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We show that with a uniform prior on models having the same training
error, early stopping at some fixed training error above the training error
minimum results in an increase in the expected generalization error.

1 Introduction

Early stopping of training is one of the methods that aim to prevent over-
training due to too powerful a model class, noisy training examples, or a
small training set. We study early stopping at a predetermined training er-
ror level. If there is no prior information other than the training examples,
all models with the same training error should be equally likely to be cho-
sen as the early stopping solution. When this is the case, we show that for
general linear models, early stopping at any training error level above the
training error minimum increases the expected generalization error. More-
over, we also show that the generalization error is an increasing function
of the training error. Our results are nonasymptotic and independent of the
presence or nature of the training data noise, and they hold when instead of
generalization error, test error or off-training-set error 1 (Wolpert, 1996b) are
used as the performance criterion. For general nonlinear models, around a
small enough neighborhood of a training error minimum, the mean gen-
eralization error again increases when all models with the same training
error are equally likely. Regularization methods such as weight decay, early
stopping using a validation set, or early stopping of training using a hint
error, are equivalent to early stopping at a fixed training error level but with
a nonuniform probability of selection over models with the same training
error. If this nonuniform probability agrees with the target function, early
stopping may help. One should be aware of what nonuniform probability

1 Off-training-set error does not assume that the training and test inputs come from
the same distribution.
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of selection is implied by the learning procedure.
When they studied early stopping, Wang, Venkatesh, and Judd (1994)

analyzed the average optimal stopping time for general linear models (one
hidden-layer neural network with a linear output and fixed input weights)
and introduced and examined the effective size of the learning machine as
training proceeds. Sjoberg and Ljung (1995) linked early stopping using a
validation set to regularization and showed that emphasizing the valida-
tion set too much may result in an unregularized solution. Amari, Murata,
Muller, Finke, and Yang (1997) determined the best validation set size in
the asymptotic limit and showed that even when this validation set size is
used, early stopping using a validation set hurts for very large training sets.
Dodier (1996) and Baldi and Chauvin (1991) investigated the behavior of
validation error curves for linear problems and the linear autoassociation
problem, respectively.

The term no free lunch was introduced by Wolpert (1996a,b). Wolpert
shows that when the prior distribution over the target functions is uniform
and the off-training-set error is taken to be the performance criterion, there
is no difference between learning algorithms. In other words, if a learning
algorithm results in good off-training-set error for one target function, it
results in equally worse off-training-set error for another target function.
Like Zhu and Rohwer (1996) and Goutte (1997), who put no-free-lunch
theorems into the framework of cross validation, our work puts the no free
lunch into the framework of early stopping.

Our method of early stopping—choosing a model uniformly among the
models with the same training error—is similar to the Gibbs algorithm
(Wolpert, 1995). Although the uniform probability of selection around the
training error minimum is equivalent to the isotropic distributions of Amari
et al. (1997), their work concentrates on a very large number of training ex-
amples. Moreover, for general linear models, we need the probability of
selection of models to be symmetric only around the training error mini-
mum, and symmetry is a weaker requirement than uniformity.

We are given a fixed training set {(x1, f1), . . . , (xN, fN)} with inputs xn ∈
Rd′ and outputs fn ∈ R. The model to fit the training data will be denoted
by gv(x), with adjustable parameters v. We will refer to models by their
adjustable parameters v unless indicated otherwise. We assume that the
training outputs were generated from the training inputs according to some
unknown and fixed distribution f (xn), hence, fn = f (xn). For example, if
the outputs were generated by a teacher model with parameters v∗ and
additive zero-mean normal noise, we would have f (xn) = gv∗(xn) + en
where en ∼ N (0, σ 2

e ) for σ 2
e ≥ 0.

We define the quadratic training error ET and the generalization error E
at v as:

ET(v) = 1
N

N∑
n=1

(gv(xn)− fn)
2 E(v) =

〈(
gv(x)− f (x)

)2〉
x
.
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Figure 1: Models with training error Eδ = ET(vT) + δ form the early stopping
set at training error level Eδ .

Let vT be a local minimum of the training error ET. Let δ ≥ 0 and
Eδ = ET(vT) + δ. Let Wδ = {∆v : ET(vT +∆v) = Eδ}. The set of mod-
els vT +Wδ form the early stopping set. We define early stopping at training
error Eδ as choosing a model from the early stopping set according to a prob-
ability distribution on the models in the early stopping set. We denote the
probability of selecting vT+∆v as the early stopping solution by PWδ

(∆v).
This probability is zero if ∆v /∈Wδ . The mean generalization error at train-
ing error level Eδ is:

Emean(Eδ) =
∫
∆v∈Wδ

PWδ
(∆v)E(vT +∆v)d∆v.

PWδ
is said to be uniform if ∀∆v,∆v′ ∈ Wδ , PWδ

(∆v) = PWδ
(∆v′)—that

is, if models with the same training error are equally likely to be chosen as
the early stopping solution (see Figure 1).

The rest of the article is organized as follows. In section 2, we prove that
early stopping cannot decrease the mean generalization error for general
linear models when all models with the same training error are equally
likely to be the target. Section 3 proves the same result for nonlinear models
but around a training error minimum only. In all these cases, we assume that
there is no prior information about the target that generated the training
data. In section 4 we experimentally verify the early stopping results for
general linear and neural network models. We also compare weight decay,
early stopping using a validation set, and learning with additional prior
information (hints) (Abu-Mostafa, 1994) to our framework and show that
early stopping can help when certain additional information is available.
Section 5 summarizes the results.
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Figure 2: General linear model.

2 Early Stopping for a General Linear Model

In this section we consider the general linear models. Let φi(x) : Rd′ →
R, i = 0, . . . , d be fixed transformation (basis) functions and let φ(x) =
[φ0(x), φ1(x), . . . , φd(x)]

T. We define a general linear model as gw(x) =
wTφ(x) with fixed transformation functions φ(.) and adjustable parame-
ters w (see Figure 2). If φ0(x) = 1 and φi(x) = xi, 1 ≤ i ≤ d′ = d we obtain

the usual linear model; if φi(x) =
∏d′

j=1 x
kj

j , kj ≥ 0, we obtain a polynomial
model. The output of the general linear model is linear in the model param-
eters w, and it can be nonlinear in the inputs x. We will denote a general
linear model only by the adjustable parameters w.

Let fN×1 = [ f1, . . . , fN]T be the training outputs. Let 8x(d+1)×N =
[φ(x1), . . . , φ(xN)] denote the training inputs transformed by the fixed trans-

formation functions. Define Sx = 8x8
T
x

N and 6φ(x) =
〈
φ(x)φ(x)T

〉
x. When

8x8
T
x is full rank,2 the unique training error minimum is given by the ordi-

nary least-squares solution:

wT = (8x8
T
x )
−1
8xf = S−1

x
8xf
N
.

2 Hence we restrict ourselves to problems where N ≥ d+ 1. When the transformation
functions are real valued, for most cases 8x8

T
x is likely to be full rank.
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The Hessians of training and generalization errors are constant positive
semidefinite3 matrices at all w:

HET(w) = 2Sx HE(w) = 2Σφ(x).

Any higher derivatives of E and ET are zero everywhere. Hence, for any
∆w, the generalization and training errors of wT ±∆w can be written as:

E(wT ±∆w) = E(wT)±∆wT∇E(wT)+∆wTΣφ(x)∆w (2.1)

ET(wT ±∆w) = ET(wT)+∆wTSx∆w. (2.2)

The following lemma proves that when all models with the training error
ET(wT) + δ, δ ≥ 0 are equally likely to be chosen as the solution, the mean
generalization error at training error level ET(wT)+δ cannot be smaller than
the generalization error of the training error minimum wT.

Lemma 1. When all models with training error Eδ = ET(wT)+δ ≥ ET(wT) are
equally likely to be chosen as the early stopping solution, the mean generalization
error at training error level ET(wT) + δ is at least as much as the generalization
error of the training error minimum. More specifically, for any δ ≥ 0, Emean(Eδ) =
E(wT)+ β(δ), for some β(δ) ≥ 0.

The proof is given in appendix A. (See Figure 3 for an illustration of the
lemma.)

This result does not depend on the noise level, number of training ex-
amples, or the target function versus model complexity. Even if the target
function is a constant and the model is a 100th-degree polynomial, lemma
1 tells us that we should stop only at the training error minimum.

If the error criterion is the test error on independently and identically dis-
tributed i.i.d. or non-i.i.d. inputs {x̃1, . . . , x̃M}, the lemma still holds. Because

Sx̃ =
8x̃8

T
x̃

M is positive semidefinite.
Furthermore, lemma 1 holds not only for quadratic loss but for any loss

function that has a positive semidefinite test error Hessian and small enough
third and higher derivatives at the training error minimum.

The following theorem compares the mean generalization error between
any two training error levels.

Theorem 1. When all models with the same training error are equally likely to be
chosen as the early stopping solution, the mean generalization error is an increasing

3 Any matrix of the form AAT is positive semidefinite, because for any w of proper

dimensions, wTAATw = ‖ATw‖2 ≥ 0; hence Sx = 8x8
T
x

N is positive semidefinite. Σφ(x) =〈
φ(x)φ(x)T

〉
x is also positive semidefinite since 8x8

T
x

N −→N→∞
〈
φ(x)φ(x)T

〉
x.
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Figure 3: Early stopping at a training error δ above ET(wT) results in a higher
generalization error when all models having the same training error are equally
likely to be chosen as the early stopping solution.

function of the early stopping training error. In other words, for 0 < δ1 < δ2,
Emean(Eδ1) < Emean(Eδ2).

The proof is given in appendix B.
Therefore, when the model is general linear, the best strategy is to mini-

mize the training error as much as possible.

3 Early Stopping for a Nonlinear Model

When the model is general linear, we are able to prove lemma 1 without
any assumptions about the location of the generalization error minimum
with respect to the training error minimum. Also, our results are valid for all
models with the same training error, regardless of how far they are from the
training error minimum. For the nonlinear model we will assume that the
distance between the training error minimum and the generalization error
minimum is O

( 1
N

)
, which asymptotically is the case (see e.g., Amari et al.,

1997). Also we will prove the increase in the mean generalization error only
around the training error minimum.

Let the model gv be a nonlinear (continuous and differentiable) model
with adjustable parameters v. Let vT be a minimum of the training error, let
v∗ be a minimum of the generalization error.
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Now we assert the counterpart of lemma 1 for the nonlinear models:

Theorem 2. Let vT − v∗ = O ( 1
N0.5

)
, 1v = O ( 1

N0.5

)
, δ ≥ 0, and δ = O ( 1

N

)
.

Let Eδ = ET(vT)+δ+O
( 1

N1.5

)
. When all models with training error Eδ are equally

likely to be chosen as the early stopping solution, their mean generalization error is
Emean(Eδ) = E(vT)+ β(δ)+O

( 1
N1.5

)
, for some β(δ) ≥ 0.

Proof. Given in appendix C.

4 Weight Decay, Early Stopping Using a Validation Set, and Hints

We see from lemma 1 and theorem 2 that if all models with a given training
error are chosen with equal probability (density), then no strategy beats the
strategy of choosing the training error minimum. We emphasize that the
only assumption required for the proof of the theorem is that the models
with the same training error be chosen with equal probability.4 We make
no assumptions as to the input probability distribution, target function, or
presence or nature of the noise. This is a strikingly general statement, es-
pecially given the plethora of evidence in favor of methods of picking a
solution other than the training error minimum (Reed, 1993). It must there-
fore be the case that these algorithms are violating the assumptions of our
theorem; some models with a given training error are chosen with higher
probability than others.

First we establish that the commonly used regularization techniques do
not choose uniformily among models with a given training error. This is easy
to see for weight-decay-type regularizers. Given two weight vectors with
the same training error, the model with the smaller weights is favored. In this
way, models with lower complexity are favored. Early stopping works in a
similar way (Sjoberg & Ljung, 1995). From the data set, one picks a training
set, and the remaining data points are used as a validation set. Along the
path from the starting point of the training algorithm to the training set
minimum, one picks the weights that obtain a minimum for the validation
set error. The key observation is that the training algorithm usually starts
at small weights. This means that if the validation set minimum happens to
have smaller weights than the training set minimum (roughly half the time;
Amari et al., 1997), then the final solution will have smaller weights. If the
validation set minimum happens to have larger weights than the training
minimum (roughly half the time), then the final solution will be the training
minimum because of the direction of approach. Averaging over possible

4 In fact, for the proof we need only symmetry.
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training sets, the training set minimum will average to the minimum of the
entire training set; therefore, we see that on average, the solution will have
smaller weights than the entire training set solution, much like a weight-
decay-type regularizer. Thus once again we see that the algorithm favors
smaller weights (less complex functions).5 Thus, we see that the assumption
of the theorem is being violated. What remains is to see that it is being
violated in a way that favors the right models. In real data where noise is
usually present, the data represent a function that is more complex than the
target function. Thus, given two models with the same training error, the
less complex one should be favored.

We have given an intuitive explanation as to why regularizing algorithms
tend to work, and how they are violating the no-free-lunch theorem we
have proved. We would like to end on a more general note about the use
of prior information such as hints and invariances that are known ahead
of time about the target function. By starting at small weights or using
regularization, we are enforcing a prior about the learning problem: that
noise is present and so the data alone represent too complex a function. In
general one should incorporate all the prior information into the objective
function and then minimize that objective function. This is usually done
in a Bayesian framework. If one has no prior information, then all models
yielding the same training error should be equally likely and we are in the
world of our no-free-lunch theorem. Thus, we see that in order to get better
performance than the training error minimum, it is necessary to incorporate
some prior information into the learning process. It is in this sense that our
theorem is a no-free-lunch theorem.

4.1 Experiments. We experimented with linear and nonlinear models
to verify our results.

4.1.1 Linear Model. We computed the minimum training error (least
squares) solution wT; then we computed the average generalization error
of solutions w with training error ET(wT)+δ. For comparison, we also com-
puted the generalization error of the weight decay solution with training er-
ror ET(wT)+δ. In Figure 46 we show the behavior of the mean generalization

5 If one in addition averages over possible starting points for the training algorithm
as well, then this would remove the asymmetry and the theorem would apply. Thus, we
see that the key to these early stopping algorithms is in fact the use of small weights for
the initial starting point.

6 For this experiment, both the target and the model were linear. Input dimensionality
was d = 5, plus constant bias 1. Training inputs were chosen from a zero mean unit normal.
There were N = 20 training input-outputs. The target (teacher) model was also linear, with
weights chosen from zero-mean 9 variance normal. Zero-mean normal noise was added
to the training outputs. Noise variance was determined according to 0.1 signal-to-noise
ratio. The mean generalization/test error for the uniform P was computed on 500 different
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Figure 4: Mean generalization/test error versus training error of a linear model
for a given target and training set. The mean generalization error increases as
the training error increases when all models with the same training error are
given equal probability of selection. When the weight decay parameter is small
enough, choosing the weight decay solution with probability 1 and all other
models with the same training error with probability 0 improves the general-
ization error.

error as the training error increases. When all models with the same training
error are chosen with the same probability, in agreement with lemma 1, the
mean generalization error increases as the training error increases. On the
other hand, the weight decay solution has a smaller generalization error for
a small enough weight decay parameter. Note that choosing the weight de-
cay solution with probability 1 corresponds to a nonuniform (delta function)
probability distribution on models with the same training error; therefore
lemma 1 does not apply. Note also that for this experiment, both the target
and the model are linear and the training points have zero-mean normal
noise; therefore, the weight decay provably results in better generalization
error when the weight decay parameter is small enough (Bishop, 1995).

4.1.2 Nonlinear Model. We experimented with a neural network model,
and a noisy and even target function, also generated by a (teacher) neural
network model. We first found a training error minimum using the gradient

models with the same training error. The generalization/test error was computed as the
squared distance between the target and the model.
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descent with adaptive learning rate. Then we chose random weights ∆v7

such that ET(vT +∆v) ≈ ET(vT) + δ. In figure 58 we show the mean test
error versus the training error for a specific target, training set, and model
gvT . When the mean test error for a certain training error level is computed
by giving each model with the same training error equal probability, the
mean test error increases. On the other hand, when the models with smaller
evenness hint error E1(vT + ∆v) are given more weight, the mean test
error seems to decrease and then increase. In other words, early stopping
and choosing models with smaller hint errors with higher probability can
decrease the mean test error.

Note that, as shown in Figure 6, the decrease in the mean test error using
the hint is dependent on not only the number of training examples N but also
the signal-to-noise ratio. For the same N, but now for SNR = 10, selecting
the models according to the evenness hint error, in the same way we did for
the previous experiment that had SNR = 0.01, does not decrease the mean
test error. It is possible that the probability of selection of a model should
depend not only on the hint error E1, but also on the level of training error
and the signal-to-noise ratio.

5 Conclusions

We analyzed early stopping at a certain training error minimum and showed
that one should minimize the training error as much as possible when all the
information available about the target is the training set. We also demon-
strated that when additional information is available, early stopping can
help.

7 Since the gradient at the minimum vT is very small but not exactly zero, we scaled∆v
as k∆v where k is the best possible solution for k∆vT∇ET(vT)+k2 1

2 ∆vTHET(vT)∆v = δ.
Hence k = −b±

√
b2+4aδ

2a where a = 1
2 ∆vTHET(vT)∆v and b =∆vT∇ET(vT).

8 The training outputs were generated by (teacher) neural networks whose weights
were drawn from unit normal. First, a neural network with five hidden units was gener-
ated. Then the function was made even by adding five more hidden units with exactly
the same connections, except the input weights whose signs were reversed. The train-
ing and test inputs were drawn from a zero mean and variance 10 normal. The training
outputs were obtained by adding zero-mean noise to the teacher outputs on the training
inputs. The noise variance was determined according to the signal-to-noise ratio. The test
outputs were not noisy. There were N = 30 training and M = 50 test examples. The stu-
dent (model) neural network had 10 hidden units, and its weights were drawn from a
zero-mean 0.001 variance normal. The training method was gradient descent. The learn-
ing rate was initially 0.0001; during training, it was multiplied by 1.1 when the training
error decreased and halved otherwise. Training continued for 1000 passes, and the model
with the smallest training error was taken to be gvT . When computing the mean test error
using the evenness hint (Abu-Mostafa, 1994), we weighed the model gvT+∆vi according

to: exp−E1(vT+∆vi)∑1000

i=1
exp−E1(vT+∆vi)

for i = 1, . . . , 1000.
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Appendix A: Proof of Lemma 1

Let the early stopping training error level be Eδ = ET(wT) + δ for some
δ ≥ 0. Then, from equation 2.2, the early stopping set consists of wT+Wδ =
wT + {∆w : ∆wTSx∆w = δ}. The mean generalization error is:

Emean(Eδ) =
∫
∆w∈Wδ

PWδ
(∆w)E(wT +∆w)d∆w.

For any ∆w ∈Wδ , hence satisfying ∆wTSx∆w = δ, there exists a −∆w ∈
Wδ ; therefore we can rewrite the mean generalization error as:

Emean(Eδ) = 0.5
∫
∆w∈Wδ

(PWδ
(∆w)E(wT +∆w)

+ PWδ
(−∆w)E(wT −∆w))d∆w.

Now, since PWδ
is uniform, it is also symmetric; that is, PWδ

(∆w) =
PWδ

(−∆w). For the proof of this lemma, symmetry is the only restriction
we need on PWδ

. Using symmetry of PWδ
, equation 2.1, and the fact that∫

∆w∈Wδ
PWδ

(∆w)d∆w = 1:

Emean(Eδ) = E(wT)+
∫
∆w∈Wδ

PWδ
(∆w)∆wTΣφ(x)∆wd∆w

= E(wT)+ β(δ).

Since Σφ(x) =
〈
φ(x)φ(x)T

〉
x is positive semidefinite and PWδ

(∆w) ≥ 0,

β(δ) =
∫
∆w∈Wδ

PWδ
(∆w)∆wTΣφ(x)∆wd∆w ≥ 0. (A.1)

Appendix B: Proof of Theorem 1

By lemma 1, Emean(Eδ1) = E(wT)+ β(δ1) and Emean(Eδ2) = E(wT)+ β(δ2) for
β(δ1), β(δ2) > 0. Let 0 < δ1 < δ2. We need to prove β(δ1) < β(δ2).

Let V(δ) = ∫
∆w∈Wδ

∆wTΣφ(x)∆wd∆w, and let 1
Pδ

be the surface area

of the d-dimensional ellipsoid ∆wTSx∆w = δ. Since PWδ
is uniform, from

equation A.1,

β(δ2)

β(δ1)
= Pδ2

Pδ1

V(δ2)

V(δ1)
.

Define k2 = δ2
δ1
> 1. Let Wδ1 = {∆w : ∆wTSx∆w = δ1}. Then Wδ2 =

{k∆w : ∆w ∈ Wδ1}. By means of change of variables ∆u = k∆w in V(δ2)

we have V(δ2)
V(δ1)
= kd+1.
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We can define the surface area as the derivative of the volume:

1
Pδ
= lim

l→0

∫
∆w

T
Sx∆w≤δ+l

d∆w− ∫∆w
T

Sx∆w≤δ d∆w

l

= lim
l→0

(
δ+l
δ

) h+1
2 − 1

l

∫
∆w

T
Sx∆w≤δ

d∆w

= h+ 1
2δ

∫
∆w

T
Sx∆w≤δ

d∆w.

Hence 1
Pδ1
= h+1

2δ1

∫
∆w

T
Sx∆w≤δ1

d∆w. By means of change of variables ∆u =
∆w

k we have 1
Pδ2
= kd−1 1

Pδ1
. Therefore, Pδ2

Pδ1
= k−d+1.

Hence, β(δ2)
β(δ1)
= k−d+1kd+1 = k2 > 1.

Appendix C: Proof of Theorem 2

Let ∇E(vT), ∇ET(vT), HE(vT), and HET(vT) denote the gradient and Hes-
sians of the generalization error and the training error at the training error
minimum vT.

Similar to equations 2.1 and 2.2, the training and generalization errors at
vT +∆v are:

E(vT ±∆v) = E(vT)±∆vT∇E(vT)

+ 1
2
∆vTHE(vT)∆v+O

(
1

N1.5

)
(C.1)

ET(vT ±∆v) = ET(vT)+ 1
2
∆vTHET(vT)∆v+O

(
1

N1.5

)
. (C.2)

Since vT = v∗ +O ( 1
N0.5

)
:

HE (vT) = HE
(

v∗ +O
(

1
N0.5

))
= HE

(
v∗
)+O( 1

N0.5

)
.

Using the fact that ∆v = O ( 1
N0.5

)
and equation (C.1), we can write the

average generalization error among vT +∆v and vT −∆v as:

E(vT +∆v)+ E(vT −∆v)
2

= E(vT)+ 1
2
∆vTHE(v∗)∆v+O

(
1

N1.5

)
.

Define Wδ = {∆v : ET(vT +∆v) = ET(vT) + δ + O
( 1

N1.5

)} (hence δ =
O
( 1

N

)
). For each ∆v ∈Wδ , there is a−∆v ∈Wδ . As we did for the proof of
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lemma 1, using the uniform probability of selection PWδ
, we can compute

the mean generalization error as:

Emean(Eδ) =
∫
∆v∈Wδ

PWδ
(∆v)E(vT +∆v)d∆v

= 0.5
∫
∆v∈Wδ

(PWδ
(∆v)E(vT +∆v)

+ PWδ
(−∆v)E(vT −∆v))d∆v

= E(vT)+ 0.5
∫
∆v∈Wδ

PWδ
(∆v)∆vTHE(v∗)∆vd∆v

+O
(

1
N1.5

)
= E(vT)+ β(δ)+O

(
1

N1.5

)
.

Since v∗ is the generalization error minimum, HE(v∗) is positive semidefi-
nite. Hence, β(δ) = 0.5

∫
∆v∈Wδ

PWδ
(∆v)∆vTHE(v∗)∆vd∆v ≥ 0.
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