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Abstract

This paper studies the computational power of various discontinuous real computa�
tional models that are based on the classical analog recurrent neural network �ARNN��
This ARNN consists of �nite number of neurons� each neuron computes a polynomial
net function and a sigmoid�like continuous activation function�

We introduce �arithmetic networks	 as ARNN augmented with a few simple dis�
continuous �e�g�
 threshold or zero test� neurons� We argue that even with weights re�
stricted to polynomial�time computable reals
 arithmetic networks are able to compute
arbitrarily complex recursive functions� We identify many types of neural networks
that are at least as powerful as arithmetic nets
 some of which are not in fact discon�
tinuous but they boost other arithmetic operations in the net function
 e�g� neurons
that can use divisions and polynomial net functions inside sigmoid�like continuous ac�
tivation functions� These arithmetic networks are equivalent to the Blum�Shub�Smale
�BSS� model
 when the latter is restricted to a bounded number of registers�

With respect to implementation on digital computers
 we show that arithmetic
networks with rational weights can be simulated with exponential precision� but even
with polynomial�time computable real weights arithmetic networks are not subject to
any �xed precision bounds� This is in contrast with the ARNN that are known to
demand only precision that is linear in the computation time�

When nontrivial periodic functions �e�g� fractional part
 sine
 tangent� are added
to arithmetic networks
 the resulting networks are computationally equivalent to a
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massively parallel machine� Thus
 these highly discontinuous networks can solve the
presumably intractable class of PSPACE�complete problems in polynomial time�

� Introduction

Models of computation are in the heart of all algorithms because they specify the primitive
operators which are in use� Choosing an appropriate model of computation is of great
importance� but it presents us with a challenge� The model should capture the essential
realistic features� while still being mathematically tractable�

In models of real number computation� one thinks of real numbers as the atomic data
items� This is in contrast with models of discrete computation which handle binary digits�
In real�valued models� one assumes in�nite precision registers rather than bit registers� and
a collection of operations on real numbers that are executed in unit time�

There are two main �elds where formal models of computation with real numbers are
necessary� The �rst is the study of biological� or biologically inspired� computations� Here�
one admits that some natural systems update according to the values of their real parameters
rather that their base � representation� Second� in areas such as computational geometry
or numerical analysis� algorithms are naturally expressed in terms of real numbers� This
double origin is the reason why two types of real models have been proposed� continuous
and discontinuous ones�

Continuous systems allow for continuous functionality only� which is believed to better
describe most of biologically motivated computations� Among the best studied continuous
models are most neural networks with continuous�analog activation functions 	
� ��� ��� �
�
in particular those with recurrent interconnection pattern�

Real computational models with discontinuities usually include in�nite�precision tests of
equality and inequality� which are discontinuous by de�nition� Although such tests with
in�nite precision are often considered physically implausible� they are routinely used in al�
gorithms in computational geometry� numerical analysis� and algebra� Two well�established
models of this kind are the real RAM of Preparata and Shamos 	��
 and the real Turing ma�
chine suggested by Blum� Shub� and Smale 	�
� now usually called the BSS model� Moore 	��

has recently proposed still another model �in fact� a family of models� for real�time analog
computation�

Neural networks constitute a particular type of real�valued models� In this �eld as well we
are faced with continuous neurons such as sigmoidal ones� as well as discontinuous neurons
such as McCulloch�Pitts neurons� In this paper we ask what di�erence does it make to
the computational model if our neurons are all continuous or if discontinuous neurons are
incorporated as well� We choose as a starting point the continuous model called analog
recurrent neural network �ARNN�� typically used to analyze computational capabilities of
neural networks� and consider several discontinuous extensions�

The ARNNmodel suggested by Siegelmann and Sontag 	��� ��
 consists of a �xed number
of neurons in a general interconnection pattern� Each neuron is updated by

xi�t� �� � � ����� x� u�� � i � �� � � � � N ���
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where the net function � is a polynomial combination of its input �formed by the external
input u and input from other neurons x� � denotes the vector of constant coe�cients or
weights�� It �lters the result through the linear�saturated �ramp� activation function � � ��

��x� �

���
��

� if x � �
x if � � x � �
� if x � ��

Such networks are sometimes classi�ed as �rst�order and high�order� according to the degree
of the polynomial constituting the net�function� It was previously proven that high order and
�rst�order networks are computationally equivalent� even if other sigmoid�like� continuous�
and Lipschitz activation functions � are allowed besides � 	��
� Here we will consider high�
order networks only� In this model� input appears to the network as a string of digits that
enters a subset of the neurons� output is generated as a string as well �an equivalent model
considers initial and �nal states and no inputs and outputs�� This model is equivalent in
power to Turing machines for rational weights �constants�� and becomes of a nonuniform
�above Turing� power when the weights are reals�

As a �rst stage of adding discontinuities to the analog networks we introduce in Sec�
tion � the class of arithmetic networks� The simplest expression of this class is obtained by
incorporating threshold neurons

�H�x� �

�
� if x � �
� if x � �

into the �nite interconnection of analog neurons constituting the ARNN� We show in two
di�erent ways that arithmetic networks are computationally stronger than high�order �con�
tinuous� networks� For this we concentrate on networks whose weights belong to a very
simple and small subset of real numbers called polynomial�time computable reals�

A real number r is called polynomial�time computable if there is a polynomial p and a
Turing machine M such that M on input n will produce the �rst n digits of the fractional
part of r in time p�n�� All algebraic numbers� constants such as 	 and e� and many others
are polynomial�time computable� To emphasize how small this class is� we note that there
are no more polynomial�time computable real numbers than Turing machines� hence there
are countably many of them� Furthermore it can be shown 	�
 that� when used as constants
in ARNN� networks still compute the class P only� just like in the case where all constants
are rational numbers�

As the �rst evidence of the arithmetic networks� superiority� we prove that arithmetic
networks can recognize some recursive functions arbitrarily faster than Turing machines and
ARNN� they recognize arbitrarily complex recursive functions in linear time� The second evi�
dence concerns the amount of precision required to implement arithmetic networks on digital
computers� We show that no �xed precision function is enough to simulate all arithmetic
nets running in linear time� This contrasts with ARNN even with arbitrary real weights
�where linear precision in the computation time su�ces� and arithmetic nets with rational
weights �where exponential precision su�ces��

Hence� we obtain an interesting computational class of neural networks that is potentially
more powerful than the Siegelmann and Sontag�s nets 	��� ��
� Both multiplications and
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discontinuities seem necessary to obtain this class� high�order nets with only continuous�
Lipschitz activation functions have at most the power of �rst�order nets � they are actually
equivalent to them for the saturated�linear function 	��
� And it follows from a more general
result of Koiran 	��
 that adding the threshold function to �rst�order nets does not increase
their power� either�

If we consider nets running in polynomial time� this complexity class of arithmetic nets lies
between the classes P and PSPACE �P � PSPACE�� The �rst corresponds to the power of so�
called �rst class serial machine models� of which the Turing machine is a prime example� The
latter corresponds to second class models� with the power of massively parallel computers� in
which time is polynomially equivalent to Turing�machine ��rst class� space �see Section � for
de�nitions of these classes� and 	�

 for an exposition of �rst and second�class models�� For
all we know our class could coincide with P� PSPACE� both� or form a third intermediate
class� Yet� if we show that adding threshold strictly increases the power of networks we
have actually shown that P �� PSPACE� Recall� however� that the conjecture P �� PSPACE�
although widely believed� is a long�standing and notoriously di�cult open problem�

We show in Section � that many other networks share the same properties� We �rst
notice that the threshold gates can be substituted with the gates computing the exact zero�
test gates

���x� �

�
� if x � �
� if x �� � �

There is a wide family of activation functions which gives at least the same �and possi�
bly more� power as threshold or zero�test gates� We show that this holds for any function
containing what we call �jump discontinuities�� Another family is that of �launching func�
tions�� which throw values that are close to zero exponentially far away� an example is the
square root� An alternative way is to stay with the saturated linear activation function in all
neurons� and increase the computational capabilities of the network by enlarging the set of
operators in the net function� One case is to allow the net function to compute divisions in
addition to polynomials� In fact� we prove that nets with division or square root are equiv�
alent in computational power to threshold or zero�test �up to polynomials in the running
time��

In Section �� we show that networks with thresholds �or divisions� and some pretty
natural periodic functions � such as fractional part� sine� or tangent � compute up to the
upper bound� PSPACE� Such periodic functions� combined with the threshold �or division��
provide in�nitely many periodic discontinuities as opposed to the single discontinuity of the
threshold� Our proof relies strongly on the theorem by Bertoni� Mauri� and Sabadini stating
that unit�cost arithmetic RAMs can solve all of PSPACE 	�
�

This result can be considered as complexity�theoretic evidence that it is unrealistic to
assume periodic and discontinuous functions together with in�nite precision� Of course� the
assumption of in�nite precision is physically unrealistic anyway� So far� however� there is no
evidence �such as a PSPACE�hardness or an NP�hardness result� that in�nite precision by
itself is more helpful than polynomial precision� even in a theoretical sense�

It is interesting to compare this theorem with a recent of Moore 	��
 which also demon�
strates� in another context� the computation power added by periodic functions� He exhibits
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a language that can be recognized in real time with dynamical systems with sinusoidal ac�
tivation functions but cannot be recognized in real time� for example� by polynomial or
sigmoidal functions�

Some of our results are proved for nets with arbitrary real weights� while others apply only
to nets with rational weights only� Invariably� the restriction to rational numbers appears
where our proof technique requires a reasonable bound on the smallest real number that can
appear during the computation in a net� This bound is easy to obtain for rational weights�
but as we showed in Section � it is not possible to �nd such a bound for general real weights�
This does not necessarily imply that our missing results for real numbers are false� but shows
at least that very di�erent proof techniques will be necessary�

Before starting the technical part of the paper� let us discuss the relationship with biologi�
cal neuron networks� One popular argument of discrediting the signi�cance of computational
complexity to biological modeling claims that� Not only are the arti�cial models far removed
from nature� they also emphasize functions which require a lengthy response� In contrast�
nature is likely to respond in real or at least linear time� Being endowed with the feature
of arbitrary speedup in some cases� and combining analog functioning with discontinuities�
our model is perhaps somewhat attractive for computational modeling of neuron networks�
However our network carries a feature which is very unlikely to exist in biology� it allows
for no robustness� This we termed as the lack of precision bound as opposed to the linear
bound existing in the analog models� We leave as an open question the existence of network
that has the desirable feature of speedup while still being subject to precision bounds�

� Preliminaries� Computational Models

In this section we provide the preliminaries from the �eld of computational complexity that
are required to understand the previous results as well as our new ones� We also present
some known results on the computational power two real�valued models� the ARNN and the
BSS model�

��� Alphabets� Strings� Languages

In classical computation theory� inputs are encoded as �nite strings over a �nite alphabet ��
Most of the times we assume that � � f�� �g� although any other alphabet with at least two
letters could be used� The set �� is the set of all �nite strings over �� For a string x � ���
we use jxj to denote the length �or number of letters� of x�

We identify often natural numbers and strings via an easy isomorphism� Also� we assume
the existence of an easily computable and invertible pairing function h�� �i � �� � �� ��
�� encoding uniquely two strings into a third string� For example� we can encode binary
strings x and y by �rst duplicating every bit of x� then appending ��y� Thus� h���� ����i �
������������� This function is extended to more than two arguments by composition�
hx� y� zi � hx� hy� zii�

In any computation model taking strings as input� resources are usually measured as a
function of the length of the input string� For example� we say that the running time of any
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device is t�n�� or simply t� if the device makes at most t�n� steps on any input string whose
length is n�

Computational complexity theory has a technical name for the functions t�n� that are at
all interesting to measure running times of algorithms� These are called time�constructible

functions� although in this paper we call them simply time bounds� A function t�n� � �n is
time�constructible if there is a Turing machine that� given n� computes t�n� in time O�t�n���
All functions that the reader may think of using as time bounds for an algorithm are time�
constructible� including n log n� all polynomials� and all exponentials� See 	�� ��� ��
 for more
details and motivation�

A formal language L is any subset of ��� Equivalently� a language can be seen as a
function from �� to ftrue�falseg or f�� �g� indicating membership in L�

Languages and functions are classi�ed in complexity classes according to the resources�
such as running time or memory space� necessary to decide or compute them� Thus� the
classes P and PSPACE is the class of all languages decided by a Turing machine in polynomial
time and polynomial memory space� respectively� It is easy to argue that P is a subclass of
PSPACE� but whether they are actually di�erent is an open problem� Let us recall that the
well�known class NP falls in between P and PSPACE� and that it is also unknown whether
it di�ers or coincides with either one�

All logarithms in this paper are taken in base ��

��� The Power of Real�Valued Models

In principle� analog recurrent neural networks can compute functions over the real numbers�
We concentrate only on networks with discrete input�output and� more precisely� recognizing
formal languages as de�ned above over the alphabet � � f�� �g� For this to make sense� we
must �rst de�ne an encoding scheme for input and output� There are several� equivalent�
ways of de�ning this encoding� discussed for example in 	��
� We explain only one for
de�niteness�

A network has two input lines� The �rst of these is a data line� used to carry a binary
input stream of signals� when no signal is present� it defaults to zero� The second is the
validation line� and it indicates when the data line is active� it takes the value ��� while the
input is present there and ��� thereafter� Two output neurons� that take binary values only�
are taken to represent the data and validation of the output� Then the computation time of
a neural network is well de�ned and it makes sense to compare them with other real�valued
models such as the BSS�

For this discussion� let us consider only polynomial running time� When all the constants
are rational numbers� the computational power of ARNN is known to be exactly equal to P�
For the BSS machine� the computational power is known to be somewhere between P and
PSPACE� but not exactly determined� Even for the bounded�memory BSS� i�e�� machines
using only a constant number of registers� the exact power is not known�

When the constants are reals� the power of both models becomes non�uniform� P�poly
for the ARNN� and somewhere between P�poly and PSPACE�poly for the BSS� these classes
are de�ned� for example� in 	�� ��
�
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We will later use the fact that ARNN can implement most of the usual constructs in
programming languages� such as arithmetic on integer variables� assignments� conditional
statements� and loops� the most important exception being equality and inequality tests on
real variables� Some examples of ARNN programming can be found in 	��
�

� The Arithmetic Networks

From now on� we will de�ne several generalizations of the ARNN model de�ned in the
Introduction� Each generalization can be speci�ed by a pair ��� ��� where � is the set of net
functions allowed and � is the set of activation functions allowed�

Let �Q�poly� and �IR�poly� be the set of all multivariate polynomials with rational and
real coe�cients� respectively� By �poly� we mean either Q�poly or IR�poly� and we use this
notation when the choice is either clear or irrelevant for the discussion�

We de�ne high�order networks as these with ��� �� � �poly� ��� and arithmetic networks

�or threshold networks� as these computing with ��� �� � �poly� f�� �Hg�� For discrete
input� arithmetic networks are polynomial�time equivalent to BSS machines in which only a
constant number of registers are used� The proof is not di�cult and we omit it in order to
keep focused on neuron�based models�

In many cases� real weights are much more powerful than rational ones� For example�
polynomial�time high�order nets with rational weights accept only languages in P while those
with real weights accept all of P�poly� which contains even non�recursive languages�

At �rst sight� one might think that this is due exclusively to the fact that there are
uncountably many real weights� so most of them are highly non�computable� while all rational
weights are easily computable in any reasonable sense� In this section we show that� when
we move from �rst�order to higher�order threshold nets� or arithmetic nets� this simple
explanation is wrong�

Indeed� we show that taking polynomial�time computable real numbers as weights in�
creases the computational complexity of arithmetic nets in at least two ways� Note that the
results in this section are absolute� not depending on any unproven conjecture such as P ��
PSPACE�

Recall that it was shown in 	��
 that� for �rst�order nets� �linear precision O�t�n�� suf�
�ces�� meaning that it is enough to have the �rst O�t�n�� bits of the real weights and activa�
tion values to achieve a correct result after t�n� steps� Similarly� we will show in Lemma ���
that �precision �t

��n� su�ces� to simulate all �Q�poly�f�� �Hg� nets running in time t�n�� As
an evidence of the power of discontinuity� we show that no result of this kind is possible for
arithmetic nets with even very simple weights�

Theorem ��� There is no computable precision function r�n� such that �precision
O�r�t�n��� su�ces� to simulate all �IR�poly�f�� �Hg� nets running in time t�n�� This is
true even if only polynomial�time computable weights are used�

This theorem speaks of precision functions depending on the input size n only� It is clear
that� for each set of weights� there is some amount of precision depending on the weights

that su�ces to simulate any net having these particular weights and discrete input�
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As a second evidence� we show that arithmetic nets� even with simple weights� can
recognize some recursive languages arbitrarily faster than Turing machines�

Theorem ��� There are �IR�poly�f�� �Hg� nets that run in polynomial time� have polynomial�
time computable weights� and yet they accept recursive languages of arbitrarily high time
complexity �in the Turing machine sense��

Again� this is in contrast with the �rst�order case and the rational�weight case� First�
order nets with polynomial�time computable weights accept only languages in P 	�
� and
arithmetic nets with rational weights can be simulated in PSPACE� so in exponential time�

Theorems ��� and ��� are both consequences of the following theorem�

Theorem ��� For every time�constructible function t�n� there is a net N in �IR�
poly�f�� �Hg� such that�

�� The weights in N are computable in time O�n��

�� N runs in time �n�

�� The language T accepted by N is recursive but not decidable in time O�t�n�� by any
Turing machine�

�� Precision O�t�n�� does not su�ce to simulate N � that is� if N is simulated with pre�
cision O�t�n�� a language di�erent from T is accepted� even in the soft acceptance
sense�

Proof� We �rst give a rough idea of how N is built� We take a recursive but hard language
T � �� where �hard� means that it cannot be decided in time close to t�n�� We build a
weight w in a way that the predicate ��i � T� is equivalent to �the r�i��th bit of w is ���
where r�i� is function su�ciently larger than t�i�� Under some additional conditions on the
set T � the r�i��th bit of w is computable in time O�r�i�� to satisfy part ��� of the theorem�
Under the same conditions� N can access this bit using the threshold in time O�i�� hence
it can decide T in linear time to satisfy conditions � and �� On the other hand� if N is
simulated with precision O�t�n��	 r�n�� then there is no time to access the r�i��th bit of w�
Then� the net cannot correctly decide whether �i � T � unless we contradict the assumption
that T is not decidable in time close to t�n��

Now we provide the details� For a real number a � 	�� �
 with binary expansion
��a�a�a� � � �� we denote by aj the jth bit in its binary expansion� and by a 
 j the num�
ber �� �� � � � ��� �z �

j��

ajaj�� � � ��

Given function t�n�� de�ne functions s�n� and r�n� as�

s��� � � r�i� � t��s�i�� s�i� �� � r��i��

�Here� for example� t��n� denotes the �fth power of t� not t iterated � times�� It is routine to
check that s and r are time constructible if t is� We assume w�l�o�g� that r�i��� 
 r�i� � ��
Now we take the hard set T mentioned above�

Claim� There is a set T with the following properties�
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�� T contains only strings of the form �s�i��

�� T is decidable by some Turing machine in time t��n� but is not decidable by any Turing
machine in time O�t	�n���

The existence of this T follows from a basic theorem in computational complexity theory
called the Time Hierarchy Theorem� See for example 	�� ��� ��
 for expositions of this
theorem�

Now de�ne a pair of weights u�w � 	�� �
� Weight w is an encoded version of T and u is
a support weight useful to �nd the encoding bits�

uj �
	
� if� for some i� j � r�i�
� otherwise

and

wj �
	
� if� for some i� j � r�i� and �s�i� � T
� otherwise�

Observe that� for every i� �s�i� � T if and only if wr�i� � �� and we claim that this happens if
and only if w 
 r�i� � �u��� 
 r�i�� This is so because all bits before the r�i��th are the same
in both w 
 r�i� and �u��� 
 r�i� �namely� ��� Furthermore� �u���r�i��� � ur�i� � � for sure�
and� because r�i � �� 
 r�i� � �� wr�i��� � �� and similarly �u���r�i� � �� So the bit wr�i�

decides which of the two numbers is larger�

But all the bits of u and w in between r�i� �� � � and r�i� are �� so this is equivalent to
w 
�r�i � �� � �� � �u��� 
�r�i � �� � ��� This property can be used to decide T if weights
u�� and w are available�

More precisely� the net N decides T as follows�

�� input �n�

�� check that n � s�i� for some i� and compute j � r�i� �� � ��

�� from the weights w and u��� compute w� � w 
 j and u� � �u��� 
 j�
�� output �H�w� � u���

This net accepts T by the observation above� so it satis�es part ��� of the theorem�
Getting the input takes time n� Note that r�i � �� is o�s�i�� by de�nition of r�n�� Then�
computing i and j takes time o�s�i�� by the time�constructibility of r� and obtaining u� and
w� can be done in time O�j� � o�s�i�� with essentially the net in Lemma ���� This says that
N works in time s�i� � o�s�i�� � �n� as stated in the theorem� part ����

To see part ��� of the theorem� see that all the weights in N are the rationals used for
controlling the execution  ow� u� and w� For u� note that checking whether uj � � is deciding
whether j � r�i� for some i� which can be done in time O�j� by de�nition of r� deciding
whether wj � �� for j � r�i� is possible because T is decidable in time t��n�� so deciding
�s�i� � T takes time t��s�i�� � r�i� � j�






Finally� for part ��� we have to show that ifN is simulated with precisionO�t�n�� then the
language accepted is not T anymore� We argue by contradiction� If precisionO�t�n�� su�ces�
we can decide T with a Turing machine as follows� given an input �n� with n � s�i�� compute
weights u and w with precision O�t�n��� this takes timeO�t�n�� by the time�computability of
u and w� Then simulate N with precision O�t�n�� for its running time� which is at most �n�
Arithmetic operations � and � with precision p can be implemented on a Turing machine in
time O�p��� so the simulation can be done in time O�n 
 t��n�� � O�t	�n��� If the simulation
still accepts T correctly� we contradict the fact that T is not decidable in time O�t	�n���

� Basic and Simple Discontinuities

In this section we investigate other classes of nets equivalent to arithmetic ones� We consider
�rst the hard threshold �H and zero�test �� functions� since they look like the �simplest�
discontinuous functions in an intuitive sense� Our main result is that� indeed� they are the
simplest ones in a computational sense�

In addition� we call division networks these de�ned by ��� �� � �fpoly�divisiong� ��� We
prove that threshold networks are computationally equivalent to division networks� Later
in Subsections ��� and ��� we consider two richer classes of simple discontinuous functions
which� if included in high�order networks� form at least as strong a network as the arithmetic
one� The class of jump discontinuous functions will do for networks with real weights� while
the class of the launching functions is su�cient for networks with rational weights�

On the equivalence of �� and �H� note that the presence of the saturated�linear function
is essential here� In most arithmetic models� testing for zero is believed to be much easier
than testing sign� For example� in arithmetic RAMs� arithmetic circuits� and straight�line
programs� if only ��� instructions or gates are used� they can be simulated probabilistically
or nondeterministically in polynomial time �	��
� Theorem 
� 	��
� Theorems � and �� 	��
�
Theorem ��� for ��� gates� no easiness result of this kind is known�

Concerning the equivalence of division and �H� note that it is well known that division
operations do not add any power to the BSS model� they can also be simulated with ���
tests� Curiously enough� in our proof the �H functions are not so much used to simulate
divisions but� rather� to simulate the e�ect of the saturations of � over the divisions� this
e�ect has no clear parallel in the BSS model�

An important tool that we use in the construction is the Cantor�� set encoding �as was
introduced� for example� in 	��
�� Let � � ������ 
 
 
 be a �nite or in�nite binary string� We
encode this string into the number that we call �	����

�	��� �
nX
i��

��i � �

�i
�

where n is the length of � if � is �nite� and � if it is in�nite� If the string starts with the
value �� then the associated number has a value of at least �

	 � and if it starts with �� the value
is in the range 	�	�

�
��� The empty string is encoded into the value �� The next bit restricts

the possible value further� The set of possible values is not continuous and has �holes�� it

��



is a Cantor set� Its self�similar structure means that bit shifts preserve the �holes�� The
advantage of this encoding is that there is never a need to distinguish between two very close
numbers in order to read the most signi�cant digit in the base�� representation�

Using this encoding� one can prove that�

Lemma ��� There is a �rst�order neural net that� given any real number r in Cantor��
format� � � r � �� and a real of the form ��i� outputs the ith bit in the binary expansion
of r in time linear in i�

Another tool is Lemma ��� stated below� which is an analog of the so�called �Linear
precision su�ces� Lemma ��� in 	��
 proved there for �rst�order networks� It states that in
arithmetic networks having rational weights� the precision required in both the neurons and
as the weights is at most exponentially larger than in the �rst�order case�

Still another term we use is soft acceptance 	��
� In the usual model of recognizing
languages by neural nets� the values of the output neurons are always binary� In the soft
acceptance the output is of �soft binary values�� That is� there exist two constants 
� ��
satisfying 
 � � and called the decision thresholds� so that each output neuron outputs a
stream of numbers� each of which is either smaller than 
 or larger than �� We interpret the
outputs of each output neuron y as a binary value�

binary�y� �

�
� if y � 

� if y � � �

It is easy to transform any net accepting in the soft sense into another one accepting in the
standard binary sense� We are now ready to state the lemma�

Lemma ��� �Exponential Precision Su�ces� Let N be a �fQ�poly�divisiong� f�� �Hg� net
computing in t�n� time and accepting a language L � f�� �g�� Then there are constants c
and d such that

�� At any time t � t�n�� the state of a neural�processor is either � or else greater than ���
ct

�

�� If all computations of N are performed with precision ���
dt�n�

instead of in�nite preci�
sion� N still accepts L� though in the �soft acceptance� sense�

Part ��� is easily proved by induction� Part ��� follows from ���� given a bound on the
smallest number that can appear in a processor� it is possible to make an analysis of how
the error introduced by using �nite precision accumulates over time� this gives a bound on
the precision needed for the output of the computation to be correct in the soft sense� This
is similar to the proof in 	��
 for high�order nets� and is omitted�

Notes�

�� For numbers in 	�� �
� computing with precision ���
dt�n�

is equivalent to using �dt�n� bits
for the computation� Hence the name of the lemma�

��



�� The lemmamay still work if we add other functions to the net� provided they cannot be
used to produce small positive numbers much faster than polynomials do� In particular�
this is true when any ����valued functions are added� This will be used later on�

�� We showed in Section � that no lemma like this works for the real case� no �xed
amount of precision is enough to guarantee correctness of the result when real weights
are used� i�e� in a �fIR�poly�divisiong� f�� �Hg� network�

Given the lemmas above� we can state and prove the main theorem of this section�
namely� that the addition of either division� threshold� or test�for�zero to high�order networks
is computationally equivalent�

Theorem ��� For W � fQ� IRg� time in the following models is polynomially related�

�� Networks ��� �� � �W �poly� f�� ��g��
�� Networks ��� �� � �W �poly� f�� �Hg��
�� Networks ��� �� � �fW �poly�divisiong� ���

Proof� We show that these models simulate each other with no more than polynomial over�
head�

� is equivalent to �� It is easy to verify that �H�x� � ������x�� and that ���x� �
�H�x� � �H��x�� ��

� simulates �� Let N be an division net of item � with N neurons� Without loss of
generality� we can assume that each neuron has an update equation of one of the two forms�

x�i �� �� Pi�x�� x�� � � � � xN� �� with Pi a polynomial
x�i �� �� xj�xk �

We describe a neural netN � with additional �H �of item ��� that computes the same function
as N using update equations of the form

x�i �� �� Pi�x�� x�� � � � � xN� �� with Pi a polynomial
x�i �� �H� xj �

Each neuron xi � N is associated with two neurons in N �� yui and ydi � so that at all times

xi �
yui
ydi

and the values yui � y
d
i � 	�� c
 for a constant � � c � �� to be further bounded below�

We next describe how N � updates each pair �yui � y
d
i �� We describe the simulation in three

steps�

�� For each neuron� de�ne the following polynomials zu and zd�

��



�a� For a neuron computing �� Pi�x�� x�� � � � � xN� �� let Qi and Ri be two polynomials
such that

Pi�x�� x�� � � � � xN� �
Qi�yu� � y

d
�� � � � � y

u
N � y

d
N�

Ri�yd�� � � � � � y
d
N �

then de�ne
�zu� zd� � �Qi�y

u
� � y

d
�� � � � � y

u
N � y

d
N�� Ri�y

d
�� � � � � � y

d
N��

�b� For a neuron computing ��xi�xj�� de�ne

�zu� zd� � �yui y
d
j � y

d
i y

u
j � �

The constant c is chosen such that for all neurons jzuj� jzdj � � whenever the arguments
to zu and zd are in 	�� c
� This c always exists because we consider only a �nite number
of polynomials� Note also that� for the time being� we are not applying � to zu and zd�
so they may well take negative values�

�� We then normalize the values for di�erent y�s�

Case
B� � �zu � �� � �zuzd � �� �

saturate to � �yu� yd�� � ��� c�
B� � �zu� zd � �� � �zu � zd� �

saturate to � �yu� yd�� � �c� c�
B� � �zu� zd � �� � �zu � �c � zd � �c� �

back to range �yu� yd�� � ��czu��czd�
B	 � �zu� zd 
 �� � �zu � zd� �

saturate to � �yu� yd�� � �c� c�
B� � �zu� zd 
 �� � �zu 
 c � zd 
 c� �

back to range �yu� yd�� � �czu� czd�

�� We next show how to encode the algorithm as a network� First we realize that the
conditions B� � � � B� can be speci�ed as

B� � �H	�H�z
u��H��zu� � �H��zuzd� 


B� � �H	�H��zu��H�zd � zu� 


B� � �H	�H��zu��H��c� zu� � �H��zd��H��c� zd� 


B	 � �H	�H�z
d��H�z

u � zd� 


B� � �H	�H�z
u��H��c� zu� � �H�z

d��H��c� zd� 
 �

Then the update equations of the y�s are given by

�yu�� � ���B� �B	�c�B���czu� �B�cz
u � �� �

�X
i��

Bi�z
u�

�yd�� � ���B� �B� �B	�c�B���czd� �B�cz
d � �� �

�X
i��

Bi�z
d� �

Since zu and zd are polynomials� these are �nite combinations of polynomials� ��
and �H�

��



� simulates �� LetN be a neural net of item � withN neurons� Without loss of generality�
we can assume that each neuron has an update equation of one of the two forms�

x�i �� �� Pi�x�� x�� � � � � xN� �� with Pi a polynomial
x�i �� �H� xj �

We describe a neural net N � of item � that computes the same function as N using update
equations of the form

x�i �� �� Pi�x�� x�� � � � � xN� �� with Pi a polynomial
x�i �� �� xj�xk � �

Neurons in N computing polynomials are left unchanged in N ��

To simulate the neurons that compute hard thresholds� N � computes �rst a positive real
number that is smaller than the activation value of any neuron during the computation of
N � except possibly �� This pre�computed value is stored in a particular neuron xsmall � That
is� at any step t� if xj �� �� then � � xsmall � xj� Then the neuron with update equation

x�i �� �H� xj �

is replaced by the equivalent one

x�i �� �� xj�xsmall �

So the problem is reduced to computing this xsmall � Consider �rst the case where all weights
in N are rational� Let c be the constant provided by Lemma ���� part ���� for N � At any
time t� the state of a neuron is either � or else greater than ���

ct

� Then� to compute xsmall �
N only has to set a neuron to ��� and square its contents ct times�

When N contains arbitrary real weights� it is not possible to bound by any function of n
the smallest activation value that can appear in the computation� In this case� however� we
build into N � a new real weight telling how to compute such a number on�line�

Let �n be the smallest positive activation value of a neuron in a computation of N �
minimized over all neurons� computation steps� and inputs in f�� �gn� This smallest value is
de�ned because all computations are terminating� so there are only a �nite number of choices�
Assume �n appears in neuron number i� at computation step t� on an input w� � f�� �gn�

Let t�n� be the running time of N � and de�ne the following t�n� � N matrix Mn with
entries in f�� �g��

Mn	t� k
 �

���
��

�� if xk is saturated to � at step t in the computation of N �w��
�� if xk is saturated to � at step t in the computation of N �w��
�� otherwise

The �saturation� here comes from � or �H� depending on k� Note that M can be seen as a
binary string of length � 
N 
 t�n��

Let 
n be the string hw�� t�� i��Mi� which has length linear in n�N 
 t�n�� Let 
 be the
in�nite sequence 

 
 
� 
 
� � � �� and de�ne R � �	�
�� Net N � has the real number R as a
weight and� given n� obtains �n as follows�

��



�� Decode 
n out of R�

�� Decode w�� t�� i�� and M out of 
n�

�� Simulate t� steps ofN �w�� as follows� to update neuron k at step t� read the contents of
M 	t� k
� if it is ��� set x�k to �� if it is ��� set x�k to �� otherwise� set x�k to Pk�x�� � � � � xN��

�� After step t�� read �n from the current state of xi�� and store it in xsmall �

Using the net in Lemma ��� and some neural net programming� each of the steps above takes
time polynomial in n�N 
 t�n�� And once xsmall has been computed� N � simulates N in real
time� Hence� the total simulation time is a polynomial of n and t�n��

Let us note a couple of points in these proofs� The simulation of threshold by division
obtains a de�nite ��� value� the exact result of the threshold� hence� it remains valid if we
introduce other operations in the net� In the converse simulation� however� the result of a
division is obtained as a pair of numbers� It is not clear that the simulation goes through if
we add further operations to the net� because we may need to use the number that results
from the division�

Second� note that the simulation of threshold by division is not really constructive in
the IR case� the new network contains a new real weight with a lot of precoded information�
and this weight depends not only on the original weights but also on how the old net uses
these weights� It is of a certain interest to give a constructive proof of this theorem� Observe
also that the proof needs that only inputs in f�� �g� are used�

��� Other Jump Discontinuities

Not only the activation functions �� and �H extend networks in this manner� We can show
that many other discontinuous functions have at least the same power� We require functions
that have some clear �jump� at the discontinuity� formally�

De�nition ��� A jump discontinuous function f is one for which there exist real numbers
a� �� �� with �� � 
 �� such that for all x � �a� a��
 �or equivalently x � 	a��� a��� the formula
jf�x�� f�a�j 
 � holds� �

Theorem ��	 Neural nets of the type �fIR�poly�divisiong� �� and �IR�poly�f�� �Hg� can be
simulated by neural nets of the type �IR�poly� f�� fg�� where f is any jump discontinuous
function�

Proof� We show how to simulate the function �H using � and f � and the result for nets with
division follows by Theorem ���� Let a� �� and � be as in De�nition ����

Let x be a number in a bounded range� x � 	�B�B
� for which the threshold at zero has
to be implemented� There is such a B for every �IR�poly�f�� �Hg� net� We de�ne

z�x� � a� ���
x

B
�

��



such that the range ��� B
 is linearly mapped onto �a� a� �
 and the range 	�B� �
 is mapped
to a� Now� z � 	a� a� �
� and we then have to simulate the threshold at a �rather than at ��
on this range� We now de�ne

v�z� �
�

�
	f�z�� f�a�


so that the range is

v�z� �

���
��
� � f�a� � f�z�
� �� f�a� 
 f�z�
� � z � a

and we are to simulate any function that computes � for the �rst two cases and � for the
last case� We choose a particular function

k�v� � ���v � �� � ����v � ��

which computes as required�

To summarize� the threshold at � can be simulated by a neural network having both �
and f activation functions� using the equation�

k�v�z�x��� � �f�
�
	f�a� ���

x

B
��� f�a�
� �g � �f�

�
	f�a�� f�a� ���

x

B
��
� �g �

��� Launching Parts Simulate Discontinuities

As mentioned in the Introduction� it is known that a very large class of net functions and
activation functions are equivalent to high�order networks 	��
� That theorem applies to all
activation functions which are bounded and Lipschitz�

Recall that f is Lipschitz if for every � there is a c such that� for all x and y satisfying
jx�yj � �� it holds jf�x��f�y�j � c 
 jx�yj� The Lipschitz condition� on a compact domain�
is stronger than being continuous and is weaker than having derivatives�

A non�Lipschitz function f is similar to a discontinuous one in the following sense� at
some parts of the function� a small change in x may produce a large change in f�x�� These
very fast changes are precisely what makes discontinuous functions hard to compute by
�rst�order nets�

We show an example of non�Lipschitz function� the square root� for which this similarity
can be made precise� adding square root activation functions makes high�order networks
computationally equivalent to threshold networks� Later we sketch how similar results can
be proved for many other non�Lipschitz functions�

Theorem ��
 For nets that use only rational weights� time in the following models is poly�
nomially related�

�� Networks ��� �� � �fQ�poly�p � g� ���

��



�� Networks ��� �� � �Q�poly� f�� �Hg��
Proof� � simulates �� Fix a �fpoly�p � g� ���net N that runs in time t and contains only
rational weights� We can show that such a net only requires �ct bits of precision� for some
constant c� This follows by an analysis of the accumulated numerical error� similar to that
in the proof of Lemma ���� part ����

We obtain an equivalent net N � replacing each processor computing
p
a by a subnet

running in time tO��� which computes an approximation to
p
a correct up to �ct bits� The

subnet approximates
p
a by the Newton�Raphson method� to �nd a solution to x� � a � ��

iterate the mapping

x� �� x� x� � a

�x
which converges to x �

p
a� The following well�known fact ensures that converge is fast

enough �see� e�g�� 	�� ��
� for proofs�� Here x�i� stands for the number that results from
iterating i times the mapping starting from x�

Proposition ��� Let f be a real function� and 	a� b
 an interval such that f is in�nitely
di�erentiable in 	a� b
� f�a� 
 f�b� � �� and f � and f �� do not change sign in 	a� b
� Then
Newton�Raphson converges quadratically inside 	a� b
� this is� there is a constant C for f
such that jf�x�i��j � C 
 jf�x�i����j��

Then� inductively� at least �t correct bits are obtained in O�t� iterations� This subnet
uses division� so N � does� But by Theorem ���� there is a net equivalent to N � using �H
instead of division�

� simulates �� By Theorem ���� we only have to show how to simulate �poly�f�� ��g� nets�
Fix one such net� and assume it runs in time t� Let c be the constant given by Lemma ����
part ���� this is� all activation values of this net are either � or else greater than ���

ct

�

Replace each processor computing ���a� by a subnet that does the following� Square a
to make sure a � �� note that ���a� � ���a

��� Set x�
� �� a� Then� iterate c t times the

mapping x�i� �� ��
p
x�i����� so that x�c t� � a�

�c t

�

If a � �� then x�i� � � for every i� Otherwise� a 
 ���
ct

� and then x�ct� 



���

ct
���ct

�

���� All in all� we obtain ���x� as ��� 
 x�ct���
Generalizing the second part of this proof� one can see that the square root operator in

Theorem ��� can be substituted by any �launching� function� Say that a function f has
launching degree 
 �� � 
 � �� if for every � there is a constant c such that� for every x and
y with jx� yj � ��

jf�x�� f�y�j 
 c 
 jx� yj�
and 
 is the supremum of the values satisfying this property� The launching condition is
opposite of the H!older condition� where 
 is substituted by�� it can be interpreted as being
�strongly� non�Lipschitz� For the following preposition we can relax the launching condition
to occur only for the �xed value y � � to get jf�x�j 
 cjxj��
Proposition ��� Let f be a launching function� then for nets that use only rational weights�
the networks �fQ�poly�fg� �� simulate �Q�poly� f�� �Hg� with at most polynomial slow�down�

��



� Periodic Discontinuities

In this section we consider only networks that use rational numbers as weights and run in
polynomial time� Consider again threshold networks� It is easy to see that these nets can
compute at least all functions in P� they properly include high�order networks� that are
known to compute in polynomial time exactly the class P 	��
� It is also possible to show
that threshold nets only compute functions included in PSPACE� for example� the unit�cost
RAMs to be de�ned below can simulate threshold networks with a polynomial overhead�
and it is known that unit�cost RAMs are at most as powerful as Turing machines working
in polynomial space 	��� ��
� Hence� the power of threshold networks� having a broad class
of discontinuous activation functions� is located in between �or on� P and PSPACE� Recall
that the inequality P �� PSPACE� although widely believed� is a long�standing open problem
in the �eld of computer science�

We do not resolve the exact complexity of threshold nets� but we show that some ac�
tivation functions su�ciently more complex than the threshold do increase the power of
neural networks up to their upper bound� PSPACE� Hence� these periodic networks become
so�called second�class computing models� those in which time is polynomially equivalent to
Turing�machine space�

Second�class machines are usually introduced as models of massively parallel compu�
tation� Parallelism can be explicit� that is� the model explicitly uses exponentially many
processors� or implicit� in that it sequentially executes operations involving exponentially
large objects� The �rst happens� for example� with the Parallel RAM or PRAM model�
The second case is true� for example� for the vector machines of Pratt and Stockmeyer 	��
�
See 	�

 for more information on second�class models�

In 	�
� it was shown that networks with polynomials� division� and bitwise�AND opera�
tions on rational numbers constitute a second�class machine� The proof consisted essentially
of an e�cient simulation of a vector machine by such a network� with the bitwise�AND used
to simulate the boolean operations on vectors�

Bitwise�AND is admittedly an unnatural operation in the context of neural networks
and� in general� of arithmetic models� We thus look for a computational equivalence which
is more natural for this context� Bertoni� Mauri� and Sabadini 	�
 proved the surprising
and nontrivial result that bitwise operations are not necessary to obtain second�class power�
They used the following model of RAM operating on unbounded integers�

De�nition 	�� A Random Access Machine �RAM� consists of an in�nite number of regis�
ters� R
� R�� R�� � � � Each register can contain any nonnegative integer number� Register
R
 is used as an accumulator� and contains the input at the start of the computation� The
program of the RAM can contain the following operations�

� R
 �� k �" constant load "�

� R
 �� Ri �" direct load "�

� R
 �� #�Ri� �" indirect load "�

��



� Ri �� R
 �" direct store "�

� #�Ri� �� R
 �" indirect store "�

� ADD Ri �" add Ri to R
 "�

� SUB Ri �" subtract Ri from R
� if Ri 
 R
� set R
 to � "�

� MUL Ri �" multiply R
 by Ri "�

� DIV Ri �" integer divide R
 by Ri "�

� JZERO label �" jump if R
 � � "�

� HALT �" result is in R
 "�

In a unit�cost RAM� each instruction is executed in one unit of time� regardless of the size
of the operands� The running time of a unit�cost RAM is thus the number of instructions it
executes until it halts�

Bertoni� Mauri� and Sabadini proved that every problem in PSPACE is solved by a unit�
cost RAM in polynomial time� In fact� their work� together with a padding argument� shows
the following�

Theorem 	�� 	�
 For any time bound t�n� � n� the following two models are equivalent�

�� Turing machines running in space poly�t�n���

�� Unit�cost RAMs running in time poly�t�n���

For our proofs� it is convenient to use RAMs that do not abuse the power of indirect ad�
dressing� We use the following folklore lemma�

Lemma 	�� Let M be a unit�cost RAM working in time t�n�� Then there is an equivalent
unit�cost RAM working in time O�t�n� log t�n�� that only reads and writes registers with
index numbers O�t�n���

The idea of the proof is to organize the memory as a dictionary of pairs �i� vi�� where vi is
the last value written into Ri� When the original RAM tries to read from or write to Ri�
�rst search the table looking for an entry with i� then read or update the value of vi� If
the dictionary is organized as a sequential table� each access costs time O�t�n��� as there are
never more than t�n� pairs in the table� Implementing the dictionary as� say� a balanced tree�
the cost for each access is O�log t�n��� and the memory overhead is a small multiplicative
constant�

We next show two theorems� Theorem ��� states the second class power of periodic
networks� i�e�� those with polynomials� division� and the fractional part operation� Fractional
part is used both to encode and decode a unit�cost RAM memory and to simulate integer
division� Then in Theorem ��� we show that a large variety of other periodic functions� such
as the sine� can simulate fractional part e�ciently� So let �F � IR �� 	�� �� denote fractional
part�

�




Theorem 	�� For time bounds t�n� � n� time in the following models is polynomially
related�

�� Networks ��� �� � �fQ�poly�divisiong� f�� �Fg��
�� Unit�cost RAMs�

Proof� To simulate � by �� �x a unit�cost RAM program that runs in time t�n�� We describe
a division net using also �F �neurons that simulates it in time O�t��n��� First we give some
notation for a �xed input length n�

Let R be the number of registers used byM on inputs of length n� We can assume w�l�o�g�
that R � O�t�n�� by Lemma ���� Fix any D such that �D is greater than the contents of
any register of the RAM on any input of length n �we will give an explicit value for D in a
moment��

For any integer m� let code�m� be m 
 ��D� Note that if m is stored in a register of the
RAM� then code�m� � 	�� ��� We simulate the memory of the RAM in a �xed processor
Mem of the net� such that at any moment�

Mem �
RX
i�


code�Ri� 
 ��iD�

We can imagine each register of the RAM encoded in blocks of D binary digits inside Mem�
something like

Mem � �� code�R
�� �z �
D bits

code�R��� �z �
D bits

� � � code�RR�� �z �
D bits

We describe now some basic operations of the net�

Computing ��D� It is easy to verify by induction that for every unit�cost RAM there is
a constant c such that the numbers it builds in time t have value at most �n � c��

t

� Let

D be log�n � c��
t�n�

� O��t�n� log n�� Then� the arithmetic net can compute ��D in time
O�t�n� � log log n� � O�t�n�� by repeatedly squaring from ����

Extracting a �eld from Mem� Given i and the memory of the RAM encoded in Mem� we
want to compute code�Ri� to do some operation using Ri� Observe that

code�Ri� � �	 �F � Mem 
 ��i���D �� �F � Mem 
 �iD � 
 ��D 


The �rst fractional part gets rid of the code of registers R
 � � �Ri��� then we subtract the
code of registers Ri�� � � �RR� so we are left with the code of Ri� Clearly� an arithmetic
net can compute this in constant time given ��D� if i is constant� �Note� numbers such as
�iD cannot be stored in a processor� however� in expressions as above we write �Mem 
 �iD�
meaning �Mem���iD� for clarity��

Inserting a �eld in Mem� Given i� Mem� and a value x � code�m�� we want to update Mem

so that Ri � m� i�e�� we want to replace the current code�Ri� with x� This is done as follows�

Mem� � �	 Mem � �F � Mem 
 ��i���D � 
 ���i���D
� x 
 ��iD

� �F � Mem 
 �iD � 
 ��iD 


��



The �rst line gives the codes of registers up to Ri��� the second line adds x� the new code
for Ri� and the third line adds the codes for registers Ri�� on�

With these two operations on �elds� the net can simulate both direct and indirect access
to register Ri� Indeed� we only have to compute numbers such as ��iD� and this can be done
in time O�t�n�� given i� because we assume that the RAM never reads or writes registers Ri

with indices i 
 O�t�n���

Simulating arithmetic instructions� For natural numbers a and b�

code�a� b� � code�a� � code�b�
code�a 
 b� � code�a� 
 code�b� 
 �D

code�a DIV b� � ��D
code�a�

code�b�
� ��D �F

�
code�a�

code�b�



�

Test for zero� The expression
�� code�Ri� 
 �D �

is � if Ri � �� and � otherwise�

Putting it all together� With the building blocks above� each unit instruction of the unit�
cost RAM can be simulated in time O�t�n��� Using some hardware to control the  ow of
the program� the arithmetic net� �� reads the input in time O�n�� �� computes ��D and
related numbers in time O�t�n��� �� simulates the program� each instruction adding a cost
of O�t�n��� �� when the RAM halts� the net outputs the contents of R
� Hence� the running
time is O�n � t��n���

The converse simulation of an arithmetic net by a unit�cost RAM is much easier� As the
net has only rational weights� all the states in the computation are rationals� The unit�cost
RAM keeps the state of each processor as a pair �numerator� denominator�� and this allows
to simulate each step of the net in constant time in a straightforward manner� Note only
that function �F is simulated by means of DIV�

We next show that many other periodic functions can substitute �F in Theorem ����
together with division or threshold� One su�cient condition is the following�

De�nition 	�	 Let f be a periodic function f with period P � We call f weakly invertible if
there is a nonempty interval 	a� b� � 	�� P � such that� i� f is in�nitely di�erentiable in 	a� b
�
ii� for every x � 	a� b�� f�x� has exactly one preimage in 	�� P ��

Theorem 	�
 Let f be any weakly�invertible periodic function� Then� for time bounds
t�n� � n� unit�cost RAMs are polynomially simulated by networks ��� �� � �fIR�
poly�divisiong� f�� fg� and by networks ��� �� � �IR�poly� f�� �H� fg��

Note that the constants in the simulating networks are either rational or else constants
depending on f only�

Proof� By Theorem ���� we only have to show how to compute �F using f � In fact� by the
usual analysis of error propagation� it is enough if we can approximate �F with �O�t�n�� bits
of precision in time polynomial in t�n��

Let 	a� b� be the interval given by the assumption that f is weakly invertible� Take a
subinterval 	c� d
 with the following properties�

��



� a � c � d � b�

� The period P is an integral multiple of d� c� i�e�� for some natural number k we have
k 
 �d� c� � P �

� f � f � and f �� have constant sign inside 	c� d
� and in particular they are not zero there�
�This will be used to apply Newton�Raphson in the conditions of Proposition �����

Note that if the interval 	c� d
 cannot be chosen then� because of the third condition� every
subinterval of 	a� b� must contain a zero of either f � f �� or f ��� By the assumption that f is
in�nitely di�erentiable� f has to be either constant or linear in 	a� b�� If it is constant� then
	a� b� cannot witness that f is weakly invertible� If it is linear� the function h built as below
is a linear transformation of �F so we are done with the proof� Hence we can assume for the
argument that 	c� d
 exists�

We now do some surgery on f so that it can be used to compute �F � See Figure � for an
example�





Figure � here����

De�ne function g by

g�x� �
	
f�x� if f�x� � 	c� d

� otherwise

and then function h by

h�x� �
k��X
i�


g�x� i 
 �d � c���

Now h has the following properties�

� it is a periodic function of period d� c consisting of repeated copies of f�c� � � � f�d��

� inside their period� neither h� nor h�� change sign� and they are never zero�

� it can be computed by a net of constant size containing f and �H processors� �H can
be replaced with division as we saw in Theorem ����

For simplicity� we assume from now on that h has period �� it is enough to always divide
the argument to h by its true period�

To compute �F �z�� do as follows�

�� Compute y �� h�z�� observe that h��F �z�� � y�

�� Solve the equation h�x� � y in the interval 	c� d� with precision ���
ct

in x�

�� Output this x as an approximation to �F �z��

��



To solve the equation h�x� � y� use Newton�Raphson method� By Proposition ���� the
distance from x to the root after O�t� Newton iterations is at most ���

ct

� as we need�

Finally� to implement Newton�s iteration

x� �� x� h�x�� y

h��x�

we compute a small � and use �h�x � �� � h�x���� instead of h��x�� We have to show that
there is an � computable in time polynomial in t such that the error introduced by this
approximation of h� does not a�ect the overall result of the computation�

Assume for simplicity that y � � so we want to solve h�x� � �� Let fx�i�gi be the
sequence obtained by iterating

x�i��� �� x�i� � h�x�i��

h��x�i��

and fy�i�gi be the one obtained by iterating

y�i��� �� y�i� � h�y�i��
h�y�i�����h�y�i��

�

from the same initial point y�
� � x�
�� We will set up a recurrence bounding jx�i� � y�i�j�
Since the initial point is the same� jx�
�� y�
�j � �� In general�

jx�i��� � y�i���j � jx�i� � y�i�j�
������
h�x�i��

h��x�i��
� h�y�i��

h�y�i�����h�y�i��
�

������ �
To bound the second term we use that� for all u� v� s� and t�

����uv � s

t

���� � max�juj� jsj� 

�����v � �

t

���� � max�juj� jsj�
min��jvj� jtj� 
 jv � tj�

Here������h��x�i��� h�y�i� � ��� h�y�i��

�

����� �
���h��x�i��� h��y�i��

����
�����h��y�i��� h�y�i� � ��� h�y�i��

�

����� �
We have jh��x�i�� � h��y�i��j � k� 
 jx�i� � y�i�j for a constant k� because h�� is bounded�
Furthermore� by the mean value theorem� there is a � � 	�� �
 such that

h��y�i� � �� �
h�y�i� � ��� h�y�i��

�
� ���

On the one hand� this implies that

min

�
jh��y�i��j�

�����h�y
�i� � ��� h�y�i��

�

�����


� min



jh��y�i��j� jh��y�i� � ��j

�

��



is bounded from below by a constant� because h� is not zero in 	c� d
� Therefore� as also h is
bounded above by a constant�

max�jh�x�i��j� jh�y�i��j�
min�



jh��y�i��j�

���h�y�i�����h�y�i���
�

����
is bounded above by a constant k��

On the other hand� ��� also implies that�����h��y�i��� h�y�i� � ��� h�y�i��

�

����� � jh��y�i��� h��y�i� � ��j � k� 
 � � k� 
 ��

for some constant k�� because h�� is bounded� All in all�������
h�x�i��

h��x�i��
� h�y�i��

h�y�i�����h�y�i��
�

������ � k� 
 �k� 
 jx�i� � y�i�j� k� 
 ���

The recurrence becomes

jx�
� � y�
�j � �
jx�i��� � y�i���j � jx�i� � y�i�j 
 �� � k� k�� � k� k� �

that certainly satis�es
jx�i� � y�i�j � � 
 �k	�i

for a constant k	 de�ned from k�� k�� and k��

The analog of Lemma ��� works for �fQ�poly�divisiong� f�� �Fg� nets� so we can tolerate
an error in the approximation of �F of ���

ct

� for c a constant� To have jx�t� � y�t�j � ���
ct

�
it is enough to have � � ���

ct

k�t	 � a number that can be computed in time O�t� by repeated
squaring�

It remains to show that we can use �H instead of division � recall that our proof of
Theorem ��� did not show that this can always be done when arbitrary functions f are added�
Note that division exists in the network given by Theorem ���� and that it is introduced in
the preceding construction by Newton�s method�

Because we start from a net using only rational numbers� we are now guaranteed that
whenever we want to compute u�v� then jvj 
 ���

ct

for some constant c� By some easy
scaling we can also assume that � � v � �� Then u�v can be approximated very well as
follows�

�� Compute the unique integer p such that �p 
 v � 	���� ��� and de�ne z � � � �p 
 v�
Since p must be in the interval 	�� �ct
� it can be found by binary search in time O�ct��
Threshold is used to do the binary search�

�� Use the series

u

v
�

�p u

� � z
� �p u 
 �� � z� 
 �� � z�� 
 �� � z	� 
 
 
 �� � z�

i

� 
 
 


��



Since � � z � ���� it is enough to use O�ct� terms of the series to approximate u�v with
�O�ct� bits of precision� And by the same argument as before� this precision is enough for the
whole simulation to be correct�

Observe that �F satis�es De�nition ���� so by Theorem ���� it can simulate �H � Hence�
an immediate corollary to Theorem ��� is that division is not necessary in Theorem ����

Corollary 	�� For time bounds t�n� � n� time in the following models is polynomially
related�

�� Networks ��� �� � �fQ�poly�divisiong� f�� �Fg��
�� Networks ��� �� � �Q�poly� f�� �Fg��

�

Functions such as �F and tangent are easily seen to be weakly invertible� Sine is not
because all points in the range have two preimages in the period� except for 	�� and �	���
But the following variant of sine is weakly invertible�

half�sine�x� �
	
sin�x� if sin�x� 	��� � �
� otherwise�

In words� half�sine �lters out the parts of the sine with negative slope� Furthermore� it can
be computed with a � gate and a sine gate� and � can be replaced by division with the
technique in Theorem ����

Note that all weakly invertible functions must be discontinuous� to have an injective part�
If the discontinuity is of the �jump� type� we can apply Theorem ��� and get rid of �H� This
is the case� for example� for the tangent function� because ��tan� has a jump discontinuity�
The fact that it is not de�ned at the discontinuity is not problematic� it is easy to ensure
that the function is never evaluated at unde�ned points by o�setting its argument with a
su�ciently small number�

All in all� we have for example the following corollaries�

Corollary 	�� Unit�cost RAMs are polynomially simulated by

� �fpoly�divisiong� f�� sing� networks�
� �poly� f�� �H� sing� networks� and
� �poly� f�� tang� networks�

Therefore� these nets are second class machines� and in particular they can solve all PSPACE
problems in polynomial time� �

Note that the trick used to obtain a weakly invertible function from sine is likely to work
for many other natural functions� though we do not attempt to formalize when�

��



� Conclusions

Our results seem to point out both theoretical advantages and inconveniences of discontinu�
ous models� On the one hand� we have proved that discontinuities can speed up arbitrarily
some computations� On the other hand� continuous models allow for precision bounds� or in
other words they have some robustness to noise� discontinuities seem to ruin this property�

In summary� there is a trade�o� between computational power and robustness to noise�
This trade�o� should perhaps be taken into account when modeling with neural networks�
Obviously� no realistic modeling can use in�nite precision neurons� It is an open problem
whether discontinuous operators help in solving natural problems any faster� if we model
now using neurons of a moderate precision�
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Figure �� Transforming f to h� an example�


