
Managing Collaboration in the nanoManipulator 
 
 

Thomas C. Hudson 
University of North Carolina 

at Wilmington 
hudsont@uncw.edu 

Aron T. Helser 
3rdTech, Inc. 

helser@3rdtech.com 

Diane H. Sonnenwald, 
Mary C. Whitton 

University of North Carolina at 
Chapel Hill 

dhs@ils.unc.edu, 
whitton@cs.unc.edu

 
 

Abstract 
 
We designed, developed, deployed, and evaluated the 

Collaborative nanoManipulator (CnM), a system 
supporting remote collaboration between users of the 
nanoManipulator interface to atomic force microscopes.  
To be accepted by users, the shared nanoManipulator 
application had to have the same high level of 
interactivity as the single user system and the application 
had to support a user’s ability to interleave working 
privately and working collaboratively.  This paper briefly 
describes the entire collaboration system, but focuses on 
the shared nanoManipulator application.  Based on our 
experience developing the CnM, we present: a method of 
analyzing applications to characterize the requirements 
for sharing data between collaborating sites, examples of 
data structures that support collaboration, and guidelines 
for selecting appropriate synchronization and 
concurrency control schemes. 
 

Keywords:  state replication, collaborative virtual 
environments, scientific collaboration, distributed 
collaboration, concurrency control, nanoManipulator 

 

1. Introduction 

A large number of virtual environment (VE) 
applications can be categorized as involving one or more 
users moving around in and exploring a world model.  
Examples include visualization and analysis of scientific 
or other abstract data, design reviews, and shared, purely 
experiential VEs for education or entertainment.  While in 
this type of VE, users may vary their viewpoints, vary the 
viewing parameters, use analysis tools, and generate 
annotations and other supplemental data. 

In these exploratory VEs, the users seldom modify the 
world model during the VE session.  However, as with 
live data from an atomic force microscope (AFM), the 
model need not be static.  It may come from a real-time 
sensor, be generated by a simulation, or be the playback 
of a recorded sequence from one of those sources. 

In a multi-year, NIH-funded project designed to 
discover whether collaborators working remotely can 
perform “good” science, we designed, developed, 
deployed, and evaluated a distributed, collaborative 
version of the nanoManipulator (CnM) system developed 
at UNC Chapel Hill [1, 2].  The CnM system is in use and 
has been the subject of both a controlled experimental 
evaluation and an ongoing ethnographic evaluation.  This 
paper briefly describes the entire collaboration system 
including the hardware and software for the nM 
application as well as for video conferencing and shared 
productivity applications.  The paper, however, focuses 
on the design of the shared nM application. 

Two requirements drove the architecture of the shared 
nanoManipulator application: it had to be highly 
interactive, with both response time and user-to-user time 
less than 300 ms, and it had to support the ability for a 
collaborator to interleave periods of working 
independently (private mode) with periods of working 
collaboratively (shared mode), with the associated 
requirement that there be an easy mechanism for copying 
application state data back and forth between the 
independent (private) and collaborative (shared) modes. 

The interactivity requirement drove the early design 
decision to implement the collaborative system with 
replicated copies of the application at each site. Once that 
decision was made, we then addressed a) the problem of 
characterizing the control parameters in our system so 
that we could match them to appropriate synchronization 
and concurrency control mechanisms and b) the problem 
of creating and managing the two sets of state data 
required at each site to support both shared and private 
work.  We found that an extension of the model-view-
controller paradigm [3] improved our understanding of 
the system, leading to a better architecture and improved 
maintainability. 

In this paper we present an extension of the model-
view-controller paradigm to help developers of 
collaborative VE systems analyze applications and 
characterize control parameters.  We also present a set of 
guidelines for selecting an appropriate concurrency 
control technique for varying types of system data. 

Proceedings of the IEEE Virtual Reality 2003 (VR’03) 
1087-8270/03 $17.00 © 2003 IEEE 



2. Background 

2.1. Interactivity 

In addition to specific functionality, chief among any 
set of system requirements is usability, and latency is a 
significant determinant of the usability of an interface. 
Graphical and VE applications have particularly stringent 
latency requirements because their interfaces are 
interactive: users directly manipulate parameters 
controlling the images they see using continuous input 
devices such as mice. The usability of interactive 
interfaces degrades significantly when visual feedback is 
not essentially immediate. 

Collaborative applications must address two distinct 
types of latency: response time and user-to-user time [4]. 
Response Time is the time between a user’s input and that 
user seeing the results of his input. User-to-User Time is 
the time between a user’s input and a remote collaborator 
seeing the results of that input. Different aspects of the 
system design contribute to these two latencies; both must 
be minimized to create a high-performance VE system. 

Response times must be tightly bounded in interactive 
interfaces. The VE community has reported 100 ms as an 
approximate upper bound for direct manipulation tasks 
[5-7]. In the context of a two-dimensional collaborative 
application, Bhola et al. state that the limit varies between 
50 and 100 ms [4]. When force feedback is being used 
simultaneously, or user input is driving a control loop, 
response time becomes even more critical: 50 ms of 
latency in flight simulators reduces performance, and only 
a little more is needed to cause system instability [8]. 

When users are attempting to coordinate their actions, 
or understand how their actions affect one another, user-
to-user time is important. Several authors report 200 ms 
of delay interfering with the completion of closely 
coordinated tasks in collaborative virtual environments 
[9]. 

2.2. Concurrency Control  

Concurrency control mechanisms attempt to guarantee 
that all users see a consistent (i.e., the same) application 
state at the same time. If users expect to see the same 
thing and discover that they do not, the collaboration will 
break down. The latency requirements of interactive 
graphical applications make concurrency control a major 
issue in effectively data sharing between geographically 
separated users.  

Concurrency control mechanisms also attempt to 
guarantee that users always see an expected application 
state, sometimes expressed as the Principle of No 
Surprises, or the Isolation Property of application state 
data. Users should never be surprised by the application’s 

response to their input or see unintended effects due to a 
collaborator’s simultaneous actions. 

A third requirement for concurrency control 
mechanisms is that they prevent application behavior that 
may cause harm to data or devices.  “A concurrency-
control protocol ensures that incorrect behavior cannot 
occur as a result of concurrent access by multiple clients.” 
(Herlihy, pg 249) [10]. 

Achieving Concurrency—Locks.  If an application is 
centralized and uses locks for concurrency control, all 
clients suffer delay of one network round-trip time on 
every operation. To speed up client operations, state can 
be replicated at every client’s computer. Clients can then 
quickly read local state, but need to execute a distributed 
concurrency control protocol to obtain and release locks 
when writing to their own copy of the application’s state 
and to disseminate the results of writes to other users. 

Floor control is the simplest application of database-
style locking to collaborative applications. Floor control 
uses a single lock to guard access to the entire application 
or document being shared [11]. Only one user at a time 
can actively manipulate the application. Inactive users 
press a button to request control of the application. As in 
a well-run meeting, only one speaker at a time “has the 
floor” and can address others or take action, while others 
watch and listen. Microsoft’s NetMeeting™ is one 
familiar product that uses floor control. 

Locks can be made “fine-grained”. For example, a 
document can be divided up into many pieces with one 
lock controlling each piece; only one user can manipulate 
a given section of a document, but users may work in 
parallel on different sections of the document. This 
increases the need to interleave lock management with the 
user’s natural workflow, breaking concentration on the 
task and usually giving the user a significantly worse 
experience than the single-user application. Fine-grained 
locks can be implicit: rather than explicitly requesting a 
lock, the user begins a manipulation; the system then 
checks to see if that part of the document is locked, and if 
so aborts their operation. Implicit locks avoid the 
workflow disruption of explicit locking, but increase 
application latency, and can cause an unexpected loss of 
work when operations are aborted, violating the “No 
surprises” directive and greatly discouraging users. 

 
Achieving Concurrency—Optimism.  Optimistic 

concurrency control is a class of algorithms that 
guarantees consistency with minimal latency. Following 
Amdahl’s Law — make the common case fast — systems 
using optimistic concurrency control perform an 
operation, then check to see whether the operation 
conflicted with other simultaneous operations at different 
hosts. If conflicts occur, an application-dependent 
procedure resolves them [12]. Since most operations do 
not cause conflicts, they can be executed rapidly, without 

Proceedings of the IEEE Virtual Reality 2003 (VR’03) 
1087-8270/03 $17.00 © 2003 IEEE 



the time penalty of locking.  Many groupware systems 
use optimistic concurrency control because of their 
sensitivity to latency, 

Optimistic concurrency control has to be careful to 
preserve the intention of the multiple concurrent users of 
the system. Recent work has extended optimistic 
approaches from text editors [13] to spreadsheets and 2D 
graphics editors. The work reported in this paper further 
extends them to an interactive 3D graphics application. 

2.3. Collaborative Virtual Environments 

Meehan [14] surveyed multi-user distributed virtual-
environment (DVE) systems, showing the wide range of 
concurrency control approaches that have been tried. The 
NPSNET and AVIARY systems are of particular interest 
because they avoid the latency penalty of locking 
protocols [15, 16]. 

Concurrency control has not been the focus of prior 
massively multi-user DVE systems, for which bandwidth 
is a more serious constraint than network latency. 
However, in the nanoManipulator with its relatively small 
amounts of data to be transferred, the network’s inherent 
latency is a much larger component of user-to-user 
latency than is bandwidth: propagation and queuing times 
are much greater than transmission time; distance and 
network congestion contribute more to user-to-user 
latency than does bandwidth. 

In this work, we assumed that network latency is 
beyond the application’s control. Instead of trying to 
control network performance, we change the 
implementation of the application to reduce its demands 
of the network – to improve application-level 
performance for a given network performance.    Another 
tactic is to modify the application’s user interface, to help 
users adapt to latency.  A good survey of this approach, 
one not used in our system,  can be found in [9]. 

Our research was performed in the context of 
replicated collaborative virtual environments (CVEs) with 
small numbers of users. Replication scales poorly; 
systems with hundreds and thousands of users require 
more complex concurrency support than used in our 
system, typically including area-of-interest management 
and the reintroduction of servers to filter communication 
[16].  However, these added layers of distributed 
architecture do not invalidate our analysis and 
implementation techniques. 

2.4. Collaborative Science 

Scientific collaboratories are a hot topic today.; our 
project is one of eight funded by the NIH to evaluate 
collaboration technology.  Notable work has been done at 
the Beckman Institute where researchers have created a 
number of programs that allow the sharing of a Scanning 

Electron Microscope (SEM), including Bugscope [17], a 
tool for K-12 teachers.  Another scientific collaboratory, 
the Upper Atmospheric Research Collaboratory (UARC), 
provides shared access to a number of scientific 
instruments that observe Earth’s ionosphere [18].  The 
Beckman system is typical in that users have a web-based 
interface that shows them one frame of video captured by 
the SEM. Buttons on this interface cause the SEM to pan, 
zoom, or otherwise modify the SEM control parameters in 
discrete steps. 

Neither of these example collaboratories is an 
interactive application in the sense we use to describe VE, 
i.e. they do not accept continuous streams of input data 
and provide almost instantaneous feedback.  The user 
interfaces are a command line or a collection of 2D 
widgets, manipulated without immediate feedback from 
the application.  Humans tolerate a great deal of latency in 
interfaces of this type, so they are suitable when latency 
cannot be controlled. 

3. Our Application 

The nanoManipulator is a software and hardware tool 
that provides interactive 3D visualization of data from an 
Atomic Force Microscope and gives a user force-
feedback control of the microscope’s tip. The program 
allows scientists to see, feel, and modify samples ranging 
from DNA and carbon nanotubes to viruses and cells.  All 
data coming from the microscope is recorded.  This 
allows scientists to replay and reanalyze experiments at 
some time after they were originally conducted [1].   

3.1. Collaboration System Requirements 

The first priority in the Collaborative nanoManipulator 
system was to support the cognitive work of collaborative 
scientific research; secondly, the system needed to allow 
collaborators to be aware of one another’s actions and to 
communicate [2]. The shared nM application is the heart 
of the system.  As stated earlier, users expect the shared 
system to exhibit the same responsiveness as the single 
user system.  Response time and user-to-user time should 
be under 300 ms. Our observations of the scientists’ work 
patterns revealed that the system needed to support both 
working individually and working collaboratively (private 
and shared work), and needed to be able to switch back 
and forth easily between those two modes.  

3.2. The Collaboration System 

As it is the most important element of the system, we 
chose to devote most of our development resources to the 
shared nM application. We used off-the-shelf 
collaboration support products to enable visual and audio 

Proceedings of the IEEE Virtual Reality 2003 (VR’03) 
1087-8270/03 $17.00 © 2003 IEEE 



communication between the users and to allow sharing 
analysis tools and other productivity applications. 

Figure 1 shows the collaboration system.  One PC runs 
the shared nanoManipulator application with its attached 
Phantom™ force-feedback device; the second PC runs 
Microsoft NetMeeting™ for video conferencing and 
shared application support.  We used an ordinary 
telephone, with wireless headset, to ensure high quality, 
full duplex audio communication. A drawing tablet was 
available, but seldom used.  The scientists like having two 
video cameras, one a “talking head” view and one on a 
gooseneck that they could direct at their lab notebooks to 
share sketches or at their hands or apparatus. The local 
user selected which video signal to broadcast.  

 

 
Figure 1. The Collaborative nanoManipulator 
System. 

When using the Collaborative nanoManipulator 
System, two scientists geographically remote from one 
another can connect to the same Atomic Force 
Microscope. They receive the same data from the AFM, 
and can choose to link their visualization control 
parameters so that they see the data in the same way. This 
lets them discuss an experiment in progress or review a 
past experiment with a common frame of reference, lets 
them point to a region of the sample under the microscope 
and be sure that their collaborator sees the same thing 
they do, and lets them demonstrate data analysis 
techniques to one another. 

4. Shared nM Architecture 

Based on the need for very low latency to meet our 
application’s interactivity requirement, our first design 
decision was to build a fully replicated system (see 
Section 2.2).  We then applied the Model-View-
Controller paradigm to structure our application replicas. 

4.1. The Model-View-Controller Paradigm 

The Model-View-Controller (MVC) paradigm was 
first introduced as the standard architecture for 
applications in the Smalltalk programming language and 
has since been widely used to build many types of 
interactive applications, including collaborative tools 
(“groupware”). It specifies two facets of an architecture: 
the division of function among modules and the pattern of 
communication between modules. Application data and 
logic are grouped together in the Model, input-handling 
functions into the Controller, and output into the View. 
The Model notifies both View and Controller if any of its 
data changes, and they are responsible for determining 
whether or not this change is relevant to them.  This 
generally inefficient communication pattern has been 
extended and optimized by several groups [19], until the 
MVC paradigm has come to describe the tripartite 
architectural decomposition of an application but not 
necessarily its communication pattern.  It is in this more 
general sense that we use it. For clarity, Model, View, and 
Controller are capitalized in the following discussion.VEs 
deal with many different kinds of data.  In CVEs, these 
different kinds of data typically have different 
requirements for concurrency control.  In designing a 
CVE, we have found it useful to think of the application 
as not having a single instance of Model, View, and 
Controller, but as having several Models, whether in 
parallel or in a hierarchy, each with its own View and 
Controller.  Each MVC triple can have its own 
concurrency control method.  The View and Controller 
exposed to a user might be the union of all the instances, 
or a subset of them, with other Views and Controllers 
entirely internal to the application. 

For example, in the Collaborative nanoManipulator 
System, there is a replicated Model of the microscope. 
This Model contains such information as, “What is the 
current location of the microscope tip? What is the current 
force exerted by the microscope on the sample? What is 
the topography of the surface recently scanned?” To avoid 
damage to the microscope, the Control of the microscope 
cannot permit any concurrent changes in the microscope 
control parameters. A locking mechanism is required 
because two users trying to direct the tip of the 
microscope at the same time while it interacts with a 
sample could cause damage to both microscope and 
sample and would guarantee that neither user’s intention 
would be satisfied. For the AFM, and more generally for 
shared teleoperators, explicit locking/floor control is 
necessary. 

The way the data in the Model of the microscope is 
visualized (View) is controlled by a complex set of 
parameters, which form a second, subsidiary Model that 
we’ll call the visualization Model.  The data in the 
visualization Model answer such questions as, “From 

Proceedings of the IEEE Virtual Reality 2003 (VR’03) 
1087-8270/03 $17.00 © 2003 IEEE 



what position (in a virtual space) is the user viewing the 
sample? What color map is applied to the sample? How is 
it illuminated? Are isocontour lines displayed?”  Control 
for the visualization Model is very latency-sensitive (from 
a human-factors standpoint). The operations in the 
visualization Control are easily commutable and non-
critical. The latency requirement and low probability of 
causing an inappropriate application response suggest that 
the visualization Model can be treated with optimistic 
concurrency control.   

The data in the visualization-Model defines the 
difference between shared and private work: if two 
collaborators keep their visualization-Models 
synchronized, they see the microscope data in the same 
way; if not, they work independentlySeparating a set of 
requirements into distinct Models along the borders 
between feasible concurrency control schemes both helps 
us determine the architecture of the overall program and 
helps us build in flexibility. The graphical display of the 
microscope data in the Collaborative nanoManipulator is 
normally shared, but can be uncoupled so that each user 
has a different View. We accomplish this by uncoupling 
the visualization-Models; nothing in the microscope’s 
Model-View-Controller system changes. 

Figure 2.  Two model-view-controller triples 
capture the different semantics of information 
about the microscope and about how the users 
wish to view that information. 

 
 
We can also use this analysis to understand design 

decisions made in NPSNET, a system for immersive 
military combat training [16]. Although NPSNET is very 
different from the nanoManipulator, it still holds that 
different consistency requirements hold for different 
operations. NPSNET tracks the movement of players 
approximately, using low-bandwidth, optimistic 
techniques to keep the model at the player’s local replica 
updated, with a recovery or convergence algorithm to 
handle errors caused by optimism [20]. When a player is 
shot at, the simulation requires a globally consistent 
answer; the decision of whether or not a shell hits is 

executed at one host and broadcast to all other interested 
participants. We can think of NPSNET as dividing its 
world data into two peer Models, each with an 
appropriate concurrency control method. Like the 
nanoManipulator, NPSNET uses optimism for speed but 
centralization for operations that cannot be undone. 

4.2. Implementing Hierarchical Models 

For its visualization-Model, the nanoManipulator uses 
a fine-grained object-oriented design, where one 
heavyweight object exists for each primitive value 
(integer, float, string).  A callback system propagates 
changes of the object’s value to all interested entities. 

We subclassed these objects, adding to every instance 
one buffer for each mode (private or shared). All 
concurrency control and networking concerns were 
handled by these buffers, so that we only needed to add to 
the interface of the primitive value objects the ability to 
select which mode was active for that object. This 
separation of concerns was very valuable in debugging 
and maintenance. When the user changes their 
collaboration mode, the value in an object’s buffer for 
that mode becomes the object’s value, triggering the 
object’s associated callbacks.  
Thus, instances of the preexisting IntegerVariable class 
were replaced with MultibufferedInteger, which inherited 
both from IntegerVariable and a new utility class named 
MultibufferedVariable. MultibufferedVariable abstracted 
out the type-independent requirements of managing 
multiple buffers and switching between them. It contained 
two SharedObjects; for a MultibufferedInteger, these 
were instantiated as SharedInts. SharedObject and its 
descendants are classes that know how to keep one value 
synchronized over a network connection; which value is 
actually used at any point in time is controlled by the 
Multibuffered containers (Figure 3). 

Figure 3.  UML diagram of our implementation. 

We then created a hierarchy of these objects from what 
had previously been a “sea” of global variables, each 
representing one primitive value (Figure 4). Using the 
hierarchy to group related interface parameters together 
increased the maintainability of the code. It also let us 

IntegerVariable 

MultibufferedVariable 

MultibufferedInteger 

SharedObject 

SharedInt 

Proceedings of the IEEE Virtual Reality 2003 (VR’03) 
1087-8270/03 $17.00 © 2003 IEEE 



present meaningful chunks of the user interface 
coherently to the users.  

 

Figure 4.  Some of the hierarchy of objects in the 
visualization Model. 

 
 

We have experimented with using this hierarchy to 
allow fine-grained selection of which mode is active, so 
that a user can choose to have some parameters of their 
View shared with a collaborator while keeping others 
independent. In practice, we have found little demand 
among our users for this kind of mixed View. However, 
we think it could be quite relevant if, for example, a 
color-blind user wanted to use alternate visualization 
techniques. 

Although the fine-grained design of the 
nanoManipulator allowed extensive use of a few base 
classes, and was an excellent design for the original 
single-user application, when extended to a distributed 
application it showed several shortcomings. There are a 
number of complex objects composed from these 
primitive value objects; for example, the orientation of the 
data is a quaternion but is implemented as four 
independent floating-point numbers. Changes to several 
of the values comprising a single complex object 
happened in a coordinated manner within a single 
process, but when transmitted across the network 
occurred as several distinct changes to the remote copy of 
the complex object. This caused both unnecessary 
network traffic and a good deal of difficulty with the 
design of the callbacks controlling these complex objects. 

A system that would support composition of primitive 
value objects into complex objects would provide cleaner 
sharing. This coarser-grained system would not invalidate 
any of our results or proposed architecture. However, it 
could violate the separation of concerns (the “layering”) 
that placed mode selection in the primitive value object 
and synchronization in the per-model buffer, since the 
network synchronization would need to know about the 
embedding of the primitive value object into a larger 
construct. 

4.3. Synchronizing Multiple Models 

We used optimistic concurrency control to keep 
consistent replicated state in the visualization-Models 
(Table 1). Although optimistic protocols are intended to 
provide fast concurrency control, their speed is dependent 
on the speed of the serialization algorithm they use to 
agree on the order in which events happen at the nodes of 
the distributed system. As did NPSNET and AVIARY, 
we found that wallclock serialization [21] works 
extremely well for shared VE.  

Table 1. Synchronization techniques appropriate 
for various scenarios. 

Technique Suitable Scenarios 
Coarse-
Grained 
Locks 

Objects to be acted upon are 
interdependent, or are considered to be 
interdependent by users constructing 
plans 

Fine-Grained 
Locks 

Objects to be acted upon can be separated 
into independent subsets 

Explicit 
Locks 

Not losing work is critical, even at the 
cost of latency and a changed workflow 

Implicit 
Locks 

Not interrupting natural workflow is 
critical, even at the cost of latency or lost 
work 

Optimism As fine-grained, implicit locks; ideally, 
conflicting user actions can be 
automatically reconciled; little risk of 
damage, easy to undo 
 

We used the Virtual Reality Peripheral Network 
protocol [22] as the Session layer for the Collaborative 
nanoManipulator, giving us the ability to make 
asynchronous remote procedure calls (RPC). With 
asynchronous RPC, when a process requests an operation 
from another process, the requesting process does not 
wait for values to be sent back by the remote server, but 
instead resumes execution immediately. Receipt of the 
response from the remote server will trigger a callback in 
the requesting process. This non-blocking communication 
helps to decouple the application from network latency, 
allowing an interactive application to reduce response 
time for operations that are being carried out across the 
network. In this way, asynchronous RPC is more useful 
for interactive applications than is traditional synchronous 
RPC. Asynchronous RPC typically leads to a more 
complex programming style centered on callbacks; 
however, this same style is also required by modern 
graphical user interfaces, and was adopted for most of the 
Collaborative nanoManipulator. 

Visualization Model 

Viewing Parameter Controls (submodel) 
 

Replay Controls (submodel) 
• Elapsed time in replay 
• Replay rate 

Color Controls (submodel) 
• Source plane for color values 
• Colormap 

Contour Map Controls (submodel) 

Lighting Controls (submodel) 

Proceedings of the IEEE Virtual Reality 2003 (VR’03) 
1087-8270/03 $17.00 © 2003 IEEE 



5. Evaluation 

5.1. Concurrency Performance  

The Collaborative nanoManipulator was originally 
deployed on dual-processor 500 MHz Windows NT 
workstations machines on a 100 MB switched Ethernet 
LAN. While we expected concurrency control to be a 
problem when we extended the system across the Internet, 
we were surprised to find that even on a single campus 
the latency incurred from even simple implementations of 
non-optimistic concurrency control were prohibitive. 
Details follow. 

Deployed on the hardware outlined above, a single 
user of the system saw a 214 ms response time. Our 
original collaborative implementation used a server to 
serialize every operation on the visualization-View 
parameters, guaranteeing consistency. An arbitrary 
instance of the application was selected as the 
serialization server. The user at the server experienced 
essentially single-user response time, since there was no 
need to wait for a network round-trip to serialize their 
actions. However, the remote collaborator saw 319 ms of 
additional latency for every manipulation. Since this is in 
addition to the system’s native 214 ms response time, 
remote collaborators strongly objected to the system’s 
responsiveness, refusing to use the collaborative system. 

The server-based serialization was significantly slowed 
by the fact that it was running within the nanoManipulator 
process, limited by that process’ 214 ms response time.  
On computers with fast graphics hardware (workstations 
with nVidia Quadro Pro 2 graphics), the single-user 
response time drops below 30 ms. The 214 ms of server 
response time could also be removed from serialization 
costs by a multithreaded implementation or a dedicated 
server. However, any of these approaches — 
multithreading, a dedicated server, or newer hardware — 
would still add an unacceptable 105 ms of latency to the 
application’s base response time.An improvement might 
be to use implicit fine-grained migrating serialization, so 
that the latency penalty only needs to be paid once for 
each manipulation. However, this is a complex approach 
that does not completely eliminate serialization latency 
and can degrade poorly. It is also not compatible with our 
goal of composing very-fine-grained objects. Our solution 
was to use wall-clock serialization. Instead of 
implementing a complex distributed algorithm, we 
installed off-the-shelf software on all of our computers 
that keeps their clocks synchronized with the US 
government’s official atomic clock. We observed that   
the clocks typically stayed synchronized to within 10 ms. 
Since there was no overhead from clock synchronization, 
this gave us performance similar to single-user mode and 
satisfied our users (Table 2). In practice, even large errors 

in clock synchronization do not lead to a visibly 
inconsistent ordering of events. 

Table 2.  Performance of concurrency control. 

Mode  Mean 
Response 
Time (ms) 

Mean Response Time 
due to Concurrency 

Control (ms) 
Single-user 
(baseline)  

214 -- 

Server-based 
serialization  

533 319 

Wall-clock 
optimism 

262 48 

5.2. Collaboration System Evaluation 

A report on a repeated-measures, controlled 
experiment evaluating the collaborative nanoManipulator 
is in [23]. 20 pairs of upper-level undergraduate science 
majors participated in two lab sessions, one session face-
to-face using the standard nanoManipulator and the other 
session using the Collaborative nanoManipulator. As 
expected, participants reported disadvantages to 
collaborating remotely. When working remotely, 
interaction was less personal, individuals received fewer 
cues from their partner, and some tasks, such as sharing 
math formulas, were more difficult. However, participants 
also reported that some of these disadvantages are not 
significant in scientific work contexts, and that coping 
strategies, or work-arounds, can reduce the impact of 
other disadvantages.  

Participants reported that remote collaboration 
provided several advantages compared with face-to-face 
collaboration, including the ability to more easily explore 
the system and their ideas independently and increased 
productivity with the ability to work simultaneously on 
the data visualization. Analysis of graded lab reports 
created under both conditions showed no statistically 
significant difference due to condition. 

The study participants were asked what they like and 
didn’t like about the system in post-experiment 
interviews.  Of particular interest to the work reported in 
this paper, many participants reported that they liked the 
ability to simultaneously adjust visualization-Model 
parameters when in shared mode and found that  using the 
explicit floor control in shared applications running in  
NetMeeting hindered their work. 

6. Conclusions 

Building the Collaborative nanoManipulator, we found 
that the model-view-controller paradigm was a useful way 
to analyze CVEs. Extending model-view-controller to 
include multiple parallel or hierarchical Models highlights 
the differing concurrency control requirements of 

Proceedings of the IEEE Virtual Reality 2003 (VR’03) 
1087-8270/03 $17.00 © 2003 IEEE 



different subsets of an application’s state data and helps 
us design the application’s architecture. 

To support the interactivity requirements of our CVE, 
we used asynchronous RPC and optimistic concurrency 
control. Optimism is a valuable technique particularly 
well suited for minimizing latency of continuous, easily 
reversed inputs to a VE, such as a users’ position and 
orientation. It is less amenable to supporting transactions 
and complex assemblies of primitive operations, but can 
be used to do so with a moderate software engineering 
effort. 

All of these techniques – from high-level analysis and 
user interface design down to details of implementation – 
should prove helpful for other groups implementing a 
wide variety of CVE systems. 

7. Acknowledgements 

More than a dozen computer and information scientists 
worked on the nanoManipulator project during the 
development and initial deployment of the system; in 
particular, Kelly Maglaughlin, Eileen Kupstas Soo, and 
Ron Bergquist contributed to the design of the user 
requirements. Russell Taylor and the anonymous 
reviewers had suggestions that strengthened the paper. 
We must also thank the many physicists, chemists, and 
biologists who have worked with the nanoManipulator 
project, and the NIH National Center for Research 
Resources and the National Institute for Biomedical 
Imaging and Bioengineering (Grant P41 RR 02170). 

8. Bibliography 

[1] R. M. Taylor and R. Superfine, “Advanced Interfaces 
to Scanning Probe Microscopes,” in Handbook of 
Nanostructured Materials and Nanotechnology, H. S. Nalwa, 
Ed. New York: Academic Press, 1999, pp. 271 - 308. 
[2] D. H. Sonnenwald, R. E. Bergquist, K. L. 
Maglaughlin, E. Kupstas Soo, and M. C. Whitton, “Designing to 
Support Collaborative Scientific Research Accross Distances:  
The nanoManipulator Environment,” in Collaborative Virtual 
Environments, CSCW, E. F. Churchill, D. N. Snowdon, and A. J. 
Munro, Eds. London: Springer-Verlag, 2001, pp. 202 - 224. 
[3] G. E. Krasner and S. T. Pope, “A Cookbook for Using 
the Model-View-Controller User Interface Paradigm in 
Smalltalk-80,” JOOP, pp. 26 - 49, 1988. 
[4] S. Bhola, G. Banavar, and M. Ahamad, 
“Responsiveness and Consistency Tradeoffs in Interactive 
Groupware,” presented at CSCW, 1998. 
[5] S. Bryson and S. Johan, “Time Management, 
Simultaneity and Time-Critical Computation in Interactive 
Unsteady Visualization Environments,” presented at 
Proceedings of IEEE Visualization, 1996. 
[6] M. R. Macedonia, M. J. Zyda, D. R. Pratt, P. T. 
Barham, and S. Zeswitz, “NPSNET:  A Network Software 
Architecture for Large-Scale Virtual Environments,” Presence, 
vol. 3, pp. 265 - 287, 1994. 

[7] C. Ware and R. Ralakrishnan, “Reaching for Objects 
in VR Displays:  Lag and Frame Rate,” Transactions on 
Computer-Human Interaction, vol. 1, pp. 331 - 356, 1994. 
[8] C. D. Wickens and P. Baker, “Cognitive Issues in 
Virtual Reality,” in Virtual Environments and Advanced 
Interface Design, W. Barfield and I. Furness, Thomas A, Eds. 
New York: Oxford University Press, 1995, pp. 514 - 541. 
[9] I. Vaghi, C. Greenhalgh, and S. Benford, “Coping 
with Inconsistency due to Network Delays in Collaborative 
Virtual Environments,” presented at VRST 99, London, UK, 
1999. 
[10] M. Herlihy, “Concurrency versus Availability:  
Atomicity Mechanisms for Replicated Data,” Transactions on 
Computer Systems, vol. 5, pp. 249 - 274, 1987. 
[11] R. Malpani and L. A. Rowe, “Floor Control for Large-
Scale MBone Seminars,” presented at ACM Multimedia, 
Seattle, WA, 1997. 
[12] M. Herlihy, “Apologizing Versus Asking Permission:  
Optimistic Concurrency Control for Abstract Data Types,” 
Transactions on Database Systems, vol. 15, pp. 96 - 124, 1990. 
[13] M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhauser, 
“An Integrating, Transformation-Oriented Approach to 
Concurrency Control and Undo in Group Editors,” presented at 
CSCW, Cambridge, MA, 1996. 
[14] M. Meehan, “Survey of Multi-user Distributed Virtual 
Environments,” In course notes: "Developing Shared Virtual 
Environments". SIGGRAPH 99. Los Angeles, CA. August 8-13, 
1999. 
[15] D. Snowdon and A. West, “Aviary:  Design Issues for 
Future Large-Scale Virtual Environments,” Presence, vol. 3, pp. 
288-308, 1994. 
[16] M. R. Macedonia, D. P. Brutzman, M. J. Zyda, D. R. 
Pratt, P. T. Barham, J. Falby, and J. Locke, “NPSNET:  A multi-
player 3D virtual environment over the internet,” presented at 
I3D, 1995. 
[17] C. S. Potter, B. Carragher, L. Carroll, C. Conway, B. 
Grosser, J. Hanlon, N. Kisseberth, S. Robinson, U. Thakkar, and 
D. Weber, “Bugscope:  A Practical Approach to Providing 
Remote Microscopy for Science Education Outreach,” Beckman 
Institute, UIUC, Urbana, IL 1 November 2000 2000. 
[18] G. M. Olson, D. E. Atkins, R. Clauer, T. A. Finholt, F. 
Jahanian, T. L. Killeen, A. Prakash, and T. Weymouth, “The 
Upper Atmospheric Research Collaboratory,” in interactions, 
1998, pp. 48 - 54. 
[19] C. Schuckmann, J. Schummer, and P. Seitz, 
“Modeling Collaboration using Shared Objects,” presented at 
Groupware, Phoenix, AZ, 1999. 
[20] S. Singhal and M. J. Zyda, Networked Virtual 
Environments:  design and implementation: ACM Press, 1999. 
[21] T. C. Hudson, “Concurrency Control for Collaborative 
3D Graphics Applications,” University of North Carolina, 
Chapel Hill UNC CS TR01-021, 2001. 
[22] R. M. Taylor, T. C. Hudson, A. Seeger, H. Weber, J. 
Juliano, and A. T. Helser, “VRPN: A Device-Independent, 
Network-Transparent VR Peripheral System,” Proceedings of 
ACM Symposium on Virtual Reality Software & Technology 
2001, Banff Centre, Canada. 
[23] D. H. Sonnenwald, M. C. Whitton, and K. L. 
Maglaughlin, “Evaluating a scientific collaboratory: Results of a 
controlled experiment,” in review, 2002. 

Proceedings of the IEEE Virtual Reality 2003 (VR’03) 
1087-8270/03 $17.00 © 2003 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


