
This is a repository copy of Improved sampling of the pareto-front in multiobjective genetic 
optimizations by steady-state evolution: a Pareto converging genetic algorithm.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/1428/

Article:

Kumar, R. and Rockett, P. (2002) Improved sampling of the pareto-front in multiobjective 
genetic optimizations by steady-state evolution: a Pareto converging genetic algorithm. 
Evolutionary Computation, 10 (3). pp. 283-314. ISSN 1063-6560 

https://doi.org/10.1162/106365602760234117

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Improved Sampling of the Pareto-Front in
Multiobjective Genetic Optimizations by
Steady-State Evolution: A Pareto Converging

Genetic Algorithm

Rajeev Kumar rkumar@cse.iitkgp.ernet.in
Department of Computer Science and Engineering, Indian Institute of Technology,
Kharagpur 721 302, India

Peter Rockett p.rockett@sheffield.ac.uk
Department of Electronic and Electrical Engineering, University of Sheffield, Mappin
Street, Sheffield S1 3JD, UK

Abstract
Previous work on multiobjective genetic algorithms has been focused on preventing
genetic drift and the issue of convergence has been given little attention. In this paper,
we present a simple steady-state strategy, Pareto Converging Genetic Algorithm (PCGA),
which naturally samples the solution space and ensures population advancement to-
wards the Pareto-front. PCGA eliminates the need for sharing/niching and thus min-
imizes heuristically chosen parameters and procedures. A systematic approach based
on histograms of rank is introduced for assessing convergence to the Pareto-front,
which, by definition, is unknown in most real search problems. We argue that there is
always a certain inheritance of genetic material belonging to a population, and there
is unlikely to be any significant gain beyond some point; a stopping criterion where
terminating the computation is suggested. For further encouraging diversity and com-
petition, a nonmigrating island model may optionally be used; this approach is partic-
ularly suited to many difficult (real-world) problems, which have a tendency to get
stuck at (unknown) local minima. Results on three benchmark problems are presented
and compared with those of earlier approaches. PCGA is found to produce diverse
sampling of the Pareto-front without niching and with significantly less computational
effort.

Keywords
Genetic algorithms, multiobjective optimization, steady-state, Pareto converging, rank
histogram, island model.

1 Introduction

Genetic algorithms (GAs) are increasingly used in problem domains that can be (re-)
defined in terms of search procedures and subsequent optimization of objective func-
tion(s). Searching for (near-) optimal solutions within some real-world space generally
requires optimization of multiple and often conflicting objectives that rarely yield a
unique solution. In a typical multiobjective optimization problem, there exists a fam-
ily of equivalent solutions that are superior to the rest of the solutions and are consid-
ered equal from the perspective of simultaneous optimization of multiple (and possibly
competing) objective functions. Such solutions are called noninferior, nondominated,
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or Pareto-optimal solutions (Hwang and Masud, 1980; Pareto, 1896; Steuer, 1986). In
this paper, we use all three terms interchangeably.
In simple treatments, multiple objectives are combined in an ad hoc manner to

yield a scalar objective, typically by linear combination of the vector elements, and
constraints are incorporated with associated thresholds and penalty functions. Though
the process results in a simple optimization algorithm, the solution obtained is very
sensitive to small changes in weight vector and penalty function.
A wide-ranging review of evolutionary approaches to multiobjective optimization

has been given by Fonseca and Fleming (1995a) who discuss their similarities, differ-
ences, sensitivity to objective scaling and possible concavities in the trade-off surfaces,
and cost landscapes. Since then, many review articles appeared (for a current list of
references, see Coello (2001)). Moreover, two recent publications are worth mention-
ing. First is an overview of evolutionary algorithms by Whitley (2001), which covers
practical issues and common pitfalls. The second is a detailed coverage of multiobjec-
tive optimization by Deb (2001). A brief review of multiobjective genetic optimization
highlighting the distinctive features of our approach is given in the next section of this
paper.
A study identifying typical features of multiobjective test problems such as mul-

timodality and deception has also been carried out by Deb (1999). Solutions of many
multiobjective (mostly dual objective) analytical functions have been reported by nu-
merous researchers, although in most such problem domains the solution space was
known a priori. All of these authors used sharing/mating restrictions in one form or
another to achieve genetic diversity on the known Pareto-fronts.
Simultaneously, many real-world problems including NP-complete problems have

been attempted through multiobjective genetic algorithms. For example: a gas turbine
engine controller (Chipperfield and Fleming, 1996), 3-D system packaging (Larcombe,
1996), pressurized water reactor reload design (Parks and Miller, 1998), microprocessor
chip design (Stanley and Mudge, 1995), and 0/1 knapsack problem (Zitzler and Thiele,
1999). Such real-world problems can be classified into two groups: the first whose so-
lution is known a priori or can be approximated by some means, and second, those for
which the solution space is unknown. For the first class of problems, tolerance limits or
achievable percentages of defined goals can give some indication of solutions moving
towards goal-convergence, and thus solutions obtained by genetic optimization could
be compared. Many metrics are available in the literature (Zitzler and Thiele, 1999; Tan
et al., 2001) that measure the diversity of the obtained Pareto-front and the distance
between the obtained front and the desired one. Thus, the efficacy of the genetic imple-
mentation may be measured and the results obtained by genetic optimization verified.
However, for real-world problems where we have neither prior knowledge nor any
approximation of the solution space, the issue of convergence is no simple matter.
In addressing an unsolved real-world problem in hydro-systems with two conflict-

ing objective attributes, Horn et al. (1994) observed that they were in no position to ap-
preciate whether the obtained solution set was really a true optimal solution, since they
could only visualize the population diversity across a simple two-dimensional Pareto-
front of objectives. Similar observations were made by many other researchers who
tried to solve unknown problems with multiobjective genetic algorithms, e.g., Kumar
and Rockett (1998). Clearly in previous work there has been insufficient consideration
given to the convergence of the solution space; not only do we seek a set of uniformly
distributed solutions but also the optimal set of solutions. Ignorance of convergence
of a Pareto-based multiobjective optimization is one of the issues we are attempting to
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address in the present work.
In a single-criterion optimization, the notion of convergence (as distinct from op-

timality) scarcely needs explanation; we simply seek the best value of the objective,
cost, or fitness. Nonetheless, considerable work has been done on understanding the
convergence rates of various selection schemes for single objective optimization (Bäck,
1995; Bäck and Schwefel, 1993; Eshelman and Schaffer, 1991; Goldberg and Deb, 1991;
Miller and Goldberg, 1995; Neri and Saitta, 1995; Thierens and Goldberg, 1994). Work
on understanding the statistics of the dynamics has been done by Shapiro et al. (1994).
In an elitist genetic algorithm, Bhandari et al. (1996) have shown that an optimal solu-
tion can be obtained as the number of generations goes to infinity. Aytug and Koehler
(1996, 2000) established tighter theoretical bounds on the number of GA iterations at
which the search should be terminated. However, Aytug and Koehler’s theoretical
bounds are only applicable to single-objective problems and do not address how to
maintain diversity in a finite population using optimum and tractable computing re-
sources. Rudolph (1998) and Rudolph and Agapie (2000) extended the single-objective
theoretical framework to multiobjective optimization and showed that a true Pareto-
front can be obtained in a finite number of functions evaluations in a finite but con-
tinuous search space. Rudolph’s bound ensures convergence but ignores the equally
important issue of maintaining diversity. Here we recall that the Vector Evaluated Ge-
netic Algorithm (VEGA) (Schaffer, 1985) does converge to some optimal solutions but
does not achieve diversity.
In most real search problems, the location of the actual Pareto-front is, by defi-

nition, unknown, and the identification of a “best value” of some criterion does not
necessarily mean global convergence. In problem domains of low objective dimension-
ality, the Pareto-front can be examined for genetic diversity but not for convergence;
high-dimensional objective spaces cannot generally be visualized for either diversity
or convergence. (Some performance metrics, e.g., volume of space covered, distribu-
tion (Tan et al., 2001), can provide information about diversity alone.) Knowledge of
the propagation of the solution front through successive generations of the population,
however, can serve as a cue for convergence. With this background, we reformulate the
notion of convergence in a multiobjective optimization environment in terms of:

1. Preventing a premature convergence and ensuring a uniform/diverse sampling of
the Pareto-front,

2. Monitoring of the evolved population: how much fitter/superior is a given gener-
ation than the previous one, and the rate of propagation towards the Pareto-front,

3. Setting some stopping criterion; where to terminate the evolution of further gen-
erations.

Although the sharing/mating restrictions employed by various authors partly
solve the problem of premature convergence, they do not necessarily guarantee overall
convergence. Viewed as a statistical sampling problem over the objective space, just
because a given solution point dominates all others in the (finite) sample does not im-
ply that it is drawn from the Pareto-optimal set — the given nondominated point could
itself be dominated by another yet undiscovered solution that, in turn, need not neces-
sarily be drawn from the Pareto-optimal set. In the past, a simple upper bound on the
number of generations/iterations has frequently been used as a stopping point, while
others have employed the production of some percentage of nondominated individu-
als in the total population as a stopping criterion. The first of these is unsatisfactory
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because a large amount of processor time could be wasted producing further genera-
tions for an optimization that has already converged; alternatively, there is no way of
knowing that a particularly stubborn problem is still far from convergence. The second
option is ill-conceived because solutions are nondominated relative to the population
sample not the universe of optimal solutions; just because a solution dominates all oth-
ers in the current population does not imply that it lies on the desired Pareto-front. In
the course of a multiobjective optimization, it is completely normal for solutions that
are nondominated at some stage in the computation to become dominated by a supe-
rior solution at a later stage.
In this paper, we present a straightforward way of examining convergence of a

rank-based multiobjective GA that makes principled comparison of the population
states during the computation. In doing so, we attempt to minimize the dependency on
heuristically chosen parameters and procedures, both for implementation and measur-
ing the performance. We implement a simple, steady-state evolutionary algorithm in
a multiobjective environment that produces diverse sampling of the Pareto-front with-
out any diversity-preserving mechanisms, e.g., niching, sharing/mating restrictions
and/or crowding in a parameter or objective space.
The remainder of this paper is organized as follows. In Section 2, we briefly

review multiobjective genetic algorithms and build the problem definition. In Sec-
tion 3, we present our simple, steady-state strategy for multiobjective genetic algo-
rithms that naturally prevents genetic drift and ensures population advancement to-
wards the Pareto-front. We eliminate the need for choosing a domain for sharing, i.e.,
phenotypic/genotypic and obviously sharing parameter(s). We introduce an optional
isolated island approach for encouraging diversity and competition across islands. We
test this genetic strategy, which we call the Pareto Converging Genetic Algorithm (PCGA),
on three benchmark analytical functions as a proof of concept for solving benchmark
problems and present the results in Section 4. Along with discussion of the results, a
systematic and statistical (albeit heuristic) approach for examining convergence to the
Pareto-front is discussed in Section 5. We draw conclusions in Section 6.

2 Related Work

Work on multiobjective genetic optimization dates back to 1985 with the introduction
of VEGA, but seminal results on Pareto rank-based selection began with the work of
Fonseca and Fleming (1993).
Mathematically, a general multiobjective optimization problem containing a

number of objectives to be maximized/minimized along with (optional) constraints
for satisfaction of achievable goal vectors can be written as:

Minimize/ Maximize Objective fm (X) , m = 1, 2, ..., M
subject to Constraint gk (X) ≤ ck, k = 1, 2, ..., K

where X = {xn : n = 1, 2, ..., N} is an N − tuple vector of variables
and F = {fm : m = 1, 2, ..., M} is an M − tuple vector of objectives

In rest of this section, we critically examine some of the representative algorithms and
their implementations. Then we analyze their distinctive features and build the prob-
lem definition of the work presented in this paper.
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2.1 Previous Approaches to Multiobjective Genetic Optimization

2.1.1 Non-Pareto Approaches

The first practical genetic algorithm for finding multiple solutions to a multiobjective
problem was Schaffer’s VEGA. In VEGA, the converged population is biased towards
the individual optimum objective regions — a phenomenon called speciation. A sim-
ilar problem was addressed by Fourman (1985) who assigned different priorities to
multiple objectives in lexicographic ordering (Ben-Tal, 1980). Initially, the objective pri-
orities were assigned by the user thus biasing the solutions towards the user’s subjec-
tive preferences; in another version of the algorithm, priorities were randomly picked.
Kursawe (1991) also implemented a multiobjective selection process with similarities
to both Schaffer and Fourman in an attempt to reduce the bias against extreme regions
of an individual objective, but the deletion of individuals by random objective selection
creates a nonstationary population; individuals in the extremes of the objective spaces
are liable to be eliminated if an objective at which they happen to perform poorly is
selected as the basis for deletion. The population under such a situation adapts to
changes rather than converging. Hajela and Lin’s (1992) algorithm used a variable
weighted sum method for fitness assignment; weights were genotype encoded and
contributed to the diversity. Laughlin and Ranjithan (1997) proposed a neighborhood
constraint GA that uses a population approach coupled with the classical ε-constraint
method, where all but one of the objectives are converted into constraints one-by-one,
and only one objective is optimized at a time. This algorithm is very sensitive to the
many parameter settings.

2.1.2 Pareto Rank-BasedMethods

Goldberg (1989) introduced the notion of Pareto-optimality for assigning equal proba-
bilities of regeneration to all the nondominated individuals in a population and stated
the condition for Pareto-optimality as : In a minimization problem, an individual objec-
tive vector Fi is partially less than another individual objective vector Fj (symbolically
Fi ≺ Fj) iff

(Fi ≺ Fj)
∆
= (∀m) (fmi ≤ fmj) ∧ (∃m) (fmi < fmj)

Then Fi is said to dominate Fj . If an individual is not dominated by any other in the
population, it is said to be nondominated.
Goldberg suggested the use of Pareto-ranking and selection to move a population

towards the Pareto-front and also proposed the use of additional safeguards in the form
of niche formation and mating restrictions — originally used in multimodal optimiza-
tion (Deb and Goldberg, 1989) to prevent convergence to a single point.
The major achievement of the Pareto rank-based research is that a multiobjective

vector is reduced to a scalar fitness without combining the objectives in any way. Fur-
ther, the use of fitness based on Pareto-ranking permits nondominated individuals to
be sampled at the same rate, thus according the equal preference to all nondominated
solutions in evolving the next generation. The mapping from ranks to fitness values
however is an influential factor in selecting mates for reproduction.
Fonseca and Fleming (1993, 1998) implemented their Pareto-ranking version of the

Multi-Objective Genetic Algorithm (MOGA) in a slightly differentway to that of Goldberg
(1989). In MOGA, the rank of an individual is equal to the number of individuals by
which it is dominated, and all nondominated individuals are given the same rank. The
fitness values are assigned by a linear, exponential, or some other functional interpola-
tion of the ranks from the best to worst, and the selection procedure uses those fitness
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values in a Stochastic Universal Sampling (SUS) algorithm (Baker, 1987). MOGA also
uses niche formation to distribute the population over the Pareto-optimal region. Srini-
vas and Deb (1994) implemented similar sorting and fitness assignment procedures,
which they call the Non-dominated Sorting Genetic Algorithm (NSGA); the minor differ-
ences with MOGA are that (i) the Pareto-ranking is exactly that of Goldberg, and fitness
values are dummy numbers in decreasing order of nondominated sorting, and (ii) in-
stead of performing sharing in the objective domain (Fonseca and Fleming, 1993), they
have used sharing on parameter values/decision variables (Deb and Goldberg, 1989).
Ritzel et al. (1994) used tournament selection with Pareto-ranking, and the individual
ranks decided the winner of tournaments.
Zitzler and Thiele (1999) proposed a Strength Pareto Evolutionary Algorithm (SPEA)

that externally stores the nondominated solutions and performs clustering to reduce
the size of the external storage; SPEA uses tournament selection for reproduction and
fitness sharing. In this algorithm, niches are not defined in terms of distance but Pareto-
dominance. Valenzela-Rendón and Uresti-Charre (1997) developed a nongenerational
GA that uses Pareto-ranking for measuring the fitness and a sharing function for diver-
sity.

2.1.3 Pareto but Non-Ranking Approach

Horn et al. (1994) introduced the Niched-Pareto Genetic Algorithm (NPGA) based on
Pareto-domination tournaments and sharing instead of sorting and ranking of obtained
solutions. In this method, a comparison set of a specific number of individuals is chosen
at random from the population at the beginning of each selection process. Two individ-
uals are randomly picked from the population and compared with the members of the
comparison set for domination with respect to the objective functions. If one of them
is nondominated and the other is dominated, the nondominated one is selected. In the
case of a tie, the winner is decided by sharing-cum-niche count sampling — a metric
that combines both the objective and decision variable domains. Horn et al. found the
performance of NPGA to be very sensitive to the settings of several parameters. The
behavior is most affected by the size of the comparison set — a well-known problem
of tournament-based selection approaches (Goldberg et al., 1989). If a proper size is
not chosen, true nondominated points may not be found; a small comparison set may
result in a few nondominated points in the population, while premature convergence
to a small portion of the Pareto-front may result with a large comparison set.
Knowles and Corne (2000) proposed a Pareto Archived Evolutionary Strategy (PAES)

in two modes: (1+1)-ES and (µ, λ)-ES. (1+1)-PAES is basically a local search strategy
based on a mutation operator and the Pareto-dominance. Nondominated solutions are
kept in an archive. Diversity is achieved by a crowding scheme that divides the whole
search space into n-dimensional hypercubes for n objectives, and fitness is assigned
in accordance with a population count — the lower the count, the higher the fitness.
(µ, λ)-PAES uses tournament selection, and the hypercube size is a critical/sensitive
parameter to achieve diversity. A variation of (1+1)-PAES is a multiobjective micro GA
proposed by Coello and Toscano (2001) that is similar to PAES but has two population
sets.
Almost all the multiobjective genetic algorithms/implementations have ig-

nored the issue of convergence. Another drawback of most of these algo-
rithms/implementations is the need for parameterized sharing, mating restrictions,
and/or some other diversity preserving operator. This is discussed further in Sec-
tion 2.2.2.
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2.2 A Critical Review of Basic Features of Multiobjective Genetic Optimization

In an attempt to closely analyze the similarities and differences between multiobjective
GAs along with their strengths and sensitivities, we abstract the basic features of many
algorithms. A multiobjective GA can be designed with the right mix of some or all of
the following features.

2.2.1 Population Evolution Strategy and Selection

A classical GA is a generational GA that replaces the whole population at each genera-
tion. This contrasts with the steady-state GA, where one member of the population is
replaced at a time. In terms of evolutionary strategy (ES), these two classes can be termed
as (µ, λ)-ES and (µ + 1)-ES, respectively. (In (µ, λ)-ES, offspring replace the parents, but
in (µ + λ)-ES, selection picks from both the parents and offspring to create the next gen-
eration.) There are different mechanisms for selection (SUS and tournament selection)
and different ways to manipulate parents and offspring. De Jong (1975) and De Jong
and Sarma (1993) introduced the concept of a generation gap G to distinguish between
these two extremes; for generational GAs, G = 1, while for steady-state GAs, G = 1/P
where P is the population size.
In single objective optimization, GENITOR (Whitley, 1989) was the first steady-

state algorithm and can be termed as a (µ + 1)-ES in terms of its selection mechanism.
Another (µ +λ)-ES based algorithm is Eshelman’s (1991) CHC algorithm, which is built
on the concept that recombination should be the dominant search operator. It was
shown that the CHC algorithm exhibits aggressive selection and elitism. Many stud-
ies in the past have shown that steady-state operation can generate higher selection
pressure than generational GAs. In a recent study, Rogers and Prügel-Bennett (1999)
showed that genetic drift is another factor that affects the convergence along with the
more commonly understood selection pressure, and they showed that the rate of ge-
netic drift in steady-state selection is twice that of generational selection. Rogers and
Prügel-Bennett conjectured both analytically and empirically that a steady-state GA
can reproduce the dynamics of a generational GA at half the computational cost. This
is consistent with the experience of GENITOR’s researchers that, in practice, steady-
state algorithms are often better optimizers than generational GAs.
In this paper, we use a steady-state algorithm for multiobjective optimization.

To the best of our knowledge, no such attempt has been made, however, Valenzela-
Rendón and Uresti-Charre (1997) worked on a nongenerational GA for multiobjective
optimization in which they optimize a single objective by aggregating all the multiple
objectives using a weighted ranking scheme due to Bentley and Wakefield (1997).

2.2.2 Diversity-Achieving Functions and Operators

Almost all multiobjective optimization implementations explicitly use some diversity
preserving mechanism in the form of fitness sharing, mating restriction, density count
(crowding), or some preselection operator.
Apart from its heuristic nature, the selection of the domain in which to perform

sharing (variable (genotype) or objective (phenotype)) is also debatable. For example,
NSGA uses genotype sharing while MOGA uses phenotype space; both obtained the
desired spread of solutions over the Pareto-front. Deb (1999) demonstrated the effec-
tiveness of genotypic over phenotypic sharing while testing a single-objective function
that was recast into a dual-objective function. We feel that such a claim is problem de-
pendent. In the case of multimodal functions and the test problems of Deb (1999), geno-
type sharing may give superior results because a spread of solutions across variables
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was needed, but this cannot be generalized across all problem domains. Additionally,
for effective sharing, one needs to know the niche count, σshare and distance metric
(over some norm), which are known for analytic functions but not generally for real
problems. Sharing in objective space in practice means an implicit knowledge of the
solutions in some limited sense, which is a paradox. Further, the computational com-
plexity of implementing sharing increases with dimensionality. Thus fitness sharing is
sensitive to many parameters including population size.
Mating restrictions are similar to fitness sharing where we need to know σmate.

Results obtained by many researchers are not very encouraging, indeed for some re-
searchers, mating restrictions are of no value. For example, Zitzler and Thiele (1999)
observed no improvement compared to omitting mating restrictions; similarly, Shaw
and Fleming (1996) found no gain. De Jong (1975) introduced a crowding model for
multimodal optimization. Knowles and Corne (2000) incorporated density count in
their PAES, but this scheme is very sensitive to the hypercube volume that controls the
density count. For multimodal function optimization, Cavicchio (1970) introduced the
preselection operator later modified by Mahfoud (1992).
In summary, any explicit diversity preserving method needs prior knowledge of

many parameters, and the efficacy of such a mechanism depends on successful fine
tuning of these parameters. It is the experience of almost all GA researchers that proper
tuning of sharing parameters is necessary for effective performance. It is worth noting
the “No Free Lunch” theorems (Wolpert and Macready, 1997) — that if an algorithm
performs well on a certain class of problems, then it will exhibit degraded performance
on the remaining problems.
In this work, we adopt another approach of excluding any explicit mechanism to

preserve diversity and allowing a natural selection process to maintain diversity.

2.2.3 Elitism and Secondary Population

In earlier implementations of multiobjective optimization, e.g., VEGA, MOGA, and
NSGA, the biggest challenge was how to maintain the older nondominated solutions
in the current population. Algorithms such asMOGA andNSGAmaintain diversity by
sharing and require long runs with the attendant large computing resources. They do
not include any elitism strategy, perhaps, in the absence of a convergence metric, due
to a fear of premature convergence, which is the disadvantage of elitism in a single-
objective GA. Parks and Miller (1998) investigated the efficacy of various elitist selec-
tion strategies in a multiobjective implementation and concluded that strong elitism
improves convergence by preserving all the promising solutions without suffering the
disadvantage of premature convergence.
Preserving all the promising solutions has the advantage that we do not lose non-

dominated solutions and thus achieve diversity, maybe at a faster rate. SPEA and PAES
both use elitism and keep a separate archive of nondominated solutions that is updated
for each new generation. The major problem with keeping all nondominated solutions
is that the archive may grow very large even for simple problems. To avoid this, SPEA
uses clustering to reduce the archive size. (Cunha et al. (1997) also used clustering.)
Clustering is an NP-problem that uses heuristics but involves significant additional
overhead because every generation involves Pareto-ranking of the combined set and
then clustering. IncrementingMulti-Objective Evolutionary Algorithm (IMOEA) (Tan et al.,
2001) uses a dynamic population sizewith an archive of nondominated individuals that
is also trimmed by clustering.
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In our work, we adopt a selection strategy that does not lose nondominated solu-
tions. Elitism is inherent, which gives faster convergence without losing diversity.

2.2.4 Convergence and Performance Metrics

Gauging convergence with a single objective is almost trivial and has been the subject
of much work (Aytug and Koehler, 1996, 2000; Hart, 2001; Rudolph, 1998; Rudolph
and Agapie, 2000). We perhaps pioneered the work on assessing the convergence
of rank-based multiobjective genetic optimization and proposed an initial framework
(Kumar and Rockett, 1997). Since then, many performancemetrics have been proposed
to quantify the obtained Pareto-front (Zitzler and Thiele, 1999; van Veldhuizen, 1999;
Tan et al.,2001; van Veldhuizen and Lamont, 2000; Laumanns et al., 1999). Some of
these metrics (generational distance, volume of space covered, error ratio measures
of closeness of the Pareto-front to the true Pareto-front) are only applicable where the
solution is known. Other metrics (ratio of nondominated individuals, uniform distri-
bution) quantify the Pareto-front and can only be used to assess diversity. Thus most
of these measures can be divided into two classes: one that measures distance and an-
other that quantifies spread. These may be used in comparing the performance of two
or more implementations but are problem specific and involve the selection of param-
eters. In particular, the relative progress measure of Tan et al. (2001) is noisy and has to
be averaged over several generations.
In this work, we gauge global convergence using intra- and inter-island rank his-

tograms and optionally adopt a nonmigrating island model.

2.2.5 Subpopulation Strategy

Much work with single objectives has been done using the island GA model with mul-
tiple subpopulations (see Cantú-Paz (2000) for an overview). The steady-state GENI-
TOR algorithm has also been implemented in island mode (Whitley and Starkweather,
1990). Since each island can potentially follow a different solution trajectory, the is-
land model can help to promote genetic diversity. It has the advantage that improved
solutions may be obtained with reduced effort and with the scope of parallelizing the
computations. The island model may have synchronous/asynchronous migration of
individuals — most island model implementations involve migration but migration
is not mandatory. A timely migration of proper individuals may help speed conver-
gence but too frequent migration may result in premature convergence. Here we use
a nonmigrating island model, particularly for complex problems, to emphasize global
convergence. Such an approach does not add additional parameters and is an optional
feature of PCGA.
In our work, we adopt many of the above features in such a way that we obtain a

Pareto-front for a completely unknown problem with the twin goal of achieving diver-
sity and obtaining convergence with minimal use of parameters and procedures. We
stress that we aim for global convergence.

3 Pareto Converging Genetic Algorithm (PCGA)

PCGA is a steady-state algorithm and can be seen as an example of (µ + 2)-ES in terms of
its selection mechanism. The basic concept of the work presented here is that the indi-
viduals are compared against the total population set according to tied Pareto-ranking
(Fonseca and Fleming, 1993, 1998), and the population is selectively moved towards
convergence by discarding the two lowest ranked individuals in each evolution. In
doing so, we require no parameters such as the size of subpopulation in tournament

Evolutionary Computation Volume 10, Number 3 291



R. Kumar and P. Rockett

selection or sharing/mating parameters. Additionally, we remove all subjective deci-
sion(s) about prioritizing the objectives.

3.1 Selection

Initially, the whole population of sizeN is ranked using Fonseca and Fleming’s ranking
algorithm. In this algorithm, ranking with ties is employed; the rank of an individual
is equal to the number of individuals by which it is dominated, and all nondominated
individuals are given the same rank. If two individuals have the same objective vector,
we lower the rank of one of the pair by one; this way, we are able to remove the dupli-
cates from a set of nondominated solutions without loss of generality. For a meaningful
comparison of two real numbers in ranking, we restrict the floating-point precision of
the objective values to a few units of precision. Fitness is assigned by interpolating from
the best individual (rank = 1) to the worst (rank ≤ N ) according to a simple monotonic
function to map the individuals onto a conventional roulette wheel for mating selec-
tion (Goldberg, 1989). In this work, we have taken fitness as a linear function of tied
Pareto ranks. A pair of mates is randomly chosen biased in the sizes of the roulette
wheel segments and crossed over and/or mutated to produce offspring. The offspring
are inserted into the population set according to their ranks against the whole popu-
lation. At this stage, the population set also includes the parents, and the population
consists of (N + 2) members, so the two lowest ranked individuals of the population
are eliminated, and the size restored to N . In case of a tie, i.e., there are more than two
solutions of lowest rank, we resolve this by random selection. The process is iterated
until a convergence criterion (discussed in a following section) is satisfied.
Before proceeding, we introduce some terminology specific to the PCGA:

1. Epoch: An epoch is equal to N/2 pairwise evolutions from a population of size
N . In this way, the total number of offspring generated in an epoch of PCGA is
equal to the number of offspring evolved in a single iteration of a generational
algorithm. We use the term epoch instead of generation to facilitate quantitative
comparison between algorithms. In PCGA, each member of the population can
participate in reproduction irrespective of its generational age tag.

2. PCGA Islands: A randomly initialized population is an island, and another ran-
domly initialized population set belongs to another island. We employ this term to
emphasize that we are dealing with a sampling of some parent population. All the
genetic operations (selection, crossover) are constrained to the bounds of one is-
land only. Each island is a nonmigrating in nature, i.e., individuals do not migrate
from one island to another as is the case in a conventional island scheme. There is
no cross-fertilization among the individuals of two islands; two (or many) islands
however can be merged (only) for the purposes of testing for convergence. The
merging of islands is optional; all the results presented here and compared with
earlier approaches are drawn from a single island, i.e., one initially randomized
population only. We discuss later the merits of merging of islands for complex
problems.

3.2 Rank Histograms

We define a Pareto-rank histogram as a frequency distribution of tied ranks in a pop-
ulation. A rank histogram derived from a single island is called an intra-island rank
histogram, and is generated for successive epochs of evolution within an island. As
stated above, there is no cross-fertilization among the individuals of different islands.
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Figure 1: Intra-island rank histogram of a population where the population set consists
of (a) both nondominated and dominated individuals and (b) nondominated individu-
als only.

An additional rank histogram is defined for comparing and merging the solutions only
among islands and is termed an inter-island rank histogram.

3.2.1 Intra-Island Rank Histogram

The intra-island rank histogram entries are generated from the ratio of the number of
individuals at a given rank in the current population to that of combined and reranked
populations of the current and the preceding epochs. We are interested, for conver-
gence, in the shift of the set of nondominated solutions between epochs, hence the
ratioing of rank entries. Intra-island rank histograms are shown in Figure 1 for two sit-
uations: (a) the sample consists of both dominated and nondominated solutions, and
(b) the whole sample consists of nondominated solutions only. The rank ratio of the bin
belonging to rank unity should remain at 0.5 in an ideal converged state, although the
ratio of other ranks can take any arbitrary positive value. A value lower or higher than
0.5 of the bin corresponding to nondominated rank indicates the amount of shuffling
among the nondominated individuals between two successive epochs. A decreasing
length of histogram tail denotes the movement of total population towards conver-
gence. The histogram of Figure 1(b) shows that the whole population in two successive
epochs remains nondominated without any shuffling.
We stress that the situation depicted in Figure 1(b) does not necessarily mean a total con-

verged state but rather that improvement in the population with further iterations is improbable.
It thus represents a sensible point at which to stop the computation. We shall examine
such a situation while presenting and discussing the results.

3.2.2 Inter-Island Rank Histogram

Among the users of genetic algorithms for solving complex multiobjective optimiza-
tion problems, there is a common concern whether the obtained solution is close to the
true Pareto-front or not. We argue that there is always a certain inheritance of genetic
material or content belonging to one island and theremay not bemuch appreciable evo-
lutionary gain beyond a certain number of generations. This implies that the genetic
precursors available within a finite population (or island) may be inherently incapable
of evolving to the true Pareto-front. Instead, we suggest that alternative genetic mate-
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Figure 2: Inter-island rank histogram on combining two islands: (a) some solutions
become dominated and (b) none of the solutions is dominated.

rial should be acquired in the form of another island. Each population sample (island)
is run to (intra-island) convergence, the obtained solutions are then merged across is-
lands and compared through Pareto-ranking. The shift of the Pareto-front is monitored
with an inter-island rank histogram. Clearly, it is only worthwhile comparing the non-
dominated solutions from two (or more) islands. We thus form an inter-island rank
histogram by merging the nondominated individuals from each island.
In a scenario where some of the nondominated solutions of either of the contribut-

ing islands are demoted to being dominated, the inter-island rank histogram is depicted
in Figure 2(a). The smaller the entry in the bin corresponding to unity rank and the
wider the histogram tail, the larger the shift in the set of best solutions and the greater
the reshuffling that has taken place. The desired outcome from merging the nondom-
inated members of two or more islands is that none of the nondominated solutions is
downgraded to dominated status, and all solutions combine to form a similar or better
sampled Pareto-front. Here the inter-island rank histogram of the combined solutions
indicates unity in the bin corresponding to nondominated rank (see Figure 2(b)).
PCGA can encourage diversity and competition across islands through re-

initialization of whole samples and without copying the nondominated set in the cur-
rent island. In an elitist genetic algorithm (with generational replacement), the non-
dominated individuals of the past generations are copied into the current generation.
Copying nondominated individuals in the population has the undesired effect of con-
straining genetic diversity, though it has the benefit that nondominated solutions are
not lost. Our approach of combining different islands has the benefit of an elitist model
in that the nondominated solutions are not lost but at the same time PCGA does not
constrain diversity. We suggest that this approach is particularly suited to complex
problem domains of multioptimization and leads the solution space towards conver-
gence.

3.3 Stopping Criteria

A match between two intra-island histograms from successive epochs or match of one
histogram with another from an ideal converged state can dictate the stopping criteria.
Other metrics may be an information measure of histogram bias towards nondomi-
nance, some fitting criteria, or a significance level of testing a null hypothesis. The
literature on comparing two frequency coded data distributions contains a number
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of statistical metrics, e.g., see Fukunaga (1990). By observing the initial behavior of
the population on the problem domain and adjusting the parameters of population
size, crossover and mutation probabilities, some threshold or probabilistic measure
could serve as the stopping criterion. This will give a principled way of examining
convergence and stopping the evolution process and is an area of active research. In
the present work, we have simply inspected the histograms visually and extracted the
heuristics to stop further evolutions within single andmultiple islands using intra-rank
and inter-rank histograms, respectively.
It has been shown that an infinite number of generations of a simple elitist genetic

algorithm can yield an optimal solution (Bhandari et al., 1996). Aytug and Koehler
(1996, 2000) established tighter theoretical bounds on the number of GA iterations, and
Rudolph and Agapie (2000) found an upper bound on the finite number of function
evaluations in a finite search space. However, none of the above ensures diversity. Sec-
ondly, it is clearly not a sensible use of computer resources to let a population evolve
indefinitely without achieving appreciable gain. Rather, we suggest that a computation
should terminate if there is no longer any significant progression towards the Pareto-
front. The multi-island population concept is complementary to both (i) a better sam-
pling of Pareto-front and (ii) minimizing the computation involved. The computation
of a single island population is terminated on reaching a stopping criterion instead of
going through a fixed, and possibly very large number of generations. This saving
of computer time can be utilized for the computation of multiple islands, which has
the potential for parallelism without the complications of synchronous/asynchronous
exchanges between islands.

4 Tests on Analytic Functions

We have tested our PCGA algorithm on three problems considered by earlier re-
searchers on multiobjective optimization. For fair comparison, we have used exactly
the same coding and parameters (as far as is known), though they all used the number
of generations for reporting their results. Instead, we use the comparable term number of
epochs to quantify our results. An epoch is defined to be N/2 pairwise evolutions from
a population of size N . Hence, the terms “generation” and “epoch” are related to each
other from the point of algorithmic complexity and production of the same number of
offspring in each generation. (Using the term “generation” instead of “epoch” in PCGA
would be misleading from genetic concepts.)
The unbiased initial populations were randomly generated and decoded within

the variable space under consideration, and the experiments were repeated many tens
of times for functions F1 and F2 and many hundreds of times for the set F3 each with a
different initial population. Typical results selected on the basis of their average qualita-
tive performance (i.e., visualizing a plot for diverse sampling of the Pareto-front drawn
in objective space) are presented in the following sections. Since earlier work does not
report spreads of results, we omit such results here because it does not aid comparison.

4.1 Function F1

First, we consider the well-known function of Vincent and Grantham (1981), which
was used first by Schaffer in his pioneering work on VEGA and subsequently by many
other researchers. This is a two-objective problem of a single variable; we use the nota-
tion f11 (x) for the first objective and f12 (x) for the second, where x is an independent
variable:

Minimize f11 (x) = x2 and minimize f12 (x) = (x − 2)
2
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Figure 3: Population (a), (b), (c), and (d) (in objective space) at different stages, i.e., at
epochs 0, 3, 13, and 27 for Function F1 (population size = 100, crossover probability
= 1.0, mutation probability = 0.0). The population size for plot (d) is 150 (see text for
details). Note the scale changes between (a) and the other plots.

and the nondominated region lies within the real-valued range of x lying between (0.0
≤ x ≤ 2.0). The decision variable was encoded as a 32-bit binary integer, which was
mapped to the initial range of the variable in (-10.0 ≤ x ≤ 10.0). This is a very simple
problem from the perspective of genetic algorithms, and a few solutions already exist
in the nondominated region with the randomly initialized population. We tested three
different situations: (i) a population size of 100 with zero probability of mutation (as
done by Srinivas and Deb (1994)), (ii) a population size of 100 with mutation (for show-
ing the speedup in performance and proving the effectiveness of PCGA), and (iii) a
smaller population of 30 (similar to that used by Schaffer (1985) and Horn et al. (1994)).

4.1.1 Population of 100 without Mutation

In this test, the probability of mutation was kept at zero to observe the effectiveness of
PCGA alone and for comparing the results with NSGA; the population size was 100
and probability of crossover was 1.0. We also used identical parameters to Srinivas and
Deb but without sharing.
The populations are shown in objective space in Figure 3 at its initial stage, and at

epoch numbers 3, 13 (at this point the total population lies in the nondominated region),
and epoch number 27. The intra-island rank histogram at epoch 3 in Figure 4(a) has a
long tail, and this is a measure of the population shifting towards fitter individuals
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Figure 4: Intra-island rank histograms (a), (b), and (c) for Function F1 (population size
= 100, crossover probability = 1.0, mutation probability = 0.0) at epochs 3, 13, and 14,
respectively. The up arrow indicates division by zero, and the down arrow marks the
largest rank number in the combined population. Note the scale change between (a)
and the other plots.

between epochs 2 and 3. The population at epoch 12 has a few dominated individuals
but they are transformed to nondominated by epoch 13 (see Figure 4(b)). At epoch 14,
when the population consists solely of nondominated solutions, the intra-island rank
histogram (Figure 4(c)) indicates total convergence. The simplicity of this problem is
also evident from the observation that all the individuals in the final population are
nondominated.
Further evolution of the nondominated set produces the solutions shown in Fig-

ure 3(d). This experiment of further computation beyond the converged state (epoch
14 and onwards) demonstrates the capability that PCGA can still obtain new nondom-
inated solutions by evolving older nondominated solutions. For this, we need addi-
tional sample space in most of the cases, hence we reserved an additional 50% of the
initial population size space for evolutions through nondominated samples. During
this process, the rate of obtaining newer solutions is slower because of zero mutation
probability and the fact that the space left for new solutions to be accommodated in
the Pareto-front is limited. By comparison, the population at different stages shows
better diversity than that reported in Srinivas and Deb (1994), and in a significantly
smaller number of epochs. We needed only 27 epochs, while NSGA (with generational
replacement and sharing restrictions) was run for 500 generations without a significant
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Figure 5: Distribution of the age of appearance of nondominated individuals in the
final population for Function F1 (population size = 100, crossover probability = 1.0,
mutation probability = 0.0, number of epochs = 27.

improvement beyond 100 generations in the absence of a stopping criterion. This is
also one of the merits of PCGA inherent in its termination.
The distribution of the fraction of nondominated solutions generated in each epoch

relative to the population after 27 epochs is plotted in Figure 5. Here the age tag of an
individual is preserved if the identical individual is evolved again in a later epoch;
this way the distribution should be biased towards initial epochs if a larger fraction
of nondominated individuals were evolved in the early stages. To the contrary, the
population distribution by age in Figure 5 indicates that a significant number of non-
dominated individuals are evolved in the latter part of the evolution, thus proving the
effectiveness of PCGA up to the last epoch. Although the population only consists of
nondominated individuals from epoch 13 onwards (Figure 4(c)), the final population
contains a large fraction of nondominated individuals with age tags higher than epoch
13. This behavior demonstrates the capability of PCGA to continuously refine the non-
dominated solutions in successive epochs. We reiterate, this particular problem was
solved without mutation and without any sharing, and so the selection procedures of
the PCGA algorithm alone have produced to the evident diversity.
In solving Function F1 with a single population, we obtain a very uniformly sam-

pled Pareto-set with only a few small gaps (see Figure 3(d)). In an attempt to demon-
strate our approach of multiple populations, we combined the nondominated individ-
uals of three independently evolved populations. On merging, the sampling of the
Pareto-front is further improved with fewer gaps, and this is reflected in the respective
inter-island rank histograms of Figures 6(a) and 6(b). The histogram entry at nondom-
inated rank is below the ideal converged state of unity in both cases, and a small his-
togram tail exists indicating that further small improvement is possible. In this way, a
multiple population approach for sampling new genetic material in the form of another
subpopulation helps in expediting the process of obtaining more solutions and faster
convergence.

4.1.2 Population 100 with Mutation

We repeated the above experiment with a small mutation probability of 0.05 in order
to assess the potential speedup and the effectiveness of PCGA in a more conventional
genetic framework. Again the initial population size was kept at 100. Here, we observe
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Figure 6: Inter-island rank histograms (a) and (b) for Function F1 (population size =
100, mutation probability = 0.0) on merging the first and second subpopulations, and
then merging the third subpopulations.

that only six epochs are required for convergence to nondominated solutions. Seven
more epochs generated additional nondominated solutions by evolving existing non-
dominated solutions only. This demonstrates the effectiveness of PCGAwith mutation
for increasing diversity, faster convergence and at less computational cost. The corre-
sponding intra-island rank histograms at epochs 3, 6, and 7 are shown in Figure 7.
The histograms of Figure 7 also show a faster convergence than that obtained with-

out mutation (Figure 4). This is an accepted fact of genetic algorithms, and an appropri-
ate mutation probability can be estimated through monitoring speed of convergence.
The corresponding age-nondominated population distribution is shown in Figure 8,
which also confirms the earlier observation that a significant fraction of nondominated
individuals in the final population comes from the later stages of processing.
To examine our multiple population approach, three independent subpopulations

were merged and the resulting inter-island rank histograms are shown in Figure 9. The
rank histogram shows the movement towards convergence with increasing histogram
entries for nondominance and smaller tails. A small number of epochs was required
to produce a close-to-ideal converged state. This confirms that a population of 100
individuals is probably more than is really needed for solving this simple problem,
and only a single population is enough.

4.1.3 Smaller Population

Next we tested the performance of PCGA on the same function but with a smaller pop-
ulation size of 30. A similar size of population was used first by Schaffer (1985) in
VEGA, and then by Horn et al. (1994) while comparing the results of their NPGA with
VEGA. Since VEGA reported the results of generations up to 3 only, we present the
population at epoch 3 in Figure 10(a). At epoch 3, we are getting some diversity but
not a good sampling of the Pareto-front; this is improved at epoch 15. We have stopped
the PCGA evolution at this stage for a comparison with NPGA results at generation
200. Though our results at this stage display several gaps on the Pareto-front, the same
is true of the NPGA results. PCGA results can be further improved with a few more
epochs, while the improvement in NPGA is questionable. Our results are presented
without any sharing/mating restrictions, while NPGA involves sharing both in param-
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Figure 7: Intra-island rank histograms (a), (b), and (c) for Function F1 (population size
= 100, crossover probability = 1.0, mutation probability = 0.05) at epochs 3, 6, and 7,
respectively. Down arrow marks the highest rank in the combined population.

eter and objective space. Further, NPGA is very sensitive to selection of parameters,
while PCGA is not based on any heuristic selection of parameters. Rather, the obvious
genetic parameters like population size, crossover, andmutation probability can be fine
tuned while observing the progress on rank histograms. In our approach, we are not
losing nondominated solutions once they are generated unless and until they become
dominated; hence the disadvantage of VEGA is overcome. The PCGA population at
epoch 3 may not be much better than that of VEGA at that stage, but the sampling is
much improved with a few more epochs. These are the major obvious advantages of
PCGA.
The respective intra-island rank histograms are shown in Figure 11. The nature

of the histograms is identical to those shown in Figure 4. This confirms the basis of
intra-island rank histograms as provided in Section 3.2 and shown in Figure 1. The
age-population distribution displays similar features to Figures 5 and 8 in that later
evolutions contribute significantly to the nondominated solutions.
The population size of 30 seems to be just sufficient for this problem. Therefore,

in competition with other subpopulations, there is a significant improvement on the
Pareto-front, which is reflected by a filling of the gaps. The situation in earlier ex-
periments with population sizes of 100 was different and not much improvement was
noticed on combining different solutions, which reflects the advantages of combining
multi-islands for improved solution at the cost of a few more epochs.
Thus the improved performance of PCGA on solving the Function F1 problem is

clear over the previous approaches. PCGA yields diverse sampling in fewer epochs but
without heuristic procedures to suppress genetic drift.
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Figure 8: Distribution of the age of appearance of nondominated individuals in the
final population for Function F1 (initial population size = 100, crossover probability =
1.0, mutation probability = 0.05, number of epochs = 13.
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Figure 9: Inter-island rank histograms for Function F1 (initial population size = 100,
mutation probability = 0.05). Histogram (a) shows the merging of first and second
subpopulations and (b) merging the resultant with the third subpopulation.

4.2 Function F2

Next, we tested PCGA on an n-variable function used by Fonseca and Fleming (1995b)
as a minimization problem of two symmetrical objectives:

Minimize f21 (x1, ..., xn) = 1 − exp

(

−
n
∑

i=1

(xi − 1/
√

n)
2
)

Minimize f22 (x1, ..., xn) = 1 − exp

(

−
n
∑

i=1

(xi + 1/
√

n)
2
)

This optimization is harder than F1. Objective functions are defined for any number of
variables n. Individually, the minima of f21 and f22 are defined, for every value of n,
at:

(x1, x2, ..., xn) ≡ (1/
√

n, 1/
√

n,..., 1/
√

n) for minimum f21

(x1, x2, ..., xn) ≡ (−1/
√

n,−1/
√

n,...,−1/
√

n) for minimum f22

Due to symmetry of f21 and f22, the actual Pareto-front corresponds to all the points
on the curve given by:
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Figure 10: Population at epochs 3 and 15 for Function F1 (population size = 30,
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(x1 = x2 = ... = xn) ∧ (∀i) (−1/
√

n ≤ xi ≤ 1/
√

n)

Where appropriate, we have taken the same genetic parameters for PCGA as far as is
known (Fonseca and Fleming, 1995b) for a comparison with MOGA:

Number of variables (n) 8
String length (binary code) 16 bits per variable
Decoding range of variables [-2.0, 2.0]
Population size 100
Probability of Crossover 1.0
Probability of Mutation 0.05
Mating/Sharing Nil

The degree of difficulty of this problem is evident from the initial population itself,
where almost all the points are concentrated on one extreme of the objective space.
Though there are two nondominated points in the initial population, they are far away
from the actual Pareto-front. The initial population and that at epochs 50 and 100 are
shown in Figure 12. The nondominated individuals are plotted with filled black circles,
dominated points with grey circles, and the actual Pareto-front is marked with a grey
curve. It is very evident from the obtained populations at various epochs that the whole
population is progressively moving towards convergence. This is a distinct feature of
PCGA and in contrast to other approaches.
Fonseca and Fleming (1995b) presented MOGA results for the population at gen-

eration 100 only, both with and without sharing. They obtained better sampling with
mating restrictions but not as good as desired. With PCGA, the Pareto-front is uni-
formly sampled with nondominated solutions in very close proximity to the actual
front; this has been achieved without sharing. Even the dominated points are proxi-
mate to the Pareto-front (but nonetheless still dominated). With a fewmore epochs, the
Pareto-front, which is progressively moving towards convergence, can be further im-
proved with PCGA, but we suspect this will be a very slow process with generational
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Figure 11: Intra-island rank histograms for Function F1 (population size = 30, crossover
probability = 1.0, mutation probability = 0.05) at epochs 3 and 7, respectively. Down
arrow marks the highest rank in the combined population.

replacement type of genetic strategies such as MOGA.
The corresponding rank histograms display results entirely consistent with previ-

ous observations. At epoch 100 there is a small histogram tail confirming the results in
Figure 12 that the population has not quite converged.
The population age distribution for this problem is unlike those for previous prob-

lems in that nondominated individuals in the final population only start to be gener-
ated from epoch 38 onwards — this reflects the challenging nature of the F2 problem.
The population state at epoch 50 of Figure 12 shows a significant fraction of nondomi-
nated individuals very near to the Pareto-front, but the age distribution plot indicates
that the contribution of such individuals to the final population is only 17%. This re-
confirms that the PCGA evolution strategy produces better and better offspring in each
epoch. It is this ability of PCGA that leads the population towards convergence.
At epoch 100, we have stopped further evolution for comparison with the results

obtained with mating restrictions by Fonseca and Fleming (1995b), though the popula-
tion could further be improved with some more epochs. Their results without mating
restrictions are concentrated in a very small region of the Pareto-front. On comparing
Fonseca and Fleming’s results withmating restrictions with the results of PCGA, PCGA
achieves diversity without mating restrictions. Continuing with our approach of multi-
ple subpopulations, we independently generated another two populations andmerged
the nondominated solutions from each. The solutions are further improvedwith amore
uniform sampling and gap filling. The inter-island rank histograms also indicate the
situation moving towards convergence but more solutions could be obtained for a total
filling of the front.

4.3 Function F3

Third, we considered a bimodal function g(x2) given by:

g(x2) = 2.0 − exp
{

−
(

x2−0.2
0.004

)2
}

− 0.8 exp
{

−
(

x2−0.6
0.4

)2
}

; g(x2) > 0

For (0 < x2 < 1), g(x2) is a function with a broad local minima at x2 = 0.6 and a
spike-like global minima at x2 = 0.2. Retargeting this single objective problem to a
multiobjective one (see Deb (1999)), the corresponding two-objective problem having
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Figure 12: Population (a), (b), and (c) at different stages of evolution, i.e., at epochs 0,
50, and 100, respectively for Function F2 (population size = 100, crossover probability
= 1.0, mutation probability = 0.05).

two variables x1 (> 0) and x2 is:

Minimize f31(x1, x2) = x1 and minimize f32(x1, x2) = g(x2)
x1

For a fixed value of g(x2), each f31–f32 plot is a hyperbola (see Figure 13). So for the
two-objective f31–f32 problem, we get one local and global Pareto-front for the local
and global solutions of g(x2), respectively. (See Deb (1999) for function characteristics
and the related theorem.) The Pareto-optimal solutions vary in x1 value (Figure 13: the
local and global Pareto-optimal fronts are shown by grey curves). With the randomly
generated initial populations (population size = 60), almost all the individuals are
close to the local optimal front and very few to the global front. (We generated many
hundred of sets of populations and only a few tens had a single individual closer to
the global front; this is a typical problem due to the bimodality of the function.) Deb
(1999) studied this problem using NSGA; we have taken the same genetic parameters
for PCGA for a comparison with NSGA:
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Figure 13: Two typical sets (a) and (b) of populations converging to the local and global
minima, respectively; the local and global optimal fronts are shown by grey curves. In
(a), the whole population has converged to the local Pareto-front in an average of 19
epochs per run. The population in (b) has converged to the global Pareto-front in an
average of 31 epochs per run. The average across both minima was 23.8 epochs.

String length (binary code) 20 bits per variable
Decoding range of variables x1 [0.1, 1.0] and x2 [0.0, 1.0]
Population size 60
Probability of Crossover 1.0
Probability of Mutation 0.0
Mating/Sharing Nil

We ran the experiments tens of hundreds of times so that we canmake generalized
observations about the results. For such exhaustive experiments, we did not change the
genetic parameters, only the initial populations. Based on the results, we can make the
following observations. For each of the runs, the whole population of sixty individuals
converged (all nondominated individuals) within the range of 12 to 41 epochs with an
average of 23.8 epochs per run. (As with results reported earlier Deb (1999), some of
the populations converged to the local Pareto-front and others to global front.) This is a
significant improvement over NSGA, which was run for 100 generations in the absence
of a convergence criterion. We achieved a superior sampling of the Pareto-fronts to that
reported in Deb (1999). Two typical sets of results are shown in Figure 13 (one where
the solution converges to the local minimum and the other where global minimum is
found). The initial populations in Figure 13 are shown with open square symbols and
final populations with the filled circles. In most of the runs, the initial population did
not contain even a single individual in the narrow global basin.
For some solutions, the population gets trapped in the local Pareto-front. We were

able to locate the global Pareto-front in 36 - 44% of the independently initialized runs.
This observation is identical to Deb’s. The fact that we had a similar success rate to
Deb’s NSGA in finding the local-to-global Pareto-front suggests that this ratio may be
an intrinsic feature of the problem connected to a density-of-states type argument in
the objective space. This is in tune with the observations of many researchers that
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multiobjective GAs can have difficulty with even a simple bimodal problem (e.g., Deb
(1999, p. 10)). PCGA, however, produces a diverse sampling of the Pareto-frontwithout
niching, and these results on F3 are consistent with what we have found for functions
F1 and F2 and reported in previous subsections.

5 Discussion

The PCGA algorithm presented in this paper empirically demonstrates two distinctive
features. First, it achieves diverse sampling of the Pareto-front without niching. Sec-
ond, it introduces the notion of a gauge on convergence. While doing so, at every stage
in PCGA, the population is compared in the most general sense. There is no subjective
consideration of the priorities of the objectives, nor are they randomly picked (Four-
man, 1985; Kursawe, 1991). In the absence of a true scalar fitness, we argue that the only
way to compare a parent and its offspring is a rank-based metric. In practice, Pareto-
ranks are scaled arbitrarily to fitness values (fitness is a direct measure of reproductive
potential of the individuals). Moreover, we use Pareto-ranks, albeit heuristically, for
gauging the convergence.
In the following subsections, we discuss the results together with the character-

istics of PCGA with regard to how they help achieve diversity without explicitly em-
ploying a diversity preserving mechanism.

5.1 Achieving Diversity

PCGA produces only a single pair of offspring in one iteration; it is a steady-state algo-
rithm and is elitist in nature. In contrast, almost all the other MO algorithms produce
an entire new population at a single generation; the fitter individuals get more chances
at reproduction, and genetic drift has to be suppressed through some explicit diver-
sity preserving mechanism. This approach has the advantage that fitter individuals
are liable to produce even fitter offspring, but the demerit that the functional mapping
from ranks to fitness is important since it can strongly influence genetic drift. In this
work, we have taken fitness as a simple linear function of Pareto-ranks. The effect of
the steady-state algorithm on achieving wider sampling is further discussed in Subsec-
tion 5.1.2.
Though PCGA does not replace the whole generation in a single step, each pair of

offspring is compared against the whole population. This is in contrast to tournament-
based selection approaches (NPGA, SPEA, and the algorithm of Ritzel et al. (1994),
which needs a comparison set). Such selection approaches are affected by the user-
defined size of the comparison set. In a pairwise comparison, if the offspring are com-
pared only against their parents, this will result in a tie in most practical situations as
is the case with NPGA, and additional safeguards of mating/sharing restrictions have
to be employed for resolving the tie.

5.1.1 Progressive Advancement of the Solution Front

Another feature of PCGA’s steady-state strategy is that at every population compari-
son, we discard the two lowest ranked individuals. With every evolution, we either get
superior offspring or at worst, the same population fitness. Thus, with every evolution,
the population advances towards the Pareto-front or in the worst case, remains static.
The common genetic operators of crossover and mutation ensure diversity (shown in
the results included in this paper).
PCGA does not at any stage lose nondominated solution(s). We argue that re-

placing a nondominated member of a population with a dominated member is not
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a sensible approach in a generalized multiobjective optimization. In PCGA, a (erst-
while nondominated) solution can only be discarded if it is no longer nondominated.
The results of discarding potentially valuable genetic material can be serious and are
reported in Srinivas and Deb (1994), where a sufficient population of nondominated
solutions at a given evolutionary stage is reduced at a later stage to a few solutions
on the Pareto-front, a well-known drawback of Schaffer’s VEGA approach even with
mating restrictions. The tournament-based selection approaches are partly affected by
this dilemma: the selection is guided by the size of the tournament set and thus con-
trols the convergence — nondominated solutions may be eliminated, which results in
slow convergence. Nonetheless, for such approaches, mating restrictions do have the
potential to suppress genetic drift.
PCGA has elitism built in to the algorithm. In a single-objective optimization,

elitism may have the disadvantage of premature convergence, but in the case of mul-
tiobjective optimization, Parks and Miller (1998) have shown that elitism improves the
performance. Many of the recent algorithms (SPEA, PAES) have adopted an elitist ap-
proach to retain the nondominated solutions but use clustering as a post process to
control the size of the nondominated set.

5.1.2 Reduced Range of Pareto-Ranks

Initially, when the population is randomly initialized, the range of the ranks is quite
large (Figures 4, 7) and the fitter individuals (on the roulette wheel) have better chances
of being selected for breeding. PCGA retains the merit that fitter individuals are able to
produce better offspring, yet the functional consideration of the mapping is not signifi-
cant. As the population is progressively moved towards convergence with the elimina-
tion of the weakest pair at each evolution, the dynamic range of the rank is consistently
reduced (Figures 4, 7), and each individual has a greater chance of reproduction. The
population at different stages of reproduction (number of epochs) shown in different
results confirms this behavior for PCGA.
Taking into account the “tied” ranks, this is not the case with generational replace-

ment strategies. In a generational GA, in addition to getting better solutions one also
produces (and retains in the population) many worse solutions (for example, two very
fit parents producing a runt offspring), and thus generational GAs maintain a greater
range of ranks. If the rank-to-single-scalar fitness mapping is the same, this greater
range of ranks translates into greater range of scalar fitness values, and so there is a
tendency (bias) for generational GAs to select only the fittest individuals because they
occupy so much of the roulette wheel. Nonetheless, this is in tune with the principles
of genetic algorithms that fitter individuals are given better chances of breeding but at
the cost of additional mating restrictions. In a steady-state PCGA, the population is
always improving (or at least never getting worse) and so the range of ranks is more
compressed giving a greater probability of all individuals breeding. PCGA gives all so-
lutions a greater chance to breed thus leading to genetic diversity. The dynamics of the
two evolutions (steady-state and generational) are different. With increasing numbers
of epochs, the mating pool for a steady-state GA contains a compressed range of ranks,
while the mating pool for a generational GA has larger range of ranks giving less fit
individuals a lesser chance at breeding.
Although we believe this is a plausible argument, it remains a conjecture. Tracking

the lineage of individuals and proving the connection between reduced ranges of tied
ranks and better diversity is the subject of future research. Observationally, PCGA does
maintain diversity without niching; exactly why is the subject of further investigation.
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However, the dynamics of steady-state evolution with compressed range of ranks is
analogous to explicit mating restriction. (By definition, mating restrictions (Deb and
Goldberg, 1989) try to address the fact that individuals too different from each other
are less likely to produce fit offspring through mating than similar individuals.) We be-
lieve, in PCGA, the compressed range of ranks is inherently producing the same effect
as a mating restriction but without user-defined parameters. So, we can say that the
PCGA’s selection strategy does not explicitly need any diversity preserving techniques
but employs implicit mating restrictions. Similarly, it can be argued that compressed
range of ranks is producing the same effects as fitness sharing.

5.2 Comparing PCGA’s Island Model with the Canonical Subpopulation Strategy

Swapping or migration of individuals from one island to another is the key feature
of a canonical subpopulation strategy. Subpopulation strategy, commonly known as
the island model, distributed or parallel GAs, is used mainly to get superior solu-
tions, speed convergence, and parallelize the computing efforts — the success of such
a strategy depends on many factors. Usually, the population size in a single island
is comparatively small. Small islands are run to convergence (i.e., where the genetic
diversity in the small population has disappeared), and then genetic material is syn-
chronously/asynchronously mixed/swapped to re-introduce diversity (Braun, 1990;
Whitley and Starkweather, 1990; Cantú-Paz, 2000). In many cases, however, islands
have been found to give no speed-up. Where islands do work, it is known that iso-
lated (i.e., no migration) islands can converge to different local optima at which point
comparing the island populations can yield valuable information about the dynamics
of the process.
We employed subpopulations of significantly larger sizes than is normal with con-

ventional islands model although we did not employ any migration. We stress that we
use isolated islands not to speed convergence but as a test on the quality of the final
solutions; in the process, we are able to escape from local minima (Figure 13).

5.3 Analyzing Computational Load

PCGA has the additional computational overhead of inserting the offspring in the pop-
ulation and generating the rank histogram but it requires fewer epochs and eliminates
heuristically selected parameters and the associated computations. The overall com-
putations in genetic search can be divided broadly in two categories: one involving
genetic manipulations, and those of objective evaluations. The genetic computations
involve breeding operations, sharing, and ranking. Implementation of sharing in a
high-dimensional objective space can be computation intensive. PCGA eliminates the
need for sharing but adds additional overheads of inserting offspring into an already
ranked list. Ranked generational replacement techniques on the other hand require
complete reranking of the population after every iteration. The objective evaluations
are problem specific but typically, in real-life problems, dominate the time required for
most genetic optimizations.

5.4 Monitoring Convergence

There is no need to run a problem through a fixed number of iterations if it can be
stopped when no further appreciable gain is being achieved. By examining the rate of
convergence, the number of epochs can be further reduced bymonitoring the state of an
island with successive rank histograms and tuning any problem-specific parameter(s).
For example, very large initial populations can be avoided, which can significantly re-
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duce the computation and memory requirements. Similarly, the other parameters, e.g.,
probabilities of crossover and mutation, can be fine-tuned and their effects on popula-
tion evolution can be examined. Monitoring convergence would help not only to avoid
wasting CPU time in producing further generations for an optimization that has al-
ready converged, but also in knowing whether a particularly stubborn problem is still
far from convergence. This is discussed in next subsection.
Although in the present work we have interactively stopped further population

evolution using the rank histogram, the process could be automated by incorporating
a suitable statistical test on the successive rank histograms. The rank histogram test
of convergence introduced here is somewhat analogous to the aims of Fisher’s F-test
(Fukunaga, 1990) from standard statistical hypothesis testing, where a number of sam-
ples are compared for consistency (the null hypothesis).

5.5 Application to Real Problems

Although the results presented in this paper are for well-known multiobjective bench-
mark problems, elsewhere we have reported the successful application of PCGA to a
number of real-world optimization problems of complex nature, particularly to prob-
lems of NP nature. For example, a classification problem in seven-dimensional objec-
tive space for near-optimal partitioning of a pattern space using variable-length, real-
number chromosomes is presented in Kumar and Rockett (1998). We have applied
PCGA to codebook construction for vector quantization (Kumar, 2000) and commu-
nication network design (Kumar et al., 2002). PCGA has also been applied to other
applications, e.g., the study of continuous casting mold process (Chakraborty et al.,
2001). Taken together with the results presented here, we have grounds to believe that
PCGA is applicable to a wide range of multiobjective optimization problems.

6 Conclusions

In this paper, we have presented a novel approach to multiobjective optimization by
genetic algorithms. Our PCGA is a steady-state algorithm and uses a (µ + 2)-ES se-
lection scheme along with Pareto-ranking. The algorithm naturally prevents genetic
drift while uniformly sampling the Pareto-front and eliminating heuristically selected
mating/sharing parameters. A systematic, albeit heuristic, approach based on rank his-
tograms for assessing convergence was discussed. PCGA was tested on three bench-
mark problems as a proof-of-concept, and the results compared with those of earlier
approaches. The Pareto-converging approach is promising for complex problems in-
volving optimization on a large number of competing objectives where independent
evolution with isolated multiple islands of population can be employed effectively in
difficult optimization domains; PCGA has been applied to a number of real-worldmul-
tiobjective problems of NP-nature (and the results have been reported elsewhere).
Thus PCGA empirically demonstrates achieving diverse sampling of the Pareto-

front without niching and sharing. Furthermore, we have introduced the notion of
monitoring convergence by advancement of the population towards the Pareto-front.
Other contemporary techniques for multiobjective optimization could easily adopt
many of these approaches. Analysis on maintaining diversity without niching is the
subject of further investigation. Some other related studies, e.g., setting some statistical
tests on intra- and inter-island rank histograms, are suggested for future research.
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