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AAAAbbbbssssttttrrrraaaacccctttt: In this paper we present two methods for non-uniformity correction of imaging

array detectors based on neural networks, both of them exploit image properties to supply

lack of calibrations and maximize the entropy of the output. The first method uses a

self-organizing net that produces a linear correction of the raw data with coefficients that

adapt continuously. The second method employs a kind of contrast equalization curve to match

pixel distributions. Our work originates from Silicon detectors but the treatment is general

enough to be applicable to many kinds of array detectors like those used in Infrared imaging or

in high energy physics.

1111....    IIIInnnnttttrrrroooodddduuuuccccttttiiiioooonnnn
One substantial problem of image detectors is that of non uniform response i.e. the same

flux of photons do not produce the same output on different pixels. To restore uniformity it is

necessary to correct individually each pixel and appropriate calibration procedures can

determine the needed parameters.

In a certain detectors like Infrared [Scribner 1991 & 1993, Bolduc 1996] and Silicon

detectors [Arfelli 1996], intrinsic instabilities require frequent re-calibrations. We propose

here two new neural networks for continuous detector self adjustment eliminating the need of

specific, repeated, calibrations. Our idea traces back to the observation that biological

photoreceptors do not need calibrations and still can cope with substantially different pixel

responses.

Purpose of this paper is to show that itÕs possible to calculate pixel parameters without

explicit calibrations substituting the lacking information with some hypotheses on incoming

data. A simple example is this: if one knows that pixel A always receives the same flux of

pixel B, then, after a few images, one can get the relative calibration of A and B: the

knowledge that A and B must see the same partly replaces information that would come from

a calibration.

We will present two different methods, based on two different sets of hypotheses. Our

first method make the hypothesis that images arriving on the detector follow a Gibbs
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distribution [Rangarajan 1995]; from here we derive a learning rule for a self-organizing

network of the type analyzed by Yuille [YuilleÊ1995] that can correct pixel inequalities.

Our second method makes two hypotheses: that all pixels have same distribution and that

the mutual information of the data channel is maximal (see e.g. [LaughlinÊ1987] and

[AtickÊ1992]). Also these hypotheses suffice to design an effective self-organizing network.

In section 2 we define mathematically the problem; following sections explain the

underlying theory of our networks while last section is dedicated to numerical results

obtained both on synthetic and on real world images.

2222....    SSSSttttaaaannnnddddaaaarrrrdddd    nnnnoooonnnn----uuuunnnniiiiffffoooorrrrmmmmiiiittttyyyy    ccccoooorrrrrrrreeeeccccttttiiiioooonnnn
For each pixel  i  the detected signal  xi   depends on the photon flux  φiÊ; letÕs assume

(1) xi = φi gi + oi

where  gi  and  oi  represent gain and offset of the  i-th  ensemble detector-electronics and

these coefficients embody all the details of the energy conversion process.
When a constant flux of photons hits the detector (i.e. all  φi  are equal, a Òflat fieldÓ),

one usually gets a noisy image because gain and offset are different for each pixel2. The
general problem is to find pixel coefficients  α i  and  βi  restoring uniformity in the corrected

image  yi

(2) yi = αi xi + βi ;

the ideal case is  αi = 1
gi

  and  βi = − oi
gi

  giving  yi Ê= Êφi Ê.

The first two images of figureÊ6 show examples after and before this correction. This

image is a test digital radiography recorded by the SYRMEP project (SYnchrotron Radiation

for Medical Physics, see [Arfelli 1996]) that efficiently detects  X  rays by means of a

Silicon chip subdivided in 48 pixels (diodes). Like in scanners, a bi-dimensional image is

obtained moving the detector relatively to the specimen and the complete image is built

incrementally. This explains why different gains and offsets in each pixel produce horizontal

lines in the rough image.

The traditional Ôtwo pointsÕ calibration method requires two images with known,

uniform, photon fluxes    
r
φ1  and    

r
φ2   (arrows indicate vectors and upper index images), that,

for a detector with N pixels, give rise to a system of 2ÊN equations (2)

2We ignore another source of non uniformity due to the stochastic nature of the photon

conversion process, observable for example, reading several times the same pixel at a

constant flux. This kind of noise is negligible when there are sufficiently many photons.
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αixi
j + βi = φi

j  ( i = 1, . . . , N  j = 1, 2)  in the 2ÊN unknowns  α i  and  β i  that in

block matrix form are:

(3)   X
r
c =

r
φT

where    
r
c' = α1, α2 , . . . , αN , β1, β2 , . . . , βN( )  is the 2N vector of the unknowns

('Êstands for transpose),  
  

r
φT ' = φ1

1 , φ2
1 , . . . , φN

1 , φ1
2 , φ2

2 , . . . , φN
2( )  the 2N vector of the

fluxes and  X = XD
1 1

XD
2 1







  a block square matrix, of dimension 2N, containing raw

detector data in diagonal matrices of size N  XD
j =

x1
j 0 . . . 0

0 x2
j . . . 0

. . . . . . . . . . . .

0 0 . . . xN
j



















Ê.

In non pathological cases (i.e. full rank  X Ê), the exact solution    
r
c = X−1r

φT  is:

(4)
  

r
c' = 1

g1
, . . .  ,

1
gN

, − o1

g1
, . . .  , − oN

gN






 .

When detector coefficients  gi  and  oi  vary with time this calibration procedure has to be

repeated frequently.

In most real world problems one ignores the values of the fluxes    
r
φ1  and    

r
φ2   and has

only a linear transformation of the fluxes,    a  
r
φ j + bÊ, with unknown coefficients  a  and

bÊ. In this case the general solution of (3) is a whole 2 dimensional Ôsolutions spaceÕ that can

be written as a linear combination of two linearly independent vectors

(5)   
  

r
c' = a

1
g1

, . . .  ,
1

gN
, − o1

g1
, . . .  , − oN

gN







+ b 0, . . .  , 0, 1, . . .  , 1( )

the first of which is the exact solution (4) while we call the second Ônon informative solutionÕ

because, even if it satisfies exactly our system, it produces a perfectly flat image

completely uncorrelated to the incoming flux. Any vector (5) is a valid solution and different

vectors produce equally good images differing only by overall multiplicative and additive

constants.

We examine now adaptive correction techniques that search a correction vector    
r
c

during image acquisition without a separate calibration procedure; our goal is, in a sense, to
find a solution of (3) without knowing    

r
φT Ê. Advantages are obvious: itÕs not necessary to

perform a costly calibration procedure and    
r
c  can ÔfollowÕ the detector if its properties

change in time. In the next two sections we give two different methods of adaptive calibration

both presented in the neural network paradigm.
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3333....    AAAAddddaaaappppttttiiiivvvveeee    ccccoooorrrrrrrreeeeccccttttiiiioooonnnn    bbbbyyyy    mmmmeeeeaaaannnnssss    ooooffff    fffflllluuuuxxxx    eeeessssttttiiiimmmmaaaattttiiiioooonnnn
The heart of this method is the calculation of an estimate    

r
f   to replace the real fluxes in

(3) based only on detector information and properties of natural images. We begin, along a

track opened by Scribner [Scribner 1991, Scribner 1993], presenting a simpler method to

finish with a better procedure relying on a more quantitative model of natural images

distribution that will solve the problem.

Natural images have amplitude spectra inversely proportional to the frequency in every

direction of the Fourier plane [Field 1994], this means that low spatial frequencies are the

most common ones and consequently neighboring pixels tend to see the same. This argument,

together with arguments based on the connections of biological photoreceptors and their
ability to correct adaptively, suggest to estimate the real flux  φi  by the average of

neighboring pixels

(6) f i = 1
ni

yk
k ∈Vi

∑

where  Vi  represents the set of the  ni   pixels neighboring  i. Substituting these estimates to

the real fluxes  φ i  in (3) we obtain a new system of equations

(7)     αixi
j + βi = 1

ni
αkxk

j + βk   i = 1. . . N  j = 1. . . P
k ∈Vi

∑

where  P ≥ 2  is the total number of images. To simplify the notation we introduce the

adjacency matrix  A Ê: for a detector with  N   pixels itÕs a square matrix of size  N  that

lists the adjacency relations of each pixel with the weights given by (7).

For example, in our particular case of a one dimensional detector and a set of neighbors

of two pixels,  A   is a tridiagonal matrix

(8) A =

1 −1 0 0 . . . 0

− 1
2

1 − 1
2

0 . . . 0

0 − 1
2

1 − 1
2

. . . 0

0 . . . . . . . . . . . . 0

0 . . . 0 − 1
2

1 − 1
2

0 . . . 0 0 −1 1



























and system (3) can be written succinctly using the block matrix  D   of size  N P x 2 N

(9)   D
r
c =

r
0 where D =

AXD
1 A

AXD
2 A

. . . . . .

AXD
P A
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where  XD
j   is the data matrix of (3) and    

r
c  the vector of the unknowns  α i  and  βiÊ.

Usually there are  P >> 2  images and the system    D
r
c =

r
0   is overdetermined having

more equations than unknowns. In general these systems do not admit an exact solution and

one takes as solution the vector    
r
c  that minimizes the semipositive definite quantity ( the

sum of the squared ÔremindersÕ):

(10)   
r
r '

r
r = r

c' D' D
r
c

to which we add a constraint to keep    
r
c  normalized at 1 to escape the trivial solution

  
r
c =

r
0 Ê. The quantity to minimize becomes

(11)      
r
c' D' D

r
c  +  λ (

r
c'

r
c − 1)

and deriving it with respect to    
r
c  one finds that the solution is given by the eigenvector of

D 'D   corresponding to the minimal eigenvalue. Usually this  2 N  square matrix is too

complex to be diagonalized analytically but one can gain some information from the structure

of the adjacency matrix  A Ê.

In our particular case the adjacency matrix (8) has rank  N-1Ê3 from which it derives

that  D'D   has rank  2 N-1  and thus its minimum eigenvalue is  0Ê. ItÕs easy to check that

the corresponding eigenvector is just the non informative solution of (5). This situation is not

peculiar of our detector but generalizes to most array-like detectors where the non

informative solution always satisfies the system    D
r
c =

r
0   (this derives analytically from

the boundary conditions of the adjacency matrix).

We leave aside this problem for a moment to investigate numerical methods of solution

and to show that they map easily to a neural network implementation. With the method of the

penalty function, (11) can be solved numerically minimizing

(12)      
r
c' D' D

r
c  +  q (

r
c'

r
c − 1)2

q  being a parameter. This form is semipositive definite and itÕs safe to adopt gradient

descent and the iterative rule conducing to the minimum is

(13)   
r
ct +1 = r

ct − ηD' D
r
ct  − 2 ηq(

r
c'

r
c − 1)

r
ct

η  being the usual parameter giving the step size.

This minimization process needs all  P  images already in  D  and is thus a batch process.

This rule is equivalent to a more handy on-line process [Hertz 1992, Ljung 1977] in which

every image is processed separately giving rise to the update rule

3See e.g. [Milotti 1995] or [Frison 1997] for more extensive discussions on eigenvalues and

eigenvectors of this kind of matrices.
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(14)   
r
ct +1 = r

ct − ηX̃' ÃX̃
r
ct  − 2 ηq(

r
c'

r
c − 1)

r
ct     where

X̃ = XD
t 0

0 1







and Ã =

A' A A' A

A' A A' A






XD
t   being the diagonal data matrix containing data arrived at time  tÊ. In the limit  q →  ∞

and  η  →  0Ê,    
r
ct   converges to the solution of the constrained problem (12), i.e. to the

unitary eigenvector corresponding to the minimal eigenvalue of  D 'D Ê. One can also prove

that this is the only stable solution of the system [Frison 1997].

The neural network of figureÊ1 implements rule (14) in a parallel fashion:

....

........

xi

xi+1

yi

yi+1

....

........
....
........

yi = αi xi + βi

Inputs Outputs
....
........

FFFFiiiigggg....    1111: Uniformity correction network: inputs come from the detector and outputs carry

data corrected with (2). Each neuron receives its neighborsÕ outputs and uses them to

update its weights with algorithm (14) or (19).

raw data arriving from the detector feeds the input of a layer of neurons, one for each
detector pixel and each neuron implements equation (2) transforming raw data  xi   into

corrected data  yi Ê. In this view the coefficients  αi  and  βi  represent the weight and the

threshold of each linear neuron. Beyond these connections each neuron receives also the

outputs of its immediate neighbors (there are no constraints on the neighborhood structure)
using them to implement learning rule (14) that modifies coefficients  αi  and  βiÊ. We note

that the network is not truly local because the second term of (14), normalizing the solution,

needs data from all the neurons.

This network behaves as expected converging quickly to the eigenvector of the minimal

eigenvalue of  D'D Ê. Unfortunately, as already noted, this solution corresponds to the non

informative solution and thus, when tested on real data, after a few epochs the output fades

reducing to a constant output independent on whatÕs on the input. In order to avoid
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convergence to the non informative solution one could add ad hoc constraints to (12) but,

despite many attempts, we havenÕt been able to find a satisfactory one4.

Now we add some further information formulating more quantitative hypotheses on the

distribution of detector images  
  
P

r
φ( )  and we show that this allows to escape this problem.

Markov random field models [Geman 1984, Besag 1974, Rangarajan 1995] assume that

the distribution of natural images  
  
P

r
φ( )  has a local neighborhood structure following a Gibbs

distribution

(15) P = e− β  U

Z

where  Z   is the partition function normalizing the distribution,  β  the inverse of a

temperature and  U  an energy function of the state of the system defined as a sum of terms

each one referring to appropriate neighborhoods (cliques) of the pixels. A very plausible form

of energy to adopt for our problem is (10):

(16)   U = r
c' D' D

r
c  .

We accept this hypothesis and to put at work this information in our net we take the

approach of the self-organizing nets of Yuille et al. [Yuille 1995] that replace the energy-l ike

function usually minimized in neural networks by the Kullback Leibler distance between the

distribution of the images actually produced and the theoretical distribution of natural images.

FigureÊ2 presents a scheme of the process:

Image

r
φ

Detector Correction

r
x = f (

r
φ)

P(
r
φ) PD (

r
x )

r
y = g(

r
x;

r
c)

PDD (
r
y;

r
c )

FFFFiiiigggg....    2222 : Working principles of the self-organizing net of [Yuille 1995].

the image    
r
φ   of distribution  

  
P

r
φ( )  arrives on the detector producing, via the conversion

process  fÊ, the image    
r
x   of distribution    PD (

r
x)Ê. This image is then corrected  by function

gÊ, depending on parameters    
r
cÊ, to produce the final image    

r
y   of distribution

  PDD (
r
y;

r
c) Ê. If the correction process perfectly compensates the distortions introduced by

4Substituting  xi  to  yi  in the flux estimator (6), as made in [Scribner 1991], the non

informative solution isnÕt anymore the stable solution of the system that converges to a

ÒreasonableÓ solution. Unfortunately, as proved in [Frison 1997], this solution does not

coincide with the exact solution (4) neither in the very simple case of completely uniform

images.
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the detector (i.e. if  g = f-1  ) then the corrected image will be equal to the real one and their

distributions will coincide.

Yuille and collaborators propose to choose the parameters    
r
c  in such a way that the

distributions    PDD (
r
y;

r
c)   and  

  
P

r
φ( )  are as similar as possible. The criterion adopted to

measure the similarity of the distributions is their Kullback Leibler distance (namely the

entropy of    PDD (
r
y;

r
c)   relative to  

  
P

r
φ( )):

(17)
  
KL(

r
c) = PDD (

r
y;

r
c)∫ log

PDD (
r
y;

r
c)

P
r
y( ) d

r
y  ≥  0

that vanishes when the two distributions are equal. So, in a nutshell, the basic idea is: letÕs

vary    
r
cÊ, thus varying the correction function  gÊ, to make the distributions as similar as

possible. We will implement this by gradient descent along    KL(
r
c)Ê.

In our case of a one dimensional detector  U = yi − 1
2

yi −1 − 1
2

yi +1




i

∑
2
Ê ,

yi = αi xi + βi  while    PDD (
r
y;

r
c)   can be calculated from the detector data by the relation

  

PDD (
r
y;

r
c) = PD (

r
x)

∂r
y

∂r
x

Ê. We estimate the Kullback Leibler distance (17) with a discrete

approximation

(18)
  

log
PDD (

r
y;

r
c)

P
r
y( )r

y
∑

where the sum extends to all images. Substituting all ingredients ([Frison 1997] contains the

details) one finds the following update rule to descend along the gradient of the Kullback

Leibler distance

(19)
  

r
ct +1 = r

ct − ηβX̃' ÃX̃
r
ct  + η

1
r
α
r
0







where the last vector has the first  N   components equal to  
1

αi
  the last  N   being zero.

The two terms originating from sum (18) combine their effect to determine the two terms of

rule (19): the first is equal to that of rule (14) and minimizes the energy of the output (16).

This equality is not surprising since both approaches actually minimize (10). The second term

of the update rule is peculiar of this approach and derives from a maximum entropy principle

encouraging output variability. In practice the second term forbids the system to converge to

the non informative solution where all the first  N   coefficients are zero.

We observe also that here we donÕt need a normalization term as that present in (14)

since rule (19) forbids the trivial solution    
r
c =

r
0 Ê. This has the notable advantage of making
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rule (19) completely ÒlocalÓ and, when implemented on a neural network like that of

figureÊ1, neurons need information only from their neighbors.

4444....    AAAAddddaaaappppttttiiiivvvveeee    ccccoooorrrrrrrreeeeccccttttiiiioooonnnn    vvvviiiiaaaa    ccccuuuummmmuuuullllaaaattttiiiivvvveeee    ddddiiiissssttttrrrriiiibbbbuuuuttttiiiioooonnnn
The strategy of our second method is that of equalizing, for each pixel, its distribution

instead of the single values. With the notation introduced in figureÊ2 let the distributions of
the  i-th  pixel be  PD(xi)  and    PDD (yi ,

r
c)  respectively. In the reasonable hypothesis that

the distribution of true images  P(φi)  is identical for all the pixels we will look for a

transformation of the raw data  xi  such that the distributions of the corrected data

  yi = g xi ,
r
c( )  are all identical. This request is not enough to avoid the non informative

solution that give all identical, delta-like,  yi   distributions and we need a further request.

Information theory [Bell 1995] provide the second hypothesis: consider every pixel as a
deterministic information channel in which the raw data  xi  constitutes the input and the

corrected data  yi  the output. ItÕs well known that the mutual information between input and

output is maximal when output distribution is uniform.

We now have sufficient elements to determine uniquely the needed transfer functions

  
r
y = g

v
x,

r
c( ) Ê: it is sufficient to ask that they give rise to identical output distributions

while maximizing the mutual input output information.  We remark that with this method the

images distributions is not specified; the only request is their equality.

Our two requirements are satisfied if and only if the transfer function is the cumulative

input d istr ibut ion:  the s imple proof takes the standard re lat ion

  PDD (yi ,
r
c)dyi = PD (xi )dxi   and adds the mutual information request

  PDD (yi ,
r
c) = const .  to get:

(20) yi = 1
const .

PD (xi )dxi
− ∞

x

∫  .

As in the preceding paragraph we search an iterative method to find explicitly the

correction functions. Let us start by selecting all transfer functions with output in the same

range, say  [0, 1]Ê. In this case the maximization of the input -output mutual information is

equivalent to the request that the entropy of each output  yi  is maximized separately. With

these ingredients maximizing the entropy of the outputs is equivalent to take transfer

functions as in (20) but with the advantage that the process can be done iteratively. The

output entropy is

(21)  
  
H(yi ) = − PDD (yi ,

r
c)  log PDD (yi ,

r
c)  dyi

− ∞

+ ∞
∫ =

def
− log PDD (yi ,

r
c)

where the <> brackets indicate the expectation value; changing variables we get
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(22) H(yi ) = log
dyi
dxi

− log PD (xi )

where the dependence from the parameters    
r
c  is contained in the term with the derivative.

One can maximize this entropy ascending its gradient namely:

(23) ∆ck ∝ ∂H
∂ck

= ∂yi

∂xi







−1
∂

∂ck

∂yi

∂xi






 .

To complete the picture and obtain a working algorithm, we have to choose an

appropriate family of functions, with values in  [0, 1]Ê, that can approximate the cumulative

distributions (20) with arbitrary precision (here the linear functions (2) are not useful). Once

chosen this family of functions we will update their parameters with rule (23) until they

approximate closely their objectives (20).

The universal approximation properties of feed-forward neural networks [Hornik 1991]

allow us to use a neural network for this task. For example the network of figureÊ3 can

approximate, given sufficient hidden neurons, any continuous function with arbitrary

precision. The output of this network is given by

(24) yi = wjh j
j=1

H
∑ =  

wj

1 + e
−α jxi −β jj=1

H
∑

where  H  is the number of hidden neurons,  hj  their transfer functions (the usual sigmoidal)

and  wj  their output weights.

Input Output

Hidden layer

H

FFFFiiiigggg....    3333:::: Basic block of the feed-forward neural network used for the method of the

cumulative distribution. Each input is fed to a net of this kind, that, given sufficient hidden

neurons  H, can approximate with arbitrary precision any continuous function  y = g(x)Ê.

The global neural network used by this method has the same general structure of that of

figureÊ1 with the difference that here the neurons are replaced by networks like those of

figureÊ3 and the training rules are obtained from (23) when using (24) as correcting

functions. Working out all the derivatives one can obtain the  3 H  learning rules that define
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an unsupervised on-line algorithm that approximates the cumulative distributions of each

pixel (20). We donÕt report exactly this result here but instead the numerically more stable

set of rules

(25)

∆α j = η
wj

2h j (1 − h j ) + wj
2α jxih j (1 − h j ) − 2wj

2α jxih j
2 (1 − h j )

wj
2α jh j (1 − h j

j=1

H
∑ )

∆β j = η
wj

2α jh j (1 − h j ) − 2wj
2α jh j

2 (1 − h j )

wj
2α jh j (1 − h j

j=1

H
∑ )

∆wj = η
2wjα jh j (1 − h j )

wj
2α jh j (1 − h j

j=1

H
∑ )

+ 2 ηwjq wj
2 − 1

j=1

H
∑








obtained replacing  wj
2   to  wj   in (24) and adding a constraint term  wj

2 = 1
j=1

H
∑   that has

the effects of maintaining  wj   positive and of maintaining more easily the outputs  yi   in the

assigned range  [0, 1]Ê.

Our numerical tests indicate that 2 or 3 hidden neurons are sufficient to build good

enough approximations of several of the standard distributions. In our particular case one

hidden neuron is already sufficient.

5555....    NNNNuuuummmmeeeerrrriiiiccccaaaallll    rrrreeeessssuuuullllttttssss
To verify numerically these algorithms we introduce two measures of the quality of the

corrected images. For synthetic images, beyond the detected image    
r
x Ê, one also has the true

image    
r
φ   and the value of the true detector coefficients (1), thus one has also the true

solution and can calculate the angle  ψ  between the solution found by our methods and the

true solution space (5). This angle is an excellent measure of the quality of the solution.

When considering real images one does not have any more the solutions space (5) and

must resort to some other method to measure the quality of the found solution. Since a

successful correction vector must reproduce uniformly flat regions of the image, we

estimate the uniformity of regions of the corrected image that correspond to regions known

to be uniform. To do so, following [Scribner 1993], we introduce an estimate of the signal to

noise ratio

(26) SNR = yave
1 − yave

2

σ
y1
2 + σ

y2
2

where  yave
i   are the average values of flat zones of the image and  σ

yi
2   their variances.

Let us examine first the case of a computer generated image chosen to be as similar as

possible to a real one produced in SYRMEP: it is 250 times 48 pixels wide with 1024 gray
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levels, the coefficients  gi  and  oi  were generated randomly with uniform distribution in the

intervals  [0.75, 1.25]  and  [0.15, 0.25]  respectively and the image had values in  [0, 1]  to

which a Poissonian noise was added.
The first learning algorithm (19) had  η = 5 10-7Ê,  β = 20,000Ê, and was run for

5,000  epochs. FigureÊ4 shows its convergence property towards solution space.

Epoch

This method

Scribner
Cos ψ

FFFFiiiigggg....    4444: Convergence of the solution vector, on the abscissa an epoch corresponds to a

number of elementary learning steps (19) equivalent to the total number of pixels of the

image.  ψ  is the angle between the solution found by this method and the space of exact

solutions (5). The lower curve shows poorer convergence of the algorithm of footnote 4.

The second learning algorithm (25) had  η = 0.01Ê, one hidden neuron, and was run for

100  epochs. In figureÊ5 there are in sequence from the top: the ÒtrueÓ image  φ, the

unretouched detected image and the corrected images: the first after algorithm (19) has been

applied, the second one corrected with the cumulative algorithm (25). Near the images there

are the cross sections at pixel 138, indicated in the true image. The values of SNR, calculated

using (26), are also reported.
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FFFFiiiigggg....    5555: Sequence of synthetic images, from top: ÒtrueÓ image  φ, as detected  x  and

corrected  (y)  with first (19) and second (25) adaptive methods. Histograms at the right

are the cross sections at pixel 138 whose position is marked on the first image; vertical

scale is arbitrary.

The algorithms were also run on a real SYRMEP image and the results are in figureÊ6

that has the same structure of figureÊ5. We remark that in this case the ÒtrueÓ image isnÕt

available and we replaced it with an image corrected with the, traditional, two points method.
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In this case the parameters of the two algorithms were  η = 3.3 10-7Ê,  β  = 30,000Ê, run

for  5,000  epochs and  η = 0.03Ê, one hidden neuron, run for  300  epochs respectively.
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FFFFiiiigggg....    6666: Sequence of SYRMEP images, from top: image corrected with the traditional two

points method, detected image  x  and corrected  (y)  with first (19) and second adaptive

methods (25). The histograms at the right are the cross sections at pixel 83.
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From these data we notice that both methods are able to equalize the images without any

prior calibration and that the quality obtained is high and surely comparable to that of

standard approaches. In the near future we plan to investigate more carefully the numerical

properties of these methods and to compare their relative merits in real world problems. In

our particular application the method of the cumulative distribution is not favored because it

introduces a non-linear correction function.

In conclusion we presented two adaptive algorithms dedicated to equalization of pixel

response based on neural networks. Both methods share a sound theoretical foundation and

provide good numerical results. While the first one produces a linear correction to the raw

data estimating the expected output, the second produces a non-linear correction similar to

contrast equalization. Both methods, one way or another, employ entropy maximization of the

outputs.
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