problem described by
a three dimensional Fokker-Planck equation. Such an analysis is beyond the scope
of the present paper. Here, we choose to ignore, as a first approximation, these
temporal correlations. Thus we consider only the effect of the PSC function on the
average synaptic currents. In this approximation, the effect of the PSC function
becomes equivalent to that of a distribution of synaptic times in the delta pulse PSC
case considered in section 4.1. For example, in the limit in which τS and τL are small
compared to the integration time constant, the equations for the bifurcation point
are

G =
√

ω

[

2
τS

τ
ω cos

(

ω
τL

τS

)

+

(

1 − τ 2
S

τ 2
ω2

)

sin
(

ω
τL

τ

)

]

H =

(

1 − τ 2
S

τ 2
ω2

)

[

cos
(

ω
τL

τ

)

+ sin
(

ω
τL

τ

)]

+2
τS

τ
ω
[

cos
(

ω
τL

τ

)

− sin
(

ω
τL

τ

)]

(35)
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Figure 11: Dependence of the frequency of the oscillation near the bifurcation thresh-
old on the synaptic decay time constant τS, for τL = 2ms. Network parameters as
in Fig. 3. External inputs have µext = 25mV, σext = 2mV. This point is near the
bifurcation line in the whole range of τS. ⋄: simulations. Full lines: frequency given
by the approximate analysis, Eq. 35, for H = 1 (lower curve), and H = 0 (upper
curve).

In the case τL = 0 (zero latency) the equations simplify to

G = 2
√

ω
τS

τ
ω (36)

H = 1 − τ 2
S

τ 2
ω2 + 2

τS

τ
ω (37)

In the case H = 1, the frequency of the oscillation near the bifurcation point is equal
to 1/(πτS). Note that the dependence of the frequency on τS in the α function PSC
case is similar to the dependence on δ in the delta pulse PSC case, Eq. (21).

To check the validity of this approximation, we have performed numerical simula-
tions with fixed latency τL = 2ms, varying the decay time constant of the inhibitory
post synaptic currents (IPSC) τS. The results are shown in Fig. 11. The approximate
analysis predicts the frequency is in the region between the two full lines (correspond-
ing to H = 0 and H = 1). Simulation results deviate from the approximate analysis
already at rather small values of τS, because of the effect of temporal correlations
in the synaptic currents, which have the same scale as the period of the oscillation.
Nonetheless the approximation gives a good qualitative picture of the dependence of
the frequency on τS.

Note that the frequencies obtained in this way can be directly compared to the
data of (Whittington et al 1995, Traub et al 1996) since the decay time constant of
the PSCs can be identified with their parameter τGABA. The frequencies obtained
in the simulations are very close to the ones obtained in that study. For example,
we obtain a frequency of about 40Hz when τS = 10ms, in agreement with the in
vitro recordings and the simulations of the more complex model of (Whittington et
al 1995, Traub et al 1996). However, one has to be careful with such a comparison,
since in that in vitro study, interneurons seem to fire at population frequency.
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5 Conclusion

We have studied the existence of fast global oscillation in networks where individ-
ual neurons show irregular spiking at a low rate. We have first shown that the
phenomenon can be observed in a sparsely connected network composed of basic
integrate and fire neurons. In this very simplified setting, the phenomenon has been
precisely analyzed. At the simplest level, it differs from other modes of synchronisa-
tion which lead to global oscillation in that recording at the individual neuron level
shows a stochastic spike emission with nearly Poissonian interspike intervals and
little indication of the collective behavior (see the ISI histograms in Fig. 3). This
oscillation regime has some similarity with that obtained in Wang et al (1995) where
a hyperpolarization-activated cation current seems to play the role of our random
external inputs in generating intermittent activity in the network. This type of weak
synchronization has sometimes been rationalized as coming from filtering of external
noise by recurrent inhibition (Traub et al 1989 and refs. therein). Our analysis leads
to a somewhat different picture.

We have found that, in the limit of an infinite network, the global oscillation is
due to an oscillatory instability (a supercritical Hopf bifurcation) of the steady state.
This instability occurs at a well defined threshold and arises from the competition
between the recurrent inhibition which favors oscillations and the intrinsic noise in
the system which tends to suppress it.

We have found that the global oscillation period is controlled by the synaptic
time. This appears to agree with previous experimental findings on slices of the
rat hippocampus and with simulations results (Whittington et al 1995, Traub et al
1996) where it is however assumed that neurons fire at population frequency, unlike
those of our model. A similar decrease in population frequency when the GABA
characteristic time is varied is also observed in a recent in vitro experiment in which
neurons fire sparsely (Fisahn et al 1998). More work is necessary to clarify the
relative roles of the different time constants (latency, IPSC rise time, IPSC decay
time) that are commonly used to describe the synaptic response.

The oscillation period also depends on the characteristics of the external input,
and particularly on the magnitude of the external noise, as shown by Fig. 6. The
initial rise in the frequency when one increases σext followed by a saturation at
sufficiently large σext looks in fact similar to the dependence of the frequency on
the amount of glutamate applied to hippocampal CA1 region in vitro (Traub et al
1996). Our network is in a stationary state when external inputs are low and switches
to an oscillatory regime when the magnitude of the external inputs is increased.
This phenomenon resembles the induction of a gamma rhythm in the hippocampal
slice mediated by carbachol (Fisahn et al 1998), and the induction of faster 200Hz
rhythms, believed to be provoked by a massive excitation of CA1 cells through
Schaeffer collaterals (see e.g. Buzsáki et al 1992). It is also interesting to note that
a single network, with its internal parameters fixed, is able to sustain collective
oscillations in different frequency ranges, when the characteristics of the external
input are varied.

In a finite network, the sharp transition is smoothened but the global oscillation
has different characteristics above and below the critical threshold. Below thresh-
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old, its amplitude decreases as the network size is increased. Above threshold, an
increase in the neuron number does not greatly modify the oscillation amplitude but
increases its coherence time. It has been shown that the whole picture of a Hopf
bifurcation with a well-defined threshold remains accurate when some of our simpli-
fying assumptions are relaxed. It would be interesting to extend this finding to more
realistic descriptions.

Our analysis also raises the important question of the synchronisation mode used
in real neural systems. Do neocortical or hippocampal neurons behave as oscillators
with a frequency equal to the population frequency, or irregularly with firing rates
lower than the population frequency? In hippocampus, pyramidal cells seems clearly
to be in a irregular, low rate regime, during in vivo gamma (Bragin et al 1995),
in vivo 200Hz (Buzsáki et al 1992) and in vitro gamma oscillations (Fisahn et al
1998). More recent experimental data indicates that interneurons also typically fire
at a lower frequency than the population frequency during 200Hz oscillations in
CA1 (Csicsvari 1998). Further experimental work is needed in order to clarify this
important issue.

We have obtained a reduced description of the collective dynamics. The analysis
can certainly be extended to more complicated networks, composed of neurons of
different types or that are spatially extended. This reduced description will hopefully
prove useful in clarifying the mechanisms of long range synchrony and in studying
propagation phenomena (Delaney et al 1996, Prechtl et al 1997).

Finally, and most importantly, the exact roles of fast oscillations remain, at
present, unclear. Are they useful for putting in resonance different neuronal popu-
lations as it has been suggested? Can they serve to build a fast detector with slowly
firing neurons? Are they used as a clock mechanism? Or do they reflect the use-
fulness of having a network where different neuronal populations fire in succession
on a short time scale, to code spatial information in the temporal domain? Recent
experiments (MacLeod and Laurent 1996, Stopfer et al 1997) make us hope that
elucidating the real meaning of these collective oscillations, at least in some neural
systems, is now an attainable goal. This is a question to which we hope to return in
the future.
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Appendix

The details of our computations are given in the following. We have found it conve-
nient to use the rescaled variables,

P =
2τν0

σ0
Q, G =

CJτν0

σ0
=

µ0,l

σ0
, H =

CJ2τν0

σ2
0

=
σ2

0,l

σ2
0

, (38)
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y =
V − µ0

σ0
, yθ =

θ − µ0

σ0
, yr =

Vr − µ0

σ0
, ν = ν0(1 + n(t)) (39)

J and G are positive.
Using Eqs. (38,39) the Fokker-Planck equation, Eq. (7) becomes

τ
∂Q

∂t
= L[Q] + ν(t − δ)

(

G
∂Q

∂y
+

H

2

∂2Q

∂y2

)

(40)

where the linear operator L is defined as

L[Q] =
1

2

∂2Q

∂y2
+

∂

∂y
(yQ)

The equation is valid on the two intervals −∞ < y < yr and yr < y < yθ.
The boundary conditions at yr and yθ become: at yθ

Q(yθ, t) = 0,
∂Q

∂y
(yθ, t) = − 1 + n(t)

1 + Hn(t − δ)
; (41)

at yr

[Q]y
+
r

y−

r
= 0, [

∂Q

∂y
]y

+
r

y−

r
= − 1 + n(t)

1 + Hn(t − δ)
(42)

(the square bracket denotes the discontinuity of the function at y namely, [f ]y
+

y−
≡

limǫ→0{f(y + ǫ)−f(y− ǫ)}). Note the term in the r.h.s. of Eqs. (41,42) are identical.
Thus, when we study the Fokker-Planck equation at different orders, we will mention
only the condition at yθ. The condition at yr can be obtained by replacing the value of
the corresponding function at yθ by the discontinuity of the function at yr. Moreover
Q(y, t) should vanish sufficiently fast at y = −∞ to be integrable.

The steady state solution obeys

L[Q0] = 0 (43)

and
∂Q0

∂y
(yθ) = −1, [

∂Q0

∂y
]y

+
r

y−

r
= −1 (44)

It is given by

Q0(y) =

{

exp(−y2)
∫ yθ

y du exp(u2) y > yr

exp(−y2)
∫ yθ

yr
du exp(u2) y < yr

(45)

From (43,44), one easily obtains the values of higher derivatives of Q0 at y = yθ

and their discontinuities at y = yr, which will be used in the following, using the
recurrence relation

∂nQ0

∂yn
(y) = −2y

∂n−1Q0

∂yn−1
(y) − 2(n − 1)

∂n−2Q0

∂yn−2
(y) (46)
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A Linear stability

The function Q can be expanded around the steady state solution Q0(y) as

Q(y) = Q0(y) + Q1(y, t) + Q2(y, t) + · · ·
n(t) = n1(t) + n2(t) + · · · (47)

At first order, one obtains the linear equation

τ
∂Q1

∂t
= L[Q1] + n1(t − δ)

(

G
dQ0

dy
+

H

2

d2Q0

dy2

)

(48)

together with the boundary conditions

Q1(yθ, t) = 0,
∂Q1

∂y
(yθ) = −n1(t) + Hn1(t − δ) (49)

and

[Q1]
y+

r

y−

r
= 0, [

∂Q1

∂y
]y

+
r

y−

r
= −n1(t) + Hn1(t − δ) (50)

Eigenmodes of (48) have a simple exponential behaviour in time

Q1(y, t) = exp(λt/τ) n̂1(λ)Q̂1(y, λ), n1(t) = exp(λt/τ) n̂1(λ)

and obey an ordinary differential equation in y

λQ̂1(y, λ) = L[Q̂1](y, λ) + e−λδ/τ

(

G
dQ0

dy
+

H

2

d2Q0

dy2

)

(51)

together with the boundary conditions

Q̂1(yθ, t) = 0,
∂Q̂1

∂y
(yθ) = −1 + H exp(−λδ/τ),

and similar conditions at yr.
The general solution of Eq.(51) can be written as a linear superposition of two

independent solutions φ1,2 of the homogeneous equation 1/2φ′′ + yφ′ + (1− λ)φ = 0
plus a particular solution which can be obtained by differentiating Eq. (43) with
respect to y,

Q̂1(y, λ) =

{

α+
1 (λ)φ1(y, λ) + β+

1 (λ)φ2(y, λ) + Q̂p
1(y, λ) y > yr

α−
1 (λ)φ1(y, λ) + β−

1 (λ)φ2(y, λ) + Q̂p
1(y, λ) y < yr

(52)

with

Q̂p
1(y, λ) = e−λδ/τ

(

G

1 + λ

dQ0(y)

dy
+

H

2(2 + λ)

d2Q0(y)

dy2

)

(53)

Solutions of the homogeneous equation 1/2φ′′+yφ′+(1−λ)φ = 0 can be obtained
by their series expansion around y = 0. They are found to be a linear combination
of two functions. The first one can be chosen as

φ1(y, λ) = 1 +
+∞
∑

n=1

(−1)n (2y)2n

(2n)!

n−1
∏

k=0

(k +
1 − λ

2
) (54)
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It coincides with the confluent hypergeometric function M [(1 − λ)/2, 1/2,−y2] (see
e.g. Abramovicz and Stegun 1970) . A second independent solution can also be
expressed in terms of the hypergeometric function M as

2yM

(

1 − λ

2
,
3

2
,−y2

)

= 2y +
+∞
∑

n=1

(−1)n (2y)2n+1

(2n + 1)!

n
∏

k=1

(k − λ

2
) (55)

The asymptotic behaviour of both functions can conveniently be obtained from the
following integral representations valid for Re(λ) < 1/2

φ1(y, λ) =
1

Γ(1−λ
2

)

∫ +∞

0
dt e−t cos(2y

√
t)t−

1+λ
2

2yM

(

1 − λ

2
,
3

2
,−y2

)

=
1

Γ(1 − λ
2
)

∫ +∞

0
dt e−t sin(2y

√
t)t−

1+λ
2 (56)

(after replacing the cosine and sine in (56) by their series expansions it is easily
checked that the obtained series in powers of yn coincide with (54) and (55)). The
following asymptotic behaviours are found for y → −∞

φ1(y, λ) ∼
√

π

|y|1−λΓ(λ/2)
(57)

2yM

(

1 − λ

2
,
3

2
,−y2

)

∼ −
√

π

|y|1−λΓ[(1 + λ)/2]
(58)

We find it convenient to choose φ2(y, ω) as the particular combination of these two
functions which decays exponentially (i.e. like |y|−λ exp(−y2)) at y = −∞,

φ2(y, ω) =

√
π

Γ
(

1+λ
2

) M

(

1 − λ

2
,
1

2
,−y2

)

+

√
π

Γ
(

λ
2

) 2yM

(

1 − λ

2
,
3

2
,−y2

)

(59)

Thus for Q̂1(y, t) to be integrable on [−∞, yθ] we need to require α−
1 = 0 in (52).

For further reference, we give the asymptotic behaviour for λ2 = Im(λ) → +∞,

φ1(y, λ1 + iλ2) ∼ cosh[y
√

λ2 − iλ1(1 + i)] exp(−y2/2) (60)

φ2(y, λ1 + iλ2) ∼
√

π

Γ
(

1+λ
2

) exp[y
√

λ2 − iλ1(1 + i) − y2/2] (61)

where the determination of the square root is fixed by requiring it to be positive for
λ1 = 0.

Finally, we note that the Wronskian Wr of φ1 and φ2 obeys the first order equation
Wr′ = −2yWr and has therefore the simple expression

Wr(φ1, φ2) ≡ φ1φ
′
2 − φ′

1φ2 =
2
√

π

Γ(λ/2)
exp(−y2) (62)

(the prefactor being fixed by (60,61)).
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The four boundary conditions (49,50) give a linear system of four equations for
the four remaining unknowns α+

1 , α−
1 , β+

1 and β−
1 . The condition α−

1 = 0 needed
to obtain an integrable Q̂1(y, t) gives the eigenfrequencies of the linear equation
(48). To obtain the required solvability condition and the allied solutions, we find it
convenient to use first the two boundary conditions (49) to obtain α+

1 and β+
1 . This

gives

α+
1 =

1

Wr(yθ)

{

φ2(yθ)(1 − He−λδ/τ ) − W2

[

Q̂p
1

]

(yθ)
}

(63)

β+
1 = − 1

Wr(yθ)

{

φ1(yθ)(1 − He−λδ/τ ) − W1

[

Q̂p
1

]

(yθ)
}

(64)

where Wr denotes the Wronskian of φ1 and φ2, Eq. (62), and Wj(j = 1, 2) the
Wronskian of the function in its argument and φ1,2

Wj

[

Q̂
]

≡ Q̂φ′
j − Q̂′φj for j = 1, 2.

For matters of convenience we define φ̃1,2 and W̃1,2 by

φ̃1,2 =
φ1,2

Wr
, W̃1,2

[

Q̂p
1

]

=
W1,2

[

Q̂p
1

]

Wr

The two boundary conditions at y = yr (50) give similar equations for α+
1 − α−

1 and
β+

1 − β−
1 with yθ replaced by yr

α−
1 = α+

1 − φ̃2(yr)(1 − He−λδ/τ ) −
[

W̃2

[

Q̂p
1

]

(y)
]y+

r

y−

r

(65)

β−
1 = β+

1 + φ̃1(yr)(1 − He−λδ/τ ) −
[

W̃1

[

Q̂p
1

]

(y)
]y+

r

y−

r

The two expressions (63,65) together with α−
1 = 0 give the solvability condition and

the equation for the eigenfrequencies of (48)
(

φ̃2(yθ) − φ̃2(yr)
)

(1 − He−λδ/τ ) = W̃2

[

Q̂p
1

]

(yθ) −
[

W̃2

[

Q̂p
1

]

(y)
]y+

r

y−

r

(66)

When the synaptic time δ becomes much smaller than τ , the roots λ of this
equation become large. Considering for definiteness roots λ = λ1 + iλ2 with λ2 > 0,
in the limit |λ| → +∞, λ2 → +∞, one obtains from (61) that ∂yφ2(yθ) ≫ ∂yφ2(yr)
and ∂yφ2(yθ) ∼

√
λ2 − iλ1(1 + i)φ2. We then note that for Eq. (66) to have such

a root, we need G ∼
√

|λ|. Since H < 1 by definition, we can neglect the terms

proportional to H in Q̂p
1 and finally obtain

G
e−λδ/τ

λ

√

λ2 − iλ1(1 + i) = −1 + He−λδ/τ (67)

We focus on the root with the largest real part (together with its complex conjugate).
Its real part becomes positive, λ = iλ2 = iωc when

1 − He−iωcδ/τ +
(1 − i)Ge−iωcδ/τ

√
ωc

= 0

i.e.
G =

√
ωc sin (ωcδ/τ)

H = sin (ωcδ/τ) + cos (ωcδ/τ) .
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B Weakly non-linear analysis

Our aim is to determine the lowest non-linear terms which saturate the instability
which appears when one crosses the critical line in the plane µext, σext. This deter-
mines the amplitude of the collective oscillation as well as the nonlinear contribution
to its frequency in the vicinity of (Gc, Hc). We follow the usual strategy of pushing
the development (47) to higher order. One finds that the nth-order term obey in-
homogeneous linear equations with forcing terms formed by quadratic combinations
of lowest-order terms. We first determine the second-order terms which are forced
by quadratic combination of first-order terms and therefore oscillate at 0 and 2ωc.
At third order, the coupling between first and second order term generate forcing
terms at ωc and 3ωc. While there is no problem to determine the 3ωc contribution,
the ωc forcing is resonant and generates secular terms. The dynamics of the first-
order terms amplitude is determined by the requirement that it cancels the unwanted
secular contribution. The computation is not specially difficult but rather long.

We substitute the developments (47) of Q(y, t) and n(t) in Eq. (17) anticipating
that the development parameter is of order of the square root of the differences
G−Gc, H −Hc. Departure of G from Gc and of H from Hc will therefore only affect
the third-order terms.

The first-order terms have already been obtained,

Q1(y, t) = eiωct/τ n̂1Q̂1(y, iωc) + c.c.

n1(t) = eiωct/τ n̂1(iωc) + c.c. (68)

where Q̂1 is given by Eqs. (52,53,63, 64). In Eq. (68), we recall that c.c. means
that complex conjugate terms to those explicitly written have to be added. In the
following, we omit the explicit mention of the variable λ to lighten the notation since
functions of λ will all be evaluated at iωc (except when explicitly specified otherwise).

By differentiation of Eq. (48), one can easily obtain recursively the values of
higher derivatives of Q̂1 at y = yθ and their discontinuities at y = yr, which will be
used in the following.

B.1 Second order

We first determine the second-order terms. They obey the equation

τ
∂Q2

∂t
= L[Q2] + n2(t − δ)

(

Gc
dQ0

dy
+

Hc

2

d2Q0

dy2

)

+ n1(t − δ)

(

Gc
∂Q1

∂y
+

Hc

2

∂2Q1

∂y2

)

(69)
together with the boundary conditions

Q2(yθ, t) = 0,
∂Q2

∂y
(yθ) = −n2(t)+Hn2(t− δ)−H2n2

1(t− δ)+Hn1(t)n1(t− δ) (70)

and a similar condition in yr.
From (68), the forcing term on the r.h.s of Eq. (69) contains terms at frequencies

2ωc and 0. Therefore, we search Q2(y, t) and n2(t) under the form

Q2(y, t) = e2iωct/τ n̂2
1Q̂2,2(y) + e−2iωct/τ (n̂∗

1)
2Q̂∗

2,2(y) + Q̂2,0|n̂1|2 (71)

n2(t) = e2iωct/τ n̂2
1ρ2,2 + e−2iωct/τ (n̂∗

1)
2ρ⋆

2,2 + |n̂1|2ρ2,0 (72)
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Substitution of (72) into (69) shows that Q̂2,2 obeys the ordinary differential
equation

(2iωc − L)Q̂2,2(y) = ρ2,2e
−2iωcδ/τ

(

Gc
dQ0

dy
+

Hc

2

d2Q0

dy2

)

+ e−iωcδ/τ

(

Gc
∂Q̂1

∂y
+

Hc

2

∂2Q̂1

∂y2

)

(73)

together with the boundary conditions

Q̂2,2(yθ, t) = 0,
∂Q̂2,2

∂y
(yθ) = −ρ2,2 + He−2iωcδ/τρ2,2 − H2e−2iωcδ/τ + He−iωcδ/τ

and a similar condition in yr.
As above, the general solution of (73) is written as a superposition of solution of

the homogeneous equation and a particular solution

Q̂2,2(y) =

{

α+
2 φ1(y, 2iωc) + β+

2 φ2(y, 2iωc) + ρ2,2Q̂
so
2,2 + Q̂lo

2,2 y > yr

α−
2 φ1(y, 2iωc) + β−

2 φ2(y, 2iωc) + ρ2,2Q̂
so
2,2 + Q̂lo

2,2 y < yr

(74)

where

Q̂so
2,2 = e−2iωcδ/τ

(

Gc

1 + 2iωc

dQ0

dy
+

Hc

4(1 + iωc)

d2Q0

dy2

)

Q̂lo
2,2 can be obtained by differentiation of Q0 and Q̂1 using (43) and (51) and involves

only terms of lower order which have already been determined,

Q̂lo
2,2(y) = e−iωcδ/τ

(

Gc

1 + iωc

∂Q̂1

∂y
+

Hc

2(2 + iωc)

∂2Q̂1

∂y2

)

−e−2iωcδ/τ

(

G2
c

2(1 + iωc)2

d2Q0

dy2
+

HcGc

2(1 + iωc)(2 + iωc)

d3Q0

dy3
+

H2
c

8(2 + iωc)2

d4Q0

dy4

)

The four boundary conditions for Q̂2 determine the four unknowns α+
2 , β+

2 , β−
2 , α−

2

in terms of ρ2,2 and the previously determined functions. We obtain ρ2,2 with the
integrability condition α−

2 = 0

(

φ̃2(yθ) − φ̃2(yr)
)

Hce
−iωcδ/τ (1 − Hce

−iωcδ/τ ) + W̃2

[

Q̂lo
2,2

]

(yθ) −
[

W̃2

[

Q̂lo
2,2

]

(y)
]y+

r

y−

r

(

φ̃2(yθ) − φ̃2(yr)
)

(1 − Hce−2iωcδ/τ ) − W̃2

[

Q̂so
2,2

]

(yθ) +
[

W̃2

[

Q̂so
2,2

]

(y)
]y+

r

y−

r

in which all functions are taken at argument 2iωc.
The component at frequency zero Q̂2,0 obeys

0 = L[Q̂2,0] + ρ2,0

(

Gc
dQ0

dy
+

Hc

2

d2Q0

dy2

)

+

[

e−iωcδ/τ

(

Gc
∂Q̂⋆

1

∂y
+

Hc

2

∂2Q̂⋆
1

∂y2

)

+ c.c.

]

(75)
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together with the boundary conditions

Q̂2,0(yθ, t) = 0,
∂Q̂2,0

∂y
(yθ) = −ρ2,0(1 − H) − 2H2 cos(ωcδ/τ)

and a similar condition in yr.
Its general solution can be written

Q̂2,0(y) =

{

α+
2,0Q0 + β+

2,0 exp(−y2) + ρ2,0Q̂
so
2,0(y) + Q̂lo

2,0(y) y > yr

α−
2,0Q0 + β−

2,0 exp(−y2) + ρ2,0Q̂
so
2,0(y) + Q̂lo

2,0(y) y < yr

(76)

where

Q̂so
2,0(y) =

(

Gc
dQ0

dy
+

Hc

4

d2Q0

dy2

)

and it is again convenient to construct the particular solution Qlo
2,0 by differentiation

Q̂lo
2,0(y) =

[

e+iωcδ/τ

(

Gc

1 − iωc

∂Q̂1

∂y
+

Hc

2(2 − iωc)

∂2Q̂1

∂y2

)

+ c.c.

]

−
(

G2
c

1 + ω2
c

d2Q0

dy2
+

HcGc(2 + ω2
c )

(1 + ω2
c )(4 + ω2

c )

d3Q0

dy3
+

H2
c

4(4 + ω2
c )

d4Q0

dy4

)

(77)

In this case, the four boundary conditions for Q̂2,0 are not independent and
are not sufficient to determine the four unknowns α+

2,0, α
−
2,0, β

+
2,0, β

−
2,0 in functions of

lower order terms. This comes about because some choices of Q2,0 are equivalent to
changing the normalization of Q0. One should therefore eliminate them by imposing
the condition

∫ yθ

−∞dyQ̂2,0 = 0. In this way, one obtains,

ρ2,0 =

[(

−2 Gc

1+ω2
c
γG + Hc

4+ω2
c
γH

)

ey2 ∫ y
−∞due−u2

]yθ

yr

+ γI

1
2ν0

+
[(

Gc − Hcy
2

)

ey2 ∫ y
−∞due−u2

]yθ

yr

(78)

where

γG(y) = Gcy + cos(ωcδ/τ) − ωc sin(ωcδ/τ) − Hc(2y
2 + 1)

3

γH(y) = 4y cos(ωcδ/τ) − 2yωc sin(ωcδ/τ) +
4Gc(2y

2 + 1)

3
− Hc(2y

3 + 3y)

γI = −2(yθ − yr)GcHc
2 + ω2

c

(1 + ω2
c )(4 + ω2

c )
+

H2
c (y2

θ − y2
r)

4 + ω2
c

(the notation [f ]yθ
yr

≡ f(yθ) − f(yr) is used). The derivatives of higher order of Q̂2,2

and Q̂2,0, which are used in the following, can be obtained recursively by differenti-
ation of Eq. (73) and (75).
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B.2 Third order

We can now proceed and study the third order terms. They obey the equation

τ
∂Q3

∂t
= L[Q3] + n3(t − δ)

(

Gc
dQ0

dy
+

Hc

2

d2Q0

dy2

)

+n2(t − δ)

(

Gc
∂Q1

∂y
+

Hc

2

∂2Q1

∂y2

)

+ n1(t − δ)

(

Gc
∂Q2

∂y
+

Hc

2

∂2Q2

∂y2

)

+n1(t − δ)

(

(G − Gc)
dQ0

dy
+

(H − Hc)

2

d2Q0

dy2

)

−
{

τ
dn̂1

dt
Q̂1e

iωct/τ + δ
dn̂1

dt
eiωc(t−δ)/τ

(

Gc
dQ0

dy
+

Hc

2

d2Q0

dy2

)

+ c.c.

}

(79)

together with boundary conditions

Q̂3(yθ) = 0

∂Q̂3

∂y
(yθ) = −n3(t) + Hn3(t − δ) − 2H2n1(t − δ)n2(t − δ)

+H (n1(t)n2(t − δ) + n1(t − δ)n2(t)) + H3n3
1(t − δ) − H2n1(t)n

2
1(t − δ)

+(H − Hc)n1(t − δ) − Hδ
dn̂1

dt
eiωc(t−δ)/τ (80)

and a similar condition holds at yr.
The last two terms between brackets on the r.h.s. of (79) come from the antici-

pation that it will be needed to have n̂1 change on a slow time scale to cancel secular
terms. The first term arises from the explicit time differentiation in Eq. (40) and does
not need special explanations. The second is less usual and comes from the delayed
forcing ν(t − δ) in (40). Formally introducing a slow time scale T = ǫt, the delayed
forcing is written ν(t− δ, T − ǫδ). The second term between brackets in (79) is pro-
duced by the expansion to first-order in ǫ ν(t−δ, T −ǫδ) = ν(t−δ)−ǫ∂T ν(t−δ)+· · ·.
The last term in the boundary condition (80) appears in the same way.

The forcing terms on the r.h.s. of (79) oscillate at frequencies 3ωc and ωc. There-
fore, we search Q3(y, t) and n3(t) under the form

Q3(y, t) = e3iωct/τ Q̂3,3(y) + eiωct/τ Q̂3,1(y) + c.c.

n3(t) = e3iωct/τ n̂3,3 + eiωct/τ n̂3,1 + c.c. (81)

We focus on the terms at frequency ωc which are resonant with the first order terms.
They obey the equation

(iωc − L)Q̂3,1(y) = n̂3,1e
−iωcδ/τ

(

Gc
dQ0

dy
+

Hc

2

d2Q0

dy2

)

+|n̂1|2n̂1

{

ρ22e
−2iωcδ/τ

(

Gc
∂Q̂⋆

1

∂y
+

Hc

2

∂2Q̂⋆
1

∂y2

)

+ ρ20

(

Gc
∂Q̂1

∂y
+

Hc

2

∂2Q̂1

∂y2

)

+ e−iωcδ/τ

(

Gc
∂Q̂2,0

∂y
+

Hc

2

∂2Q̂2,0

∂y2

)

+ eiωcδ/τ

(

Gc
∂Q̂2,2

∂y
+

Hc

2

∂2Q̂2,2

∂y2

)}
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+n̂1e
−iωcδ/τ

(

(G − Gc)
dQ0

dy
+

(H − Hc)

2

d2Q0

dy2

)

−τ
dn̂1

dt
Q̂1 − e−iωcδ/τδ

dn̂1

dt

(

Gc
dQ0

dy
+

Hc

2

d2Q0

dy2

)

(82)

The general solution of (82) can be written

Q̂3(y) =

{

α+
3 φ1(y, iωc) + β+

3 φ2(y, iωc) + n̂3,1Q̂
p
1 + Q̂lo

3,1 y > yr

α−
3 φ1(y, iωc) + β−

3 φ2(y, iωc) + n̂3,1Q̂
p
1 + Q̂lo

3,1 y < yr

(83)

In the particular solution, Q̂p
1 is the function that appears at first order, Eq. (53),

and as before, we can construct Q̂lo
3,1 by differentiation of lower order terms:

Q̂lo
3,1 = τ

dn̂1

dt
Q̂d

3,1 + n̂1Q̂
l
3,1 + n̂1|n̂1|2Q̂c

3,1 (84)

where Q̂d
3,1 is obtained from Q̂1 by differentiation of φ1,2 and Q̂p

1 with respect to λ

Q̂d
3,1(y) =

{

α+
1 ∂λφ1(y, iωc) + β+

1 ∂λφ2(y, iωc) + ∂λQ̂
p
1(y, iωc) y > yr

β−
1 ∂λφ2(y, iωc) + ∂λQ̂

p
1(y, iωc) y < yr,

(85)

Q̂l
3,1 = e−iωcδ/τ

(

(G − Gc)

1 + iωc

dQ0

dy
+

(H − Hc)

2(2 + iωc)

d2Q0

dy2

)

, (86)

and

Q̂c
3,1 = eiωcδ/τ

(

Gc

1 − iωc

∂Q̂2,2

∂y
+

Hc

2(2 − iωc)

∂2Q̂2,2

∂y2

)

+ e−iωcδ/τ

(

Gc

1 + iωc

∂Q̂2,0

∂y
+

Hc

2(2 + iωc)

∂2Q̂2,0

∂y2

)

+ ρ2,0

(

Gc
∂Q̂1

∂y
+

Hc

4

∂2Q̂1

∂y2

)

+ ρ2,2e
−2iωcδ/τ

(

Gc

1 + 2iωc

∂Q̂⋆
1

∂y
+

Hc

4(1 + iωc)

∂2Q̂⋆
1

∂y2

)

− Gc

1 + ω2
c

(

Gc
∂2Q̂1

∂y2
+

Hc

3

∂3Q̂1

∂y3

)

− 2
Hc

4 + ω2
c

(

Gc

3

∂3Q̂1

∂y3
+

Hc

8

∂4Q̂1

∂y4

)

− e−2iωcδ/τ Gc

1 + iωc

(

Gc

2(1 + iωc)

∂2Q̂⋆
1

∂y2
+

Hc

2(3 + 2iωc)

∂3Q̂⋆
1

∂y3

)

− e−2iωcδ/τ Hc

2(2 + iωc)

(

Gc

3 + 2iωc

∂3Q̂⋆
1

∂y3
+

Hc

4(2 + iωc)

∂4Q̂⋆
1

∂y4

)

− ρ2,2e
−iωcδ/τGc

2 + iωc

(1 − iωc)(1 + 2iωc)

(

Gc

2 + iωc

d2Q0

dy2
+

Hc

2(3 + iωc)

d3Q0

dy3

)

− ρ2,0e
−iωcδ/τGc

2 + iωc

1 + iωc

(

Gc

2 + iωc

d2Q0

dy2
+

Hc

2(3 + iωc)

d3Q0

dy3

)

− ρ2,2e
−iωcδ/τHc

4 + iωc

4(1 + iωc)(2 − iωc)

(

Gc

3 + iωc

dQ3
0

dy3
+

Hc

2(4 + iωc)

d4Q0

dy4

)
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− ρ2,0e
−iωcδ/τHc

4 + iωc

4(2 + iωc)

(

Gc

3 + iωc

d3Q0

dy3
+

Hc

2(4 + iωc)

d4Q0

dy4

)

+ e−iωcδ/τG2
c

3 + iωc

2(1 − iωc)(1 + iωc)2

(

Gc

3 + iωc

d3Q0

dy3
+

Hc

2(4 + iωc)

d4Q0

dy4

)

+ e−iωcδ/τ GcHc

6

(

2

1 + ω2
c

+
4

4 + ω2
c

+
3

(1 + iωc)(2 + iωc)

)

(

Gc

4 + iωc

d4Q0

dy4
+

Hc

2(5 + iωc)

d5Q0

dy5

)

+ e−iωcδ/τH2
c

6 + iωc

8(2 + iωc)2(2 − iωc)

(

Gc

5 + iωc

d5Q0

dy5
+

Hc

2(6 + iωc)

d6Q0

dy6

)

(87)

Now, upon replacing α−
3 = 0 one can try to determine α+

3 , β+
3 , β−

3 , n̂3 from the
four boundary conditions on Q̂3,1(y). This provides a linear inhomogeneous system

for the four unknowns. The inhomogeneous terms are made from Q̂lo
3,1(y) and its

derivatives evaluated at yθ and yr. But there is a difficulty : since we are considering
the resonant part of the third order terms, the linear operator coincides with the 4×4
matrix obtained at first order which has been required to have a zero determinant.
So, the equations for α+

3 , β+
3 , β−

3 , n̂3 are solvable only if the inhomogeneous terms
obey a solvability condition. In order to obtain it, we find it convenient to proceed
as we did at linear order (see Eq. (63, 65)). We obtain α+

3 and β+
3 in terms of n̂3,1 and

Q̂lo
3 from the 2×2 system given by the two boundary conditions at yθ. We then obtain

similar expressions for α+
3 and β+

3 − β−
3 . Comparing the two obtained expressions

for α+
3 and requiring them to be identical provides the solvability condition,

(

φ̃2(yθ) − φ̃2(yr)
)

Ω = W̃2

[

Q̂lo
3,1

]

(yθ) −
[

W̃2

[

Q̂lo
3,1

]

(y)
]y+

r

y−

r

(88)

where

Ω = −δ

τ
He−iωcδ/τ dn̂1

dt
− n̂1Ω1 − n̂1|n̂1|2Ω3

Ω1 = (H − Hc)e
−iωcδ/τ

Ω3 = −2H2
c e−iωcδ/τ (ρ22 + ρ20) + 3H3

c e−iωcδ/τ

+ Hc

[

ρ22(e
−2iωcδ/τ + eiωcδ/τ ) + ρ20(1 + e−iωcδ/τ )

]

− H2
c (2 + e−2iωcδ/τ ) (89)

With the help of Eqs. (84,85,86,87), this gives the searched for equation of motion
for n̂1

τ
dn̂1

dT
= Aν̂1 − B|ν̂1|2ν̂1 (90)

in which

A =
−W̃2

[

Q̂l
3,1

]

(yθ) +
[

W̃2

[

Q̂l
3,l

]

(y)
]y+

r

y−

r

−
(

φ̃2(yθ) − φ̃2(yr)
)

Ω1

W̃2

[

Q̂d
3,1

]

(yθ) −
[

W̃2

[

Q̂d
3,1

]

(y)
]y+

r

y−

r

+
(

φ̃2(yθ) − φ̃2(yr)
)

δ
τ
He−iωcδ/τ

(91)
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B =
W̃2

[

Q̂c
3,1

]

(yθ) −
[

W̃2

[

Q̂c
3,1

]

(y)
]y+

r

y−

r

+
(

φ̃2(yθ) − φ̃2(yr)
)

Ω3

W̃2

[

Q̂d
3,1

]

(yθ) −
[

W̃2

[

Q̂d
3,1

]

(y)
]y+

r

y−

r

+
(

φ̃2(yθ) − φ̃2(yr)
)

δ
τ
He−iωcδ/τ

(92)

These expressions simplifies in the limit δ/τ → 0. In the particular case H = 0, one
obtains Eq. (23) of the main text.

C Effect of noise due to finite-size effects

Inserting the noise in Eq. (79), we obtain

τ
dn̂1

dt
= An̂1 − B|n̂1|2n̂1 + D

√
τζ(t) (93)

in which A and B are given by Eqs. (91,92), while D is

D = η
−W̃2

[

Q̂noise

]

(yθ) +
[

W̃2

[

Q̂noise

]

(y)
]y+

r

y−

r

W̃2

[

Q̂d
3,1

]

(yθ) −
[

W̃2

[

Q̂d
3,1

]

(y)
]y+

r

y−

r

(94)

where

Q̂noise =
e−iωcδ/τ

1 + iωc

dQ0

dy

η is given by Eq. (27), and ζ is a complex white noise such that < ζ(t)ζ⋆(t′) >=
δ(t − t′)

The autocorrelation at zero time C(0) is given by

C(0) = 1 + 2 < |n̂1(t)|2 >

We deduce from Eq. (93) the Fokker-Planck equation describing the evolution of the
p.d.f. of both real and imaginary parts of n̂1. This equation can be converted in an
equation giving the stationary distribution Pr(ρ) of ρ ≡ |n̂1|2. It satisfies

∂

∂ρ

(

|D|2ρ∂ Pr

∂ρ

)

=
∂

∂ρ

([

2Arρ − 2Brρ
2
]

Pr
)

whose solution is

Pr(ρ) =
exp

(

2 Ar

|D|2
ρ − Br

|D|2
ρ2
)

∫∞
0 exp

(

2 Ar

|D|2
R − Br

|D|2
R2
)

dR

and the autocorrelation at zero lag is

C(0) = 1 + 2

∫∞
0 R exp

(

2 Ar

|D|2
R − Br

|D|2
R2
)

dR
∫∞
0 exp

(

2 Ar

|D|2
R − Br

|D|2
R2
)

dR

From this exact expression, it is not difficult to obtain the expressions (29,30,31) of
the main text.
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From Eq. (93), one can compute the behavior of the autocorrelation function
C(s). Far below the critical line, |n̂1| is small and the nonlinear term can be ne-
glected. It is then easy to obtain Eq. (32) of the main text.

In the oscillatory regime far above the critical line, finite size effects provoke
fluctuations of activity around the oscillation described by Eq. (24). We consider a
small perturbation, both in amplitude and in phase, of the ‘pure’ oscillation n̂1 →
n̂1(1 + r) exp(iφ). r is the perturbation in amplitude, while φ is the perturbation in
phase. To obtain the evolution equations for r and φ we apply standard stochastic
calculus techniques (see e.g. Gardiner 1983, chapter 4), and obtain,

τ ṙ = −Ar(2r + 3r2 + r3) + ǫζr + ǫ2 1

2(1 + r)
, (95)

τφ̇ = −BiAr

Br
(2r + r2) + ǫ

ζi

1 + r
(96)

in which ǫ = |D|/R, and ζr, ζi are uncorrelated white noises. Note that the last term
in the r.h.s. of Eq. (95) appears due to the fact that, upon discretizing Eq. (93) with
a small time step dt, φ(t + dt) − φ(t) is of order

√
dt, not dt. The calculation of the

autocorrelation in terms of r and φ gives, keeping only the dominant term,

C(s) = 1 + 2R2 < cos ((ωc + ∆ω)s/τ + φ(t + s) − φ(t)) > .

In order to calculate the autocorrelation we need to calculate the distribution of
∆φ(s) = φ(t+ s)−φ(t). From Eqs. (95,96) we find that, to leading order in ǫ, it has
a Gaussian distribution with mean 0 and variance

γ2(s) =
|D|2
2R2

[

s

τ
+

B2
i

2B2
rAr

{

exp
(

−2Ars

τ

)

− 1 +
2Ars

τ

}

]

Averaging cos((ωc + ∆ω)s/τ + ∆φ(s)) with such a distribution yields

C(s) = 1 + 2R2 cos ((ωc + ∆ω)s/τ) exp
(

−γ2(s)/2
)

We find a damped cosine function as below the critical lines, but now the damping
factor is no longer a simple exponential. For small times s ≪ τ/(BrR

2), the damping
is described by

exp

(

−γ2(s)

2

)

∼ exp

(

−|D|2
4R2

s

τ

)

while for long times s ≫ τ/(BrR
2)

exp

(

−γ2(s)

2

)

∼ exp

(

−|D|2
4R2

(

1 +
B2

i

B2
r

)

s

τ

)

The damping time constant in both regimes is proportional to 1/|D|2 ∼ N/C, i.e. to
the inverse of the connection probability. When N goes to infinity at C fixed the
‘coherence time’ of the oscillation increases linearly with N .

The next order in ǫ brings (after a rather tedious calculation) a small additional
contribution to the variance, so that for long times

exp

(

−γ2(s)

2

)

= exp

(

−|D|2
4R2

(

1 +
B2

i

B2
r

)

s

τ

[

1 +
|D|2
2Ar

+ O
(

|D|4
)

])
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D Randomly distributed synaptic times

The calculations performed in the case in which all synaptic times have the same
value can be repeated in the more general situation in which synaptic times are drawn
randomly and independently at each site with distribution Pr(δ). The difference is
that, in all equations were functions of δ appears, we need to integrate these functions
with the p.d.f.Pr(δ). For example, we find that the critical line where the instability
appears is given by

(

φ̃2(yθ) − φ̃2(yr)
)

(

1 − H
∫

Pr(δ)e−wδ/τdδ
)

= W̃2

[

Q̂p
1

]

(yθ)−
[

W̃2

[

Q̂p
1

]

(y)
]y+

r

y−

r

(97)

in which

Q̂p
1(y, w) =

∫

Pr(δ)e−wδ/τdδ

(

G

1 + w

dQ0(y)

dy
+

H

2(2 + w)

d2Q0(y)

dy2

)

(98)

E Inhomogeneous networks

We now relax the constraint that the number of connections received by a neuron be
precisely equal to C. The connections are randomly and independently drawn at each
possible site. They are present with probability C/N . In this situation, the dynamics
of different neurons will depend on this number of connections they receive: this
number is now a random variable with mean C and variance C(1− ǫ). For example,
their frequency will be a decreasing function of the number of connections. The
connectivity matrix is defined by Jij = Jeij where for all i, j eij = 1 with probability
ǫ. The distribution of frequencies in the stationary state in such a situation has been
obtained, for the case of a network with both excitatory and inhibitory neurons, by
(Amit and Brunel 1997b). The distribution of stationary frequencies can be obtained
as a special case of this analysis. We briefly recall here the main steps of this analysis,
before turning to the stability analysis.

Averaging the synaptic input only on the randomness of spike emission times of
presynaptic neurons, we get that the mean and the variance of local inputs are given
by

µi = Jτ
∑

j

eijνj, σ2
i = J2τ

∑

j

eijνj.

Since the number of inputs to each neuron is very large, the spatial distribution
of the variable

∑

j eijνj , which determines completely the spatial distribution of µ
and σ, will be close to a Gaussian whose two first moments can be calculated as a
function of the two first moments of the spatial distribution of frequencies:

<
∑

j

eijνj >= Cν

<





∑

j

eijνj − Cν





2

>= C
(

ν2 − ǫν2
)
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Thus the variable

zi =

∑

j eijνj − Cν
√

C
(

ν2 − ǫν2
)

has a Gaussian distribution, ρ(z) = exp(−z2/2)/
√

2π. Thus a neuron receives, with
probability ρ(z), a local input with moments

µ(z) = −Jτ(Cν + z

√

C
(

ν2 − ǫν2
)

) (99)

and

σ2(z) = J2τ(Cν + z

√

C
(

ν2 − ǫν2
)

) (100)

E.1 Distribution of frequencies in stationary state

In the stationary state the frequency of a neuron with moments µ(z) and σ(z) is
given by

ν0(z) =

(

τ
√

π
∫

θ−µ(z)
σ(z)

Vr−µ(z)
σ(z)

du exp(u2)(1 + erf(u))

)−1

(101)

The two first moments of the distribution of frequencies can then be determined in
a self-consistent way, using

ν0 =
∫

dzρ(z)ν0(z), ν2
0 =

∫

dzρ(z)ν2
0 (z)

These equations, together with Eqs. (99,100,101), fully determine the whole distri-
bution of stationary frequencies, which can be obtained using the relation

P (ν) =
∫

dzρ(z)δ(ν − ν0(z))

E.2 Linear stability analysis

The linear stability analysis of Section A can be generalized to the inhomogeneous
network. We give here the main steps of this analysis.

We expand the frequencies around the stationary frequency,

ν(z) = ν0(z) (1 + n1(z, t) + . . .) ,

and, defining for each z y = (x − µ0(z))/σ0(z),

P =
2τν0(z)

σ0(z)
(Q0(y, z) + Q1(y, z, t) + . . .)

The moments of the spatial distribution of frequencies can be expanded in the same
way,

ν = ν0 (1 + n1(t) + . . .) ,

ν2 = ν2
0

(

1 + n2
1(t) + . . .

)

,
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where

n1(t) =
1

ν0

∫

dzρ(z)ν0(z)n1(z, t)

n2
1(t) =

2

ν2
0

∫

dzρ(z)ν2
0 (z)n1(z, t)

The Fokker-Planck equation at first order is

τ
∂Q1

∂t
= L[Q1] +

(

H1(z)n1(t − δ) + H2(z)n2
1(t − δ)

)

2

∂2Q1

∂y2

+
(

G1(z)n1(t − δ) + G2(z)n2
1(t − δ)

) ∂Q1

∂y
(102)

where

G1(z) =
JCν0τ − ǫJτz

√

C
(

ν2
0 − ǫν2

0

)

ν2
0

ν2
0−ǫν2

0

σ0(z)

G2(z) =
Jτz

√

C
(

ν2
0 − ǫν2

0

)

ν2
0

ν2
0−ǫν2

0

2σ0(z)

H1(z) =
J2Cν0τ − ǫJ2τz

√

C
(

ν2
0 − ǫν2

0

)

ν2
0

ν2
0−ǫν2

0

σ2
0(z)

H2(z) =
J2τz

√

C
(

ν2
0 − ǫν2

0

)

ν2
0

ν2
0−ǫν2

0

2σ2
0(z)

The eigenmodes of Eq. (102) can be written

Q1(y, z, t) = Q̂1(y, z) exp(iωt/τ) + c.c.

n1(z, t) = n̂1(z) exp(iωt/τ) + c.c.

leading to the solvability conditions, for each z

n̂1(z) = I(z)n̂1 + J(z)n̂2
1

where

I(z) =
W̃2 [R1] (yθ) −

[

W̃2 [R1] (y)
]y+

r

y−

r

+ H1(z)e−iωδ/τ
(

φ̃2(yθ) − φ̃2(yr)
)

φ̃2(yθ) − φ̃2(yr)

J(z) =
W̃2 [R2] (yθ) −

[

W̃2 [R2] (y)
]y+

r

y−

r

+ H2(z)e−iωδ/τ
(

φ̃2(yθ) − φ̃2(yr)
)

φ̃2(yθ) − φ̃2(yr)

with

R1,2 = e−iωδ/τ

(

G1,2(z)

1 + iw

dQ0(y)

dy
+

H1,2(z)

2(2 + iw)

d2Q0(y)

dy2

)

(103)
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Multiplying the above equation by ρν0 (2ρν2
0) and integrating with respect to z we

obtain

n̂1 =
< ν0I >

ν0
n̂1 +

< ν0J >

ν0
n̂2

1

n̂2
1 = 2

< ν2
0I >

ν2
0

n̂1 + 2
< ν2

0J >

ν2
0

n̂2
1

where we use the notation < . . . >=
∫

dzρ(z) . . .. The instability point together with
the associated frequency are given by the condition that the associated determinant
vanishes, i.e.

1 =
< ν0I >

ν0

+ 2
< ν2

0J >

ν2
0

+ 2
< ν2

0I >< ν0J > − < ν2
0J >< ν0I >

ν0ν
2
0

The relative degree of synchrony of population z with the collective oscillation is
given by

n̂1(z) = n̂1









I(z) + J(z)
2

<ν2
0I>

ν2
0

(

1 − 2
<ν2

0J>

ν2
0

)
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