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Abstract

The evolutionary computation community has shown increasing interest in arbitrary-
length representations, particularly in the field of genetic programming. A serious
stumbling block to the scalability of such representations has been bloat: uncontrolled
genome growth during an evolutionary run. Bloat appears across the evolutionary
computation spectrum, but genetic programming has given it by far the largest atten-
tion. Most genetic programming models explain this phenomenon as a result of the
growth of introns, areas in an individual which serve no functional purpose. This pa-
per presents evidence which directly contradicts intron theories. The paper then uses
data drawn from this evidence to propose a new model of genome growth. In this
model, bloat in genetic programming is a function of the mean depth of the modifica-
tion (crossover or mutation) point. Points far from the root are correspondingly less
likely to hurt the child’s survivability in the next generation. The modification point
is in turn strongly correlated to average parent tree size and to removed subtree size,
both of which are directly linked to the size of the resulting child.
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1 Introduction

In evolutionary computation, bloat is the tendency for arbitrary-length representations
to grow in size as a run progresses, without the justification of a corresponding im-
provement in fitness. Bloating slows the evolutionary search process, consumes mem-
ory, and can hamper effective breeding. This produces a sort of Zeno’s paradox, slow-
ing successive generations by so much that it places a cap on the useful runtime of the
given evolutionary computation technique.

As arbitrary-length representations have become more common, particularly in
genetic programming (GP), bloat has received an increasingly large amount of atten-
tion. This attention has come both in techniques for preventing or lessening bloat, and
in theoretical explanations for its existence, without which such prevention techniques
are merely ad-hoc. The GP literature has yielded four bloating models: three of these
four models focus on the existence of introns, regions of code which can be trivially
simplified without affecting function. The fourth theory attempts to describe bloating
phenomena only in general terms, without providing a specific functional explanation.

However, the experimental methodology used in the intron theory literature to
date has so far not been arranged to falsify the theories. This paper presents falsifiable
experimental data which, as it turns out, contradicts the functional explanations given
in the intron theories.
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Through analysis of this data, the paper then presents a new theory of bloating
as a function of tree depth selection bias: the deeper the tree, the more survivable its
children. This is due to a strong relationship between the depth of a subtree modifi-
cation (crossover, mutation) and the impact that modification has on the individual’s
performance. Modifications close to the root generally make dramatic changes to an
individual, whereas modifications far from the root have lesser effect. Trees with more
deep nodes thus are more likely to survive highly damaging modifications. Deeper
nodes are correlated prevalent in large, and tend to root smaller subtrees; these subse-
quent effects in turn produce a bias towards larger children.

The paper is arranged as follows. First, it presents a survey of arbitrary-length
representations in the evolutionary computation literature, and a quick description of
genetic programming. Then it discusses bloat, ways of combatting it, and genetic pro-
gramming theories explaining the bloat phenomenon. Following this, it presents ex-
periments which cast doubt on existing theories, then proposes a depth-based theory
of bloating in genetic programming.

2 Arbitrary-length Representations

Arbitrary-length representations have been with evolutionary computation since its
inception. At the same time that fixed-size genetic algorithms and evolution strategies
were being developed to handle parameter vectors, evolutionary programming sought
to search for arbitrary-sized finite-state automata (Fogel et al., 1966), applying operators
to add and delete edges and vertices. Smith (1980) evolved arbitrary-sized rule-based
programs which learned problems such as maze navigation and poker betting. This
work eventually contributed to the “Pitt approach” to learning rule systems (De Jong,
1989), in which each individual in the population is a classification rule set of arbitrary
length.

Other interest in arbitrary-length genomes has sprung from attempts to improve
on GA’s fixed-length vector genotypes while still evolving for a fixed number of pa-
rameter settings. Best known in this area is the messy genetic algorithm (Goldberg et al.,
1993), which evolved lists of 〈parameter, value〉 pairs. This work was later extended to
the gene expression messy genetic algorithm (GEMGA) (Kargupta, 1996). Some theoreti-
cal work has also treated genomes as unordered sets of objects (Radcliffe and George,
1993).

Another impetus for abitrary-length genomes has been interest in using a more
“DNA-like” genome to solve optimization problems. Genomes in such approaches
have typically been long strands of DNA-like codons, often even using a four-letter
A,T,G,C alphabet. Although the genomes are formally fixed in size, they are usually
very long, and genes are randomly dispersed throughout the genome, delimited by
start and stop codon sequences. This means that the number of genes expressed in
the genome can be of any size, and genes can be any length (up to a point). This ap-
proach has been used to evolve neural networks (Fullmer and Miikkulainen, 1991) and
to attack problems in evolutionary robotics (Jakobi, 1995). Wu and Lindsay (1995) ex-
amined the dynamics of non-coding segments (parts of the strands that did not define
genes) in these kinds of genomes. Burke et al. (1998) continued this work, adding more
ideas from biology, including multiple reading frames (allowing genes to overlap) and
homologous crossover (recombination at points where codons are most similar). Un-
fortunately, most work in this area has been exploratory; few papers have compared
such approaches empirically to other EC work in nontrivial domains. One exception
to this trend ((Luke et al., 1999)) borrowed similar ideas from cellular biology, but es-
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chewed the notion of using DNA codon strings. Instead, a genome was used which
consisted of an arbitrary-sized set of genes, each tagged with a real-valued locus be-
tween 0 and 1 which placed them on the chromosome. The genes’ rules were then
mapped to state transitions in finite-state automata and the technique evolved FSAs
to do language induction on a popular benchmark, with good results compared to the
existing literature.

One fertile area for arbitrary-length representations has been in attempts to evolve
graphs and networks. Early attempts at evolving neural networks fixed the network
topology and evolved the weights as values in the genome (Collins and Jefferson, 1991),
usually represented with a simple fixed-length vector. But later approaches used rep-
resentations to directly encode arbitrary numbers of graph vertices and edges in the
genome (Fullmer and Miikkulainen, 1991; Lindgren et al., 1992; Angeline et al., 1994).
Still later techniques attempted to use morphological rules to describe a neural net-
work. Kitano (1990) was the first publication to attempt to evolve graph structures
using sets of rules for “building” a graph, rather than explicitly stating the vertices and
edges. Boers et al. (1993) also “grew” networks, using Lindenmeyer systems operating
on graph vertices and edges.

By far the largest literature on arbitrary-length genomes has been in the area of
genetic programming. GP is concerned with evolving actual symbolic computer func-
tions, a problem domain which lends itself naturally to arbitrary-length representation.
The lion’s share of genetic programming work has focused on parse trees representing
Lisp s-expressions (Koza and Rice, 1991), but many GP researchers have taken other
tacks, such as representing a computer program as a list of machine instructions (also
known as linear GP, see for example (Stoffel and Spector, 1996; Nordin, 1997; Banzhaf
et al., 1998)). Teller (1998) represented programs as cyclic call-graphs. Some work has
also been done with directed acyclic graphs of functions (Keijzer, 1996; Handley, 1994).
Last, cellular encoding, a field related to GP, evolves trees to describe graphs and net-
works. Cellular encoding has been used for neural networks (Gruau, 1992), finite state
automata (Brave, 1996; Luke, 2000b), and electrical circuits (Koza et al., 1997b,a; Jones
and Joines, 1999).

3 Genetic Programming

The form of genetic programming discussed in this paper operates over Lisp s-
expressions, and was popularized by John Koza (1992). Though genetic programming
prints its individuals as s-expressions, it represents them internally as trees of labeled
nodes. Leaf nodes in the tree are known as terminals and nonleaf nodes are known
as nonterminals. The mapping from tree to s-expression is straightforward: a terminal
is represented as a Lisp atom, and a nonleaf node is represented as a Lisp function
or macro whose arguments are subtree children to that node. That is, a nonterminal
named “foo” appears in Lisp form as (foo arg [arg*]), where arg are subexpressions, one
for each child subtree of the foo node. Traditionally, a terminal node named “bar”
always appears in Lisp s-expression form as bar (without parentheses).

Except where detailed later in this paper, all the experiments presented here follow
the parameters laid out in Koza’s Genetic Programming (1992). Genetic programming
commonly uses its own idiosyncratic tree-generation algorithms, GROW and FULL,
to generate initial inidividuals. Selection is done through tournament selection with a
tournament size of seven. Breeding is performed either through direct copying (10% of
the time) or through subtree crossover, whereby two parents swap an arbitrary subtree.

Three common GP problem domains were chosen for inclusion in these exper-
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Function Syntax Arity Description

(+ i j) 2 Returns i + j

(− i j) 2 Returns i − j

(∗ i j) 2 Returns ij

(% i j) 2 If j is 0, returns 1, else returns i
j

(sin i) 1 Returns sin i
(cos i) 1 Returns cos i
(exp i) 1 Returns ei

(rlog i) 1 If j is 0, returns 0, else returns log |i|
x 0 Returns the value of the independent variable (x).

ERCs 0 (Optional) Random numerical constants chosen from
floating-point values from -1 to 1 inclusive.

Table 1: Genetic Programming Function Set for the Symbolic Regression Domain

iments. Eleven-Bit Boolean Multiplexer is the most difficult problem, and describes a
search through a discrete solution space to find a working 3-in, 8-out multiplexer. Sym-
bolic Regression uses a floating-point solution space, searching for a specific mathemat-
ical equation. Six-Bit Boolean Multiplexer is a relatively easy problem for GP to solve,
and represents a search through a discrete solution space to find a working 2-in, 4-out
multiplexer.

What follows is a quick overview of these three problem domains.

3.1 Symbolic Regression

Symbolic Regression is the canonical example domain for genetic programming. The
object of symbolic regression is to find a symbolic function which best fits a set of data
points of the form 〈x, y〉 in the real cartesian plane. Symbolic Regression differs from
classic regression methods in statistics in that the function set includes transcendental
functions (sine, cosine, natural logarithm).

The benchmark problem for Symbolic Regression has 20 random data points to fit.
The x values of the points are picked at random; these form the “independent vari-
ables” in the data set. Their corresponding y values are computed from the benchmark
function y = x4 + x3 + x2 + x. GP individuals will try to fit to this function. Table 1
shows Symbolic Regression’s function set. In some versions of Symbolic Regression,
random numerical constants are added to the function set.

Symbolic Regression assesses fitness as follows. For each data point 〈xi, yi〉, the
independent variable (the value that the terminal x will return) is set to xi. The individ-
ual’s tree is then evaluated and the result is stored in ri. The fitness is

∑n

i=1
|(yi − ri)|,

lower values are fitter. A standardized fitness of 0 represents a perfect match. An ex-
ample ideal individual is:

Result: (+ (* x (* (+ x (* x x)) x)) (* (+ x (cos (- x x))) x)).

3.2 6- and 11-Bit Multiplexer

The objective of the 6-Bit and 11-Bit Multiplexer problems is to find a boolean function
which performs multiplexing over a 2-bit or 3-bit address.

In 6-Bit Multiplexer, there are two boolean-valued address variables (A0 and A1)
and four corresponding boolean-valued data variables (D0, D1, D2, D3). The 6-Bit
Multiplexer function must return the value of the data variable at the address described
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Function Syntax Arity Description

(and i j) 2 Returns i ∩ j

(or i j) 2 Returns i ∪ j

(not i) 1 Returns ¬i

(if test then else) 3 If test is true, then then is returned, else else is returned.
a0, a1 0 each Return the values of variables A0 and A1 respectively.
a2 0 (11-Multiplexer only) Returns the value of variable A2.
d0, d1, d2, d3 0 each Return the values of variables D0, D1, D2, and D3 re-

spectively.
d4, d5, d6, d7 0 each (11-Multiplexer only) Return the values of variables D4,

D5, D6, and D7 respectively.

Table 2: Genetic Programming Function Set for the 6- and 11-Bit Multiplexer Domains

by the binary values of A0 and A1. For example, if A1 is true and A0 is false, the address
is 2 (binary 10), and in this case, the optimal individual must return the value stored in
D2. Since there are six boolean variables altogether, there are 64 permutations of these
variables and hence 64 test cases.

11-Bit Multiplexer is similar, except that it has three address variables (A0, A1, A2),
and thus has eight data variables (D0, D1, D2, D3, D4, D5, D6, D7). In this case, there
are eleven variables altogether, and so there are 2048 test cases. Table 2 shows the 6-Bit
and 11-Bit Multiplexer function sets.

Both 11-Bit and 6-Bit Multiplexer assesses fitness as follows. For each test case,
the data and address variables are set to return that test case’s permutation of boolean
values, and the individual’s tree is then evaluated. The individual’s fitness (again,
lower values are fitter) is the number of test cases for which the individual returned
the wrong value for the data variable expected, given the current setting of the address
variables.

An example of an ideal 6-Bit Multiplexer individual is:

Result: (if a1 (not (not (if a0 d3 d2))) (if (not (and (if a0 a1 d0) (and d1 d2))) (if (not (if a1 a0
d1)) (if a0 a1 d0) (or (or a1 d0) (or (if d2 d0 d2) (and d1 a0)))) (if (or d1 a1) (if (not (if a1 d3
(if d3 d1 d1))) (and (and d2 a1) (not a0)) (or (or a1 d0) (or (if d2 d0 d2) (and d1 a0)))) (and
(not d0) (and a0 d1)))))

Though this is a much larger individual than the Symbolic Regression individual
shown, in fact 6-Bit Multiplexer is a very simple problem for Genetic Programming to
solve. 11-Bit Multiplexer is significantly more difficult than the other two.

4 The Race Against Bloat

Bloating appears to be a problem across the spectrum of arbitrary-length representa-
tions. For example, Burke et al. (1998) discussed bloating problems in DNA-like codon
strings. Smith (1980) noted bloat as a serious impediment to evolving Pitt-approach
rulesets. Similar problems have also been noted when using Pitt-approach rule systems
to control micro-air vehicles (Bassett and De Jong, 2000). However, most bloat research
has been in genetic programming. Bloat is a major bugaboo both for tree-based GP
genomes (for example (Koza, 1992; Blickle and Thiele, 1994; McPhee and Miller, 1995;
Angeline, 1998; Langdon et al., 1999; Lanzi, 1999)) and for linear GP genomes (Banzhaf
et al., 1998). Bloat is also an impediment to cellular encoding (Luke, 2000b).
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There are two basic causes of bloat. First, bloat may arise from an interaction
between the representation and the breeding operators, causing individuals to grow
on average independent of selective pressure. For example, Rowe and McPhee (2001)
specified fixed-point distributions to which list-type representations would converge
under several different genetic operators with random selection. Subtree mutation
causes similar asymptotic bloating independent of selection (Luke, 2000b). Second and
more commonly, bloat is driven by selection in combination with the representation
and breeding operators. This bloat is, to quote Bill Langdon, a phenomenon of “sur-
vival of the fattest”. In the process of selecting for fitness, the system’s dynamics also
shift the population towards larger and larger individuals. This paper focuses on this
second kind of bloat.

Fighting Bloat The typical approach to fighting bloat is parsimony pressure, which
takes into consideration the individual’s size as part of its fitness assessment. Some
approaches apply a constant weighted size penalty (for example (Smith, 1980; Soule
et al., 1996; Bassett and De Jong, 2000)), while others add parsimony pressure adap-
tively in response to growth metrics in the individual and in the population (Iba et al.,
1994; Blickle, 1996). A recent variation on this approach is to treat fitness and parsi-
mony as independent objectives, and use fitness based on Pareto dominance ranking
to evolve for both of them at the same time (Bleuler et al., 2001; de Jong et al., 2001).

Another approach is to simply limit the maximum size of the individual. For ex-
ample, much work in GP follows the technique used by Koza (1992), which restricts
modification operators to produce new trees of depth less than 17. Unfortunately, size
restrictions can have unforseen consequences. In GP, for example, tree depth limits
have been shown to have unfortunate effects when most trees in the population reach
the limit (Gathercole and Ross, 1996).

In GP bloat can also be somewhat countered through careful choice of the mod-
ification operator. In tree-based GP, two common operators include subtree crossover,
which swaps subtrees among individuals, and subtree mutation, where subtrees in an
individual are replaced with randomly-generated subtrees. Subtree crossover has been
indicted as major source of bloat when compared to mutation and other methods (Luke,
2000b; Angeline, 1998). However, choosing mutation is not a panacea, however, as
it too can cause bloating, though to a lesser degree (Luke, 2000b; Langdon and Poli,
1997c).

Another GP method is explicitly defined introns (Nordin et al., 1996; Smith and Har-
ries, 1998; Blickle, 1996; Angeline, 1996). The idea here is to allow the inclusion of
special nodes which adapt the likelihood of subtree crossover or mutation at specific
positions in the tree. The final major GP method is code editing: simplifying and opti-
mizing GP individuals’ parse trees. Some work ((Soule et al., 1996; Blickle, 1996; Iba
and Terao, 2000)) reports strong results with this approach. However, Haynes (1998)
warns that editing can lead to premature convergence in the evolutionary system.

5 Genetic Programming and Bloat

Because GP operates over arbitrary-sized parse trees of Lisp s-expressions, it is strongly
susceptable to the bloating phenomenon. The exact cause of GP code bloat is still not
well understood, but much of the code bloat literature in genetic programming has
focused on so-called introns — extraneous regions of code in an individual which nei-
ther add nor detract from its fitness, because they are ignored or do nothing. Like so
many other terms in evolutionary computation, “introns” is borrowed from genetics,
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Viable

Introns

Active InviableUnoptimized

Figure 1: A Venn Diagram of Labels Used to Describe Various Kinds of Code

referring to areas in DNA genes which do not contribute to the final protein or RNA
endproduct.

Angeline (1994) is the first researcher to explicitly identify genetic programming
introns and give them their nickname. Angeline defined introns as areas of code that
“are unnecessary since they can be removed from the program without altering the
solution the program represents”. The term “introns” has been used in at least three
different ways, which I will denote as introns, inviable code, and unoptimized code.

1. Introns. Areas of code which do not contribute to an individual’s function.

2. Inviable Code. Code regions which cannot be replaced by anything that can pos-
sibly contribute to the individual’s function. This is a specific subset of #1. Such
code is typically associated with an invalidator, a structure elsewhere in the indi-
vidual which is responsible for nullifying the intron’s effect. It is possible for two
invalidators to make each other inviable. I call this “co-inviable code”. Ther term
“inviable code” originates with (Soule and Foster, 1998; Langdon et al., 1999)), but
has been called other things: “absolute introns” (Banzhaf et al., 1998), “redundant
nodes” (Blickle and Thiele, 1994; Blickle, 1996), “ineffective code” (Rosca, 1996),
“type 1 introns” and “type 2 introns” (Nordin et al., 1995), and “syntactic introns”
(Angeline, 1998).

3. Unoptimized Code. Code regions do not contribute to an individual’s function,
but can be replaced with code which does contribute. This consists of all introns
which are not inviable code. Langdon et al. (1999) call these regions “inoperative
code”, though they unfortunately restrict their term in such a way as to exclude
plausible candidates such as redundant parent nodes in a tree, as in (not (not (not
(not foo)))), or redundant subtrees, as in (and d1 d1). Nordin et al. (1995) similarly
make this exclusion, calling them “type 3” and “type 4” introns. Unoptimized code
has also gone by “inert subexpressions” (Tackett, 1994) and “semantic introns”
(Angeline, 1998).

In this paper, code which is not part of an intron will be termed “active”. Both
active and unoptimized code will be termed “viable”. Figure 1 illustrates this with
a Venn diagram. See Appendix A for specific examples of inviable and unoptimized
code.

5.1 Theories of Code Bloat

Angeline (1994) argued that individuals with large numbers of introns stood a better
chance of surviving crossover intact, but he viewed this feature as beneficial to the
evolutionary process. Tackett (1994), citing personal communication from Andrew Sin-
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gleton in 1993, also noted this argument, though Tackett himself disagreed with it. Sub-
sequent literature, however, has argued strongly that introns are a chief culprit in code
bloat, and thus are not desirable.

Generally speaking, there are three overlapping theories which implicate introns
in code bloat: hitchhiking, defense against crossover, and removal bias.

5.1.1 Hitchhiking

The first intron theory, hitchhiking (Tackett, 1994) says that if introns (the hitchhikers)
are attached to parents of “important” active code (though Tackett did not use the term,
this is effectively building blocks), then crossover which preserves this active code is
likely to take some of these introns along with it and thus propagate introns throughout
the population. Tackett noted that if the evolutionary computation system was more
selective, code growth would increase. He argued that with the increase in selectivity,
the value of important building blocks also increased, and as these building blocks were
replicated more rapidly through the population, introns hitchhiking on these building
blocks would spread all the faster.

5.1.2 Defense Against Crossover

In the second theory, defense against crossover, introns are propagated because they act to
make it difficult to destroy an individual, by increasing the number of crossover points
which have no effect on the individual. This gives rise to neutral crossover, where the
child is identical in function (and fitness) to its parent. Despite its name, this theory is
equally applicable to a wide variety of non-crossover tree-manipulation mechanisms,
including subtree mutation.

This general theory has been cited, in one way or another, by a large chunk of lit-
erature: (Blickle and Thiele, 1994; McPhee and Miller, 1995; Nordin and Banzhaf, 1995;
Rosca, 1996; Blickle, 1996; Rosca, 1997; Banzhaf et al., 1998; Langdon et al., 1999; An-
dre and Teller, 1996). The chief theoretical support for defense against crossover was
outlined by Blickle and Thiele (1994) and Nordin and Banzhaf (1995). The argument
is roughly as follows: let si be the expected number of times an individual i will be
selected from a given generation to undergo crossover or reproduction. Let pc be the
probability that crossover will be the breeding mechanism. Let Cai be the number of
crossover points in the individual (its absolute complexity), and let Cei be the number of
crossover points which might result in something other than neutral crossover (its effec-
tive complexity). Let di be the probability that individual i will be damaged by crossing
over in non-neutral crossover points. The probability of damage by crossing over in
neutral points is 0. Then the expected number of children ni of individual i that are
better than or equal to i in fitness is:

ni = si(1 − pc(
Cei

Cai

di +
1 − Cei

Cai

0)) = si(1 − pc

Cei

Cai

di)

From this equation both Blickle and Thiele (1994) and Nordin and Banzhaf (1995)
argue that there are two factors influencing whether a parent will produce many highly
competitive children. The first and more obvious factor is the fitness of the parent itself.
But another important factor is the probability that crossover of a parent will destroy
the child. Initially crossover is fairly likely to be constructive, so fitness is the pre-
dominant factor. But as an evolutionary run progresses, individuals become fitter and
finding a better solution becomes rarer; usually crosssover results in worse children,
often far worse children. In this latter situation, the most survivable individuals are the
ones which prevent crossover from having much effect. This gives rise to parents with
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lots of intron material, thus a small ratio of effective to absolute complexity, as a way of
hampering crossover’s modification ability.

It is notable, however, that this equation is only applicable to inviable code
when applied to tree-based GP. Indeed, one surprising feature of the defense-against-
crossover literature is that while most proponents of this theory argue that introns in-
crease the number of ineffective crossover points in an individual, in reality the lion’s
share of experiment and all theoretical justification have dealt solely with inviable code
for tree-based GP.

While for linear string GP systems all kinds of introns can decrease effective com-
plexity (as noted in work in AIMGP (Nordin and Banzhaf, 1995; Banzhaf et al., 1998)), in
tree-based GP, effective complexity can only be reduced through inviable code (Blickle
and Thiele, 1994). Similarly, Blickle and Thiele (1994); Blickle (1996) uses only inviable
code in his experimental examples, as does Rosca (1996). Some of the literature ((Lang-
don, 2000; Rosca, 1997)) simply defines introns to be inviable code. Other experiments
((Langdon et al., 1999)) support the theory in abstract but are not specific enough to
distinguish between inviable and unoptimized code.

In summary, while the defense against crossover theory is typically stated in terms
of introns in general, proofs of the theory consistently deal with inviable code only, and
experiments with the theory generally focus on inviable code in tree-based genomes. I
believe it is fair to say that, at least for its history in the tree-based genetic programming
literature so far, defense against crossover is an inviable code theory.

5.1.3 Removal Bias

A recent third theory, removal bias, eschews unoptimized code entirely and focuses
solely on inviable code (Soule and Foster, 1998; Langdon et al., 1999). In this theory,
the presence of inviable subtrees provides safe harbors for tree growth. The theory first
proposes that if an individual contains inviable subtrees, it is more likely to survive if
it performs modifications (crossover, mutation) within these subtrees. In some sense
this is similar to defense against crossover. But removal bias goes further, suggest-
ing a direct functional linkage between inviable code and bloat. In order to guarantee
preservation of the individual, the subtree removed during modification must be no
larger than the inviable subtree area; hence there is a bias towards removing small sub-
trees from the individual. But the replacing subtree has no such bias at all — it can be
any size and still have no effect on the individual. From this the theory predicts that
inviable subtrees will grow without bound.

The primary evidence for the removal bias theory is a form of hillclimbing origi-
nally proposed by O’Reilly (1995) which rejects crossover results that decrease the fit-
ness of an individual (or more strongly, do not increase the fitness of the individual).
If crossover fails this standard, then the parent is replicated into the new population in
lieu of the failed child. By rejecting crossover which decreases fitness, tree growth is
slowed. By rejecting crossover which does not increase fitness, tree growth is slowed
even further. The claim made by the removal bias literature ((Soule and Foster, 1998;
Langdon et al., 1999)) is that the difference in growth rates between these techniques
is due to the rejection of any crossover events which occur in inviable code areas (and
thus do not change the individual’s fitness). Langdon and Poli (1998) use a related
technique and report similar results.

The primary flaw in this argument is that this technique also acts to replicate large
numbers of parents into future generations. Further, rejecting children with no increase
in fitness serves to replicate many more parents than simply rejecting children which
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decrease fitness. If some (unknown) code bloat force is causing children to be larger
than their parents, then this technique may be doing little more than artificially damp-
ening code growth by filling the population with parents and ancestors, which are gen-
erally smaller then their descendents.

5.1.4 Fitness Causes Bloat

The chief non-intron bloat theory in genetic programming, fitness causes bloat, is due to
Langdon and Poli, and has been applied in various ways in (Langdon and Poli, 1997b,c;
Langdon, 1998; Langdon and Poli, 1997a; Langdon et al., 1999; Langdon, 2000). Accord-
ing to this theory, in the space of programs, there are generally many more large-sized
highly-fit trees than there are small-sized ones, if only because there are many more
large trees than small ones overall. If genetic programming searched uniformly in this
space, average tree size would be expected to remain constant. But genetic program-
ming runs start out with small trees initially, and so code bloat might be explained
simply as the system moving towards equilibrium.

This theory is supported with an argument borrowed from Price’s Covariance and
Selection Theorem (Price, 1970) from population genetics. Fitness-causes-bloat adapts
this theorem to suggest a relationship between how selective the system is and the
growth in tree size, taking a cue from Tackett (1994). When the evolutionary system
suddenly chooses individuals at random (selectivity drops to 0), trees begin to shrink
rather than grow. Langdon further argues that this code growth is not exponential but
subquadratic in the number of evaluations (Langdon, 2000).

The general notions behind this theory are promising, though I feel there are prob-
lems with its specifics. While it may be true that there are generally many more large-
sized high-fitness trees than small-sized ones, it is also likely that there are many many
more large-sized low-fitness trees than small-sized ones. What matters here is not the
ratio of numbers but of percentage. Also, by trying to stay as general as possible, the
theory disregards the functional breeding relationship between small trees and large
ones: certain large trees are much more likely than others to be bred from a given small
tree. In saying that there are generally more highly-fit large trees than small ones, the
model cannot predict that a given population trajectory is likely to find more highly-fit
large trees than small ones. Given EC’s finite population sizes, and the tendency of
some representations to converge, a functional explanation is important.

6 Experiments

The two most prevalent intron theories of code growth (defense against crossover and
removal bias) both rely on a similar thesis: that crossover in inviable subtree areas is the
driving force behind tree growth in general. In this paper I present what I believe to be
the first experimental evidence against this claim. The experiments do the surprisingly
obvious: deny individuals the ability to cross over in inviable areas.

Blickle and Thiele (1994) proposed exactly this, calling it marking: identifying in-
viable code areas and disallowing crossover within those regions. Unfortunately, no
code growth results were presented, and Blickle later wrote off the technique, stating
“the marking method only avoids redundant crossover sites but does not address the
bloating phenomenon directly as it leaves the redundant subtrees unchanged” (Blickle,
1996). In fact, marking does significantly decrease the amount of inviable code. But
what is surprising is that marking does not appear to affect tree growth, even in invi-
able code-heavy domains.

The following experiments compare results with and without marking for the
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Symbolic Regression, 11-Bit Multiplexer, and 6-Bit Multiplexer domains. The experi-
mental methodology is as follows. The only breeding mechanism used was one-child
crossover: two parents are picked from the population and crossed over to produce two
children. However, while the first child is placed into the next generation, the second
child is discarded. Each experiment consisted of 50 random runs. Experimental runs
lasted 64 generations, or until an ideal solution was found, using a population of 512,
and 7-tournament selection. Rather than using the traditional ad-hoc node-selection
scheme (picking terminals 10% of the time), node selection was uniform. However,
additional experiments run the traditional scheme have yielded very similar results.
Additionally, no limit was placed on the size or depth of trees. Symbolic Regression
did not use ephemeral random constants. ECJ was the genetic programming system
used (Luke, 2000a). From these experiments was collected a variety of statistics, in-
cluding:

• Mean number of nodes of individuals in the run.

• Mean tree depths in the run.

• Best fitness so far in the run.

• Number of individuals identical in fitness to their parents (neutral crossovers).

6.1 Multiplexer

For each Multiplexer domain, two sets of runs were performed, each with fifty inde-
pendent runs. In the first set, runs were performed normally as described earlier. In the
second set, the crossover point in the first parent was specially chosen through mark-
ing: a node was picked at random from the set of viable nodes in the individual. Since
the child of the second parent was discarded, this meant that all children would be
generated from a crossover point chosen from among viable nodes only.

Table 4 shows many common Multiplexer introns and their causes. One nice fea-
ture of Multiplexer is that it is possible, if expensive, to identify all inviable code. The
most common forms of inviable code in Multiplexer are operations with true or false,
such as (or returns-true inviable). In a less common form, parents and parents’ siblings
work together to eliminate the effect of inviable code. A simple example of this is (and
(not a0) (and a0 inviable)). For 11-Bit Multiplexer, these less common forms are so rare
that it is unlikely a single one will occur during a run. For 6-Bit Multiplexer, the less
common forms are also rare, though they occur more often.

Results Tree growth results from these experiments are shown in Figures 3 and 4. Af-
ter denying the ability to cross over in inviable regions, code growth in 6-Bit and 11-Bit
Multiplexer increased. However, these increases were not statistically significant (us-
ing an ANOVA with an alpha value of 0.05). Nonetheless, they were not the expected
decreases predicted by the intron theories. Tree depth similarly increased.

Inviable code results from the experiments are shown in Figure 7. One unexpected
result was that 11-Bit Multiplexer has very little inviable code! When inviable code
was restricted, the number of inviable nodes, as a percent of each individual, dropped
dramatically for the 6-Multiplexer problem. The (negligible) rise in inviable code in
11-Multiplexer was also eliminated upon restriction. Note that the growth in neutral
crossovers was unchanged. This is expected: an unusual feature of the Multiplexer
domains is the very high likelihood of performing crossover which, while dramatically
changing the functional semantics of an individual, does not change its overall score.
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Inviable Code Examples
0 as invalidator (∗ 0 inviable)

(% 0 inviable)
±∞ or NaN as invalidator (∗ ±∞-or-NaN inviable)

(% ±∞-or-NaN inviable)
(+ ±∞-or-NaN inviable)
(- ±∞-or-NaN inviable)

Decimation (rlog (+ (sin inviable) (exp (exp returns-about-6))))
Co-inviable code (∗ 0 ±∞)

(+ NaN ±∞)
(% 0 0)

Invalidator Examples
Creating 0 (- x x)

(rlog (% x x))
Creating ±∞ (exp (exp (exp (exp (% x x)))))

Creating NaN (sin ±∞)

Unoptimized Code Examples
Redundant Subtrees (+ (- x x) (rlog (% x x)))
Redundant Parents (rlog (exp (rlog (exp (rlog x)))))

Table 3: Intron Examples for the Symbolic Regression Domain

Fitness change was negligible, except in 6-Bit Multiplexer, which found perfect scores
much more easily without marking.

6.2 Symbolic Regression

Table 3 shows common Symbolic Regression introns and their causes. Symbolic Regres-
sion inviable code takes three forms: multiplication or division by zero, multiplication,
division, addition or subtraction with infinity/NaN, and decimation.

Multiplying and dividing by zero is by far the most common cause of inviable
code in Symbolic Regression: for example, (∗ always-returns-zero inviable). Less obvious is
how to achieve operations involving infinity or NaN. Structures returning infinity can
be achieved with successive calls to exp, as in (exp (exp (exp (exp (exp foo))))). Structures
returning NaN can be achieved with (sin infinity). However, infinity and NaN dominate
the return value of an individual; as such when they appear, they give the individual
the worst possible fitness, and so cannot propagate.

Decimation is more insidious. In decimation, parent nodes work together to elim-
inate the effect of a child by dropping its contribution below the precision of the data
type. An example of decimated inviable code for the Java double type is (rlog (+ (sin
inviable) (exp (exp 6)))). While most forms of decimation are nearly impossible to iden-
tify directly, their effect can be ascertained indirectly by tracking the growth of neutral
crossovers for which decimation can be the only possible culprit. In this regression ex-
periment, such tracking determined that decimation never occurred prior to generation
15, and rarely occurred prior to generation 25.

Symbolic Regression differs from Multiplexer in that it is extremely unlikely that
crossover of semantically different subtrees (that is, subtrees which return different
values) will result in identical fitness, except within inviable code regions. This means
that restricting semantically-identical crossover can have a significant impact on the
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Inviable Code Examples
true as invalidator (or true inviable)

(if true executed inviable)
false as invalidator (and false inviable)

(if false inviable executed)
Invalidation of test (if inviable a0 a0)

Conspired invalidation (and (not a0) (and a0 inviable))
(or d0 (or inviable (not d0)))

Co-inviable code (or inviable-returns-true inviable-returns-true)
(and inviable-returns-false inviable-returns-false)

Invalidator Examples
Creating true (not (and a0 (not a0)))

Creating false (and d1 (not d1))

Unoptimized Code Examples
Redundant Subtrees (and a0 (not a0))

(or d0 (and d0 d0))
Redundant Parents (not (not (not (not a0))))

Table 4: Intron Examples for the 6- and 11-Multiplexer Domains

number of neutral crossovers.
In order to gauge the effects of introns on tree growth in Symbolic Regression, four

sets of runs were performed, each with fifty independent runs. In the first set, as usual,
runs were performed unencumbered. In the second set, the crossover point for the
first parent was chosen through marking. Note that this marking does not eliminate
inviable code due to decimation.

In the third set, the crossover point for the first parent was chosen through mark-
ing, and the system rejected semantically identical crossover points. This means that
once the system had selected two individuals for crossover, the system would try 500
times to find two semantically dissimilar subtrees to cross over. It would reject seman-
tically identical subtrees such as x and (+ (- x x) x). If it failed 500 times (which only
occurred in the rare case when both individuals were simply the terminal x), the first
parent was replicated in lieu of its child. The goal of this set of runs was to eliminate
any possibility that unoptimized code could be “increasing” neutral crossover points
through semantically-identical crossover, which will be discussed more later. After ap-
plying these restrictions, there are only two possible causes for neutral crossover left:
crossover inside decimated inviable code, and crossover between two trees consisting
of the single terminal x (very rare after generation 7).

In the final set, the first parent was chosen through marking, the system rejected
semantically identical crossover points, and decimated inviable code was controlled
through a special technique: disallowing an individual to be selected if it had the same
fitness as its parent. This final check effectively eliminated all neutral crossovers due
to decimation. Note that this is different from the pseudo-hillclimbing technique used
in the removal-bias literature: parents are not promoted in lieu of an identical-fitness
child. Instead, the child is simply marked “bad” in the population and is not permitted
to breed.
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Results Tree growth results from all four experiment sets are shown in Figures 5
and 6. In all three restriction approaches, tree growth increased. Using an ANOVA
with Fisher LSD at 0.05, this difference was statistically significant. Using an ANOVA
with Tukey at 0.05, the tree growth increase was statistically significant in the third
and fourth sets. Again, the surprising result is that the expected hypothesis (that tree
growth would decrease) was not fulfilled. Tree depth similarly increased. Changes in
fitness were again negligible. Inviable code results from the four experiments is shown
in Figure 8. Note that the number of inviable nodes, as a percentage of the individual,
dropped as experiments became increasingly draconian in their restrictions.

6.3 Discussion

Proponents of intron theories point to the increase in inviable nodes, neutral crossovers,
and tree growth and suggest that the correlation among them is in fact causation: in-
viable code growth is driving tree growth. But consider the reverse relationship. As-
sociated with each inviable subtree is an invalidator, a chunk of code responsible for
making the subtree inviable. For example, in (∗ 0 inviable), 0 is the invalidator. If inval-
idators were uniformly but randomly distributed, their effect on large trees would be
much higher than on small trees, since in large trees there is a higher probability that
an invalidator is proportionally closer to the root. Thus if trees grow but invalidator
distribution remains constant, then the percentage of inviable code would be expected
to grow naturally towards 100%.

As shown in Figures 7 and 8, invalidators generally remain constant throughout
the run, as a percentage of the total individual. When inviable code crossover was per-
mitted in the 6-Multiplexer and Symbolic Regression domains, the inviable percentage
of an individual rose. 11-Multiplexer, as it turns out, rarely had invalidators, resulting
in only a negligible rise in inviable code.

With crossover only in viable code regions, the likelihood increases that an ances-
tor of inviable code is chosen for crossover, thus swapping out the entire inviable tree;
or that the invalidator itself is swapped out, thus making the inviable code viable once
again. Thus one should expect the percentage of inviable code to drop significantly
when denied crossover. Figures 7 and 8 show an unexpectedly strong drop: inviable
code is nearly held at to a constant percentage.

Figure 6 shows an interesting result: in the harshest Symbolic Regression exper-
iment, individuals with neutral crossover (at that point caused only by decimation)
were immediately terminated, yet decimation events continued to rise, as indicated by
the rise in neutral crossovers. This suggests that growth in decimated inviable code,
when it occurs, is also caused by overall tree growth, rather than the other way around.

One theoretically possible source of tree growth is an increase in neutral crossover
due to unoptimized code propagation. The idea here is that perhaps many unopti-
mized code subtrees are semantically identical, and so their propagation increases the
likelihood that crossover might accidentally trade two such subtrees, resulting in neu-
tral crossover; however in the experiments in Figure 6, such propagation was entirely
eliminated yet code continued to grow unabated.

7 Analysis

If not introns, then what is causing these trees to grow? Additional statistics gathered
from these results reveal interesting trends. For crossover events in the previous exper-
iments, the following data was gathered from the first parent:

• The depth of the crossover point chosen.
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• The size of the parent.

• The size of the subtree removed.

• The size of the subtree inserted.

• The number of times the child was later selected for crossover (its child survivabil-
ity). Note that this is not the fitness of the child; it is roughly equivalent to the
quality of the child relative to peers in its generation.

From this data was selected five generations’ slices of data to view: 4, 8, 16, 32, and
64. Each data slice is labeled by the generation in which survivability data was gathered
for each child, that is, when each child’s children were evaluated. For example, “gen-
eration 4” means that in generation 2 the original parent was evaluated, in generation
3 its child was evaluated, and in generation 4 the child’s children were evaluated.

If there is a positive relationship between child survivability and some factor in
code bloat, then the population should be expected to move towards increasing that
factor. The goal of this analysis is to compare candidate factors for tree bloat (parent
size, crossover point depth, size of removed and inserted subtrees) against their effect
on child survivability, with or without marking. Additionally, crossover point depth is
compared against parent tree size and against removed subtree size to gauge relation-
ships between them.

For each set of runs, nine subtables are presented showing regression analysis of
the data. Tables 5 and 6 show analysis of Symbolic Regression with and without invi-
able code restricted. Tables 7 and 8 show analysis of 11-Multiplexer with and without
inviable code restricted. Tables 9 and 10 show analysis of 6-Multiplexer with and with-
out inviable code restricted.

For each set of runs, the first subtable presents multiple regression results for child
survivability as a function of crossover point depth, parent tree size, removed subtree
size, and inserted subtree size. The second subtable presents multiple regression results
for child survivability as a function of crossover point depth, the log of parent tree size,
the log of removed subtree size, and the log of inserted subtree size. The reason for
the second table is to make certain that crossover point depth doesn’t get an unfair
advantage, if tree size is typically quadratic in depth. Both of these tables regress with
a Poisson distribution and logarithmic link function, because child survivability more
closely followed a Poisson curve than a normal curve. The tables are scaled with the
square root of Pearson’s χ2/DoF.

The third and fourth tables present simple regression results for parent tree size as
a function of tree depth, and removed subtree size as a function of tree depth, respec-
tively. These two tables regress with a normal distribution and a linear link function,
and are scaled by maximum likelihood. The final two tables in turn give simple re-
gression results for child survivability as a function of parent tree size and of removed
subtree size, showing these two factors independently rather than jointly as in the mul-
tiple regression tables. These last two tables regress with a Poisson distribution and
logarithmic link function, and are scaled with the square root of Pearson’s χ2/DoF.

Those estimates whose alpha values exceed 0.05 (the test value used) are marked
with asterisks. These estimates are statistically insignificant. Because of the high num-
ber of observations used (typically about 25,000), if an estimate’s alpha value did not
exceed 0.05, it was almost always less than 0.01 and usually much less than 0.0001. The
deviance per degree of freedom prior to scaling is also given. As can be seen, the data
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is overdispersed (it is usually much more or much less than 1.0). After scaling, the
deviance was consistently very close to 1.0.

There are two caveats which must be taken into consideration. First, because this
is a post-hoc analysis of the run data, the data slices are dependent from generation to
generation. This means that conservative analysis of this data would take into consid-
eration only the results for a single generation, as the other results are strongly tied to
that generation. I suggest considering either generation 8 or 16, because generation 4’s
results are probably too reflective of initialization phenomena (its evaluation occurred
only in generation 2), and generations later than 16 are probably not statistically rele-
vant for 6-Multiplexer due to the drop in sample size. Second, crossover point depth,
parent size, and removed subtree size are multicollinear, that is, there is a high corre-
lation among them — deeper crossover point depths are related to larger parents and
smaller removed subtrees.

Figures 9, 10, and 11 are provided to help visualize the data. For brevity, only
generation 16 is shown, though other plots are similar; for a complete collection of
plots, see (Luke, 2000b).

7.1 Results

Five features appear to be almost invariant. They are:

1. The strongest relationship with survivability is almost always its positive relation-
ship with crossover point depth, even when other factors are placed on a log scale.

2. There is consistently a positive relationship between parent tree size and child sur-
vivability.

3. There is consistently a negative relationship between removed subtree size and
survivability. But interestingly, this remains so even after marking. This effect is
always stronger than that of inserted subtree size, with or without marking.

4. There is consistently a positive relationship between crossover point depth and
parent tree size.

5. There is consistently a negative relationship between crossover point depth and
removed subtree size.

Surprisingly, in the Symbolic Regression domain there is also a consistent nega-
tive relationship between inserted subtree size and child survivability. However, in
the Multiplexer domains, there is only a weak positive relationship between inserted
subtree size and child survivability. One oddity in the multiple regression tables (the
first and second for each domain) is that when crossover point depth has a stronger
estimate than parent tree size, the partial estimate for parent tree size goes negative.
This doesn’t mean that parent tree size is negatively correlated with child survivability,
however. It is likely due to parent tree size being strongly multicollinear with crossover
point depth.

8 A Depth-based Theory of Tree Growth

The results presented suggest that removed subtree size and parent tree size only have
an indirect effect on child survivability in that all three are correlated with crossover
point depth. They in turn are also correlated with child tree size, completing the chain
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Child Survivability

Crossover/Mutation
Point Depth

Removed 
Subtree Size Parent Tree Size

Child Tree Size

Figure 2: Correlative relationships between features during genetic programming evo-
lution.

shown in Figure 2. The following model describes a functional relationship which ex-
plains this strong correlation between crossover point depth and child survivability.

In many evolutionary computation techniques, some components contribute more
to the fitness of an individual than other components do. Due to peculiarities in the
breeding operators in these techniques, components added to an individual are likely
to be added in such a way that they have less contribution, and thus have relatively
less effect on fitness. But removing some components from an individual runs the risk
of removing those components with significant contribution, and thus it can have a
dramatic effect on fitness. As an evolutionary computation run progresses, “changing
fitness” increasingly means destroying fitness — and thus there is a fitness bias towards
adding components versus removing components.

Unfortunately, the intron theories of code bloat have oversimplified this scenario,
partitioning individuals’ components into those which have an effect, and those which
have no effect. There is no recognition of the notion that effects differ in magnitude. But
the world is not this simple, and particularly not in genetic programmning.

In GP some nodes are more important than others. Removing some subtrees re-
sults in dramatic changes to an individual, while removing other subtrees results in
minor changes, or in the case of inviable code, inconsequential changes.

As discussed in the previous analysis, one strong predictor of node “importance”
is its depth within the tree. The reason for this seems straightforward: an s-expression is
evaluated starting at the root, and the return value is obtained from the root. Tree nodes
near the root often have a dramatic effect on the s-expression’s operation, whereas tree
nodes far away from the root have proportionally less effect, because their return val-
ues are decimated or they are rarely chosen from among a web of ancestor nodes’ if-
then constructs. Thus changing a tree node near the root can dramatically modify an
individual, but changing a tree node far from the root has a correspondingly lower
likelihood of modifying the individual by much.

Ordinarily this might be considered a good feature of genetic programming. The
principle of causality (Rechenberg, 1973; Rosca and Ballard, 1995) argues that for evolu-
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tionary computation it is good to have the magnitude of genotypical change positively
correlated with the magnitude in phenotypical (and fitness) change. Since deep nodes
often root small subtrees, depth seems likely to be related with the amount of geno-
typical change. Igel and Chellapilla (1999) analyzed causality in genetic programming
both with the depth of the crossover point and with a metric of difference between the
inserted and swapped out trees (called the edit distance), and found that while depth
had a strong causal relationship in an individual, the relationship for edit distance was
more tenuous.

However, this relationship between node depth and survivability can also explain
tree bloat. Note that causality only relates the magnitude of change, not its direction (for
better or for worse). But it is generally believed that in most common forms of genetic
programming, modifying the individual is destructive most of the time (see (Teller,
1996; Nordin and Banzhaf, 1995)). If a decrease in node depth decreases the magnitude
of change, and usually change is for the worse, then the expected survivability of a
child is better if deep nodes are chosen for crossover or mutation points.

Such a bias towards node depth might have two effects on tree growth. First, it
can promote larger parents, which have deeper crossover or mutation points. These
larger parents in turn tend to produce larger children. Second, deeper-rooted removed
subtrees are more likely to be small, but the inserted subtrees have no such size bias (a
generalization of the removal bias theory).

One expected result of this theory is the emergence of pseudoinviable code, subtree
areas for which crossover has a very low (but nonzero) probability of effecting an in-
dividual in a significant ways. The deeper a node is in the tree, the higher likelihood
its rooted subtree will be forced into pseudoinviable code by its parents and ancestors.
Since crossover in a pseudoinviable code region is unlikely to modify the individual by
much, it is at one end of the gamut of strength of relationship between tree depth and
survivability. Further, large trees would be expected to have correspondingly larger
amounts of pseudoinviable code, just as they are expected to have larger amounts of
inviable code. Both Blickle and Nordin et al noted the possible existence of pseudoin-
viable code (Blickle, 1996; Nordin et al., 1995). Smith and Harries (Smith and Harries,
1998) have recently performed experiments suggesting a strong relationship between
pseudoinviable code and code bloat. True inviable code may be viewed as simply the
most extreme end of the pseudoinviable spectrum.

Other effects might be explained by this theory. McPhee’s inc-dec and Smith
and Harries’s R2 experiments both present contrived but important examples of code
growth due to unoptimized code, but not due to neutral crossover — rather, trees seem
to be simply filling up with junk (McPhee and Miller, 1995; Smith and Harries, 1998).
As it turns out these experiments both appear to be arranged in such a way that deeper
crossover points are less likely to cause destruction of the individual; however this
effect deserves more examination.

Last, Langdon (2000) has noted that while tree depth appears to increase linearly
during the course of GP runs, node size tends to increase subquadratically. This can be
explained in two ways: either tree depth is driving tree size, or tree size is driving tree
depth. Since depth is increasing linearly with the progression of an evolutionary run,
the first of these two explanations seems the most intuitive.

9 Conclusions

Previous theories of code growth have suggested that the phenomenon is due to the
propagation of inviable code. But the experiments in this paper contradict this prevail-
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ing wisdom. After denying inviable code the ability to propagate, code growth actually
increases. Further, the uniform distribution of node invalidators throughout the evo-
lutionary run suggests that in fact not only is code growth not due to inviable code,
but that it’s the other way around. An increase in inviable code is an expected natural
result of code growth.

Statistics gathered from the experimental work in this study suggest a more gen-
eral explanation of code bloat: in evolutionary computation representations, some com-
ponents are more important to the survivability of the individual than other compo-
nents are. As it turns out, in GP this node-importance is strongly linked to node depth.
Deeper nodes are generally less important than ones closer to the root. This bias in tree
depth can result in a preference for larger parents (which beget larger children) and
also a preference for smaller removed subtrees (with no corresponding preference for
the size of replacing subtrees).

While genetic programming has the largest share of bloat papers, it turns out that
bloating is a serious problem for a number of other less-studied representations, from
neural networks to Pitt-approach rule systems. The depth-based node analysis pre-
sented in this paper is of course representation specific. But I believe that correlations
between overall component significance and bloating in individuals might explain phe-
nomena found in these other representations as well, and hope to explore this in future
work.

A An Intron Bestiary

What follows are interesting examples of inviable code and unoptimized code events.
This catalog is hardly complete; but it illustrates the most common cases.

A.1 Inviable Code

Inviable code is code which cannot contribute to an individual, no matter what it con-
sists of. Thus modification of this code, through subtree crossover or mutation, cannot
change the individual’s fitness assessment in any way. Two common reasons for in-
viable code are: because it is never executed; or because its return value is ignored.
Inviable code is often due to the presence of an invalidator, a chunk of code responsible
for nullifying the inviable code.

Sibling Interference This is the most common inviable code form, where an inval-
idator forces a sibling’s return value to be unused or causes it to be left unexecuted.
Some examples: (∗ (- x x) inviable), (or (or x (not x)) inviable), (if (and x (not x)) inviable always-

executed), (if inviable x x).

Co-inviable Code This unusual special case of sibling-interference inviable code
deserves mentioning. Here two invalidators effectively force each other to be inviable
code. For example in (∗ (- x x) (rlog (% x x))), both (- x x) and (rlog (% x x)) return 0.

Propagated Inviable Code A single invalidator sets off a chain of inviable-code
events. For example in (∗ inviable2 (∗ (- x x) inviable1)), inviable1 is nullified by the in-
validator (- x x) which returns 0, and inviable2 is in turn nullified by the propagated
invalidator (∗ (- x x) inviable1) which also returns 0. (- x x) is called a base invalidator.

Denial of Action In some domains, code can be made effectively inviable by tying
its viability to some event in the evaluation period which never occurs. For example, in
the code snippet (if-food-ahead inviable always-executed), the inviable code could be executed
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if there was ever food ahead, but as it turns out every time this food test was evaluated,
there is never food ahead.

Delay Inviable code can occur because by the time it is reached it is unneeded,
typically because the individual’s evaluation has ended. Such inviable code is often
highly dependent on execution order in the tree. For example, in some problems the
program is permitted to run only for some n time steps; if the tree consists of more than
n commands, then further nodes in the tree are ignored.

Remote Causes Inviable code may occur because an earlier-executed remote inval-
idator caused the code to be inviable when it is reached later in execution. This occurs
with domains which read and write to a global memory. For example, a subtree ex-
ecuted early on may execute (set-internal-state 1); a later-executed code snippet might
read (if (= 1 (get-internal-state)) always-executed inviable).

Decimation Parents and parents’ siblings conspire to eliminate the effect of an invi-
able subtree’s return value by dropping it below the effective precision of the computer
system’s data type. For example: (rlog (+ (sin inviable) (exp (exp 6)))) will return the same
value (about 403.43) regardless of the value of the inviable subtree, when using the Java
double type.

Conspired Invalidation Parents and parents’ siblings conspire to eliminate the ef-
fect of an inviable subtree’s return value by moving it beyond some boundary condi-
tion. For example, if my-log were defined to return 0 for any negative number, (my-log
(- (sin inviable) 1.0)) would always return 0. Another example occurs infrequently in the
Multiplexer domains: (and (not a0) (and inviable a0)).

Redundant Tests Nested if-statements can make it impossible for a subtree to ever
be evaluated. For example, (if-food-ahead evaluated-when-true (if-food-ahead inviable evaluated-

when-false))

Uncalled Automatically Defined Functions and Macros Some Genetic Program-
ming problems rely on trees with automatically defined functions (ADFs) or macros
(ADMs) which are called as subfunctions of the main tree. If an ADF/ADM tree is
never in fact called by the main program tree, then that ADF/ADM tree is inviable
code.

A.2 Unoptimized Code

Unoptimized code is code which is excessively redundant in form and can be intelli-
gently cleaned up without changing the operation of the individual. However, arbi-
trary modification of unoptimized code can change the individual’s operation. Thus
unoptimized code is viable.

Mutually Exclusive Parents A chain of parents which together form the identity
function on the data passed through them and eliminate each others’ side effects when
executed. For example, (not (not foo)) or (turn-left-then (turn-right-then foo)).

Redundant Subtrees Two subtrees return or perform exactly the same thing, and
so can be condensed into a single subtree. For example, (and (or x1 x2) (or x1 x2)).

Mutually Exclusive Subtrees Two subtrees cancel each others’ side effects. As in
(prog2 (prog2 turn-left turn-left) (prog2 turn-right turn-right)).
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Identity Conditions The return value of a subtree is worthless because it converts
its parent into the identity function and eliminates any side effects. Examples: (+ foo

0), (∗ foo 1), (set-internal-state (get-internal-state)), or (and foo bar), where bar always returns
true.

Other Unoptimized Code A variety of messy code structures can be cleaned up
through copy propagation, constant folding, common subexpression elimination, and
other code optimization procedures. For example: (+ 4.2 (+ 3.5 foo)). Strictly speaking
this is not unoptimized code as formally defined in this paper, since all elements in the
subtree do contribute, in some sense, to the function of the individual.
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H.-G., editors, GECCO-2000: Proceedings of the Genetic and Evolutionary Computation Conference,
pages 419–426. Morgan Kaufmann, San Fransisco.

Igel, C. and Chellapilla, K. (1999). Investigating the influence of depth and degree of genotypic
change on fitness in genetic programming. In Banzhaf, W., Daida, J., Eiben, A. E., Garzon, M. H.,
Honavar, V., Jakiela, M., and Smith, R. E., editors, Proceedings of the Genetic and Evolutionary Com-
putation Conference, volume 2, pages 1061–1068, Orlando, Florida, USA. Morgan Kaufmann.

Jakobi, N. (1995). Harnessing morphogenesis. In International Conference on Information Processing
in Cells and Tissues.

22 Evolutionary Computation Volume 11, Number 1



Modification Point Depth and Genome Growth

Jones, E. A. and Joines, W. T. (1999). Genetic design of electronic circuits. In Brave, S. and Wu,
A. S., editors, Late Breaking Papers at the 1999 Genetic and Evolutionary Computation Conference,
pages 125–133, Orlando, Florida, USA.

Kargupta, H. (1996). The gene expression messy genetic algorithm. In Proceedings of the IEEE
International Conference on Evolutionary Computation.

Keijzer, M. (1996). Efficiently representing populations in genetic programming. In Angeline,
P. J. and Kinnear, Jr., K. E., editors, Advances in Genetic Programming 2, pages 259–278. MIT Press,
Cambridge, MA, USA.

Kitano, H. (1990). Designing neural networks using a genetic algorithm with a graph generation
system. Complex Systems, 4:461–476.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA.

Koza, J. R., Bennett III, F. H., Hutchings, J. L., Bade, S. L., Keane, M. A., and Andre, D.
(1997a). Evolving sorting networks using genetic programming and rapidly reconfigurable field-
programmable gate arrays. In Higuchi, T., editor, Workshop on Evolvable Systems. International Joint
Conference on Artificial Intelligence, pages 27–32, Nagoya.

Koza, J. R., Bennett III, F. H., Lohn, J., Dunlap, F., Keane, M. A., and Andre, D. (1997b). Automated
synthesis of computational circuits using genetic programming. In Proceedings of the 1997 IEEE
International Conference on Evolutionary Computation, pages 447–452, Indianapolis. IEEE Press.

Koza, J. R. and Rice, J. P. (1991). Genetic generation of both the weights and architecture for a
neural network. In International Joint Conference on Neural Networks, IJCNN-91, volume 2, pages
397–404, Washington State Convention and Trade Center, Seattle, WA, USA. IEEE Computer
Society Press.

Langdon, W. B. (1998). The evolution of size in variable length representations. In 1998 IEEE
International Conference on Evolutionary Computation, pages 633–638, Anchorage, Alaska, USA.
IEEE Press.

Langdon, W. B. (2000). Quadratic bloat in genetic programming. In Whitley, D., Goldberg,
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Figure 3: Node Statistics for 50 Runs in the 6-Bit Multiplexer Domain.

26 Evolutionary Computation Volume 11, Number 1



Modification Point Depth and Genome Growth

11-Bit Multiplexer
Plain Inviable Code Restricted

M
ea

n
T

re
e

S
iz

e

0 10 20 30 40 50 60
Generation

200

400

600

800

1000

1200

1400

N
um

be
r

of
N

od
es

0 10 20 30 40 50 60
Generation

200

400

600

800

1000

1200

1400

N
um

be
r

of
N

od
es

M
ea

n
T

re
e

D
ep

th

0 10 20 30 40 50 60
Generation

20

40

60

80

100

T
re

e
D

ep
th

0 10 20 30 40 50 60
Generation

20

40

60

80

100

T
re

e
D

ep
th

B
es

t
F

it
n

es
s

S
o

F
a

r

0 10 20 30 40 50 60
Generation

200

400

600

800

1000

B
es

tF
itn

es
s

0 10 20 30 40 50 60
Generation

200

400

600

800

1000

B
es

tF
itn

es
s

N
eu

tr
a

l
C

ro
ss

o
v

er
s

0 10 20 30 40 50 60
Generation

100

200

300

400

500

N
um

be
r

in
P

op
ul

at
io

n

0 10 20 30 40 50 60
Generation

100

200

300

400

500

N
um

be
r

in
P

op
ul

at
io

n

Figure 4: Node Statistics for 50 Runs in the 11-Bit Multiplexer Domain
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Symbolic Regression (I)
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Figure 5: Node Statistics for 50 Runs in the Symbolic Regression Domain (Part I)
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Symbolic Regression (II)
Inviable Code and Inviable Code,

Phenotype-Identical Change Phenotype-Identical Change, and
Restricted Fitness-Identical Change Restricted
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Figure 6: Node Statistics for 50 Runs in the Symbolic Regression Domain (Part II)
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Figure 7: Inviable Code Statistics for 50 Runs in the 6-Bit and 11-Bit Multiplexer Do-
mains.
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Figure 8: Inviable Code Statistics for 50 Runs in the Symbolic Regression Domain.
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Legend. Child survivability (Y axis) is the number of times the child is selected in the next
generation. The crossover statistics (X axis) were first normalized by dividing by the mean.
All crossover statistics except crossover point depth were then transformed to a log scale.
Data was sorted and divided evenly into 50 bins by the crossover statistics variable. Points
show the mean of each bin.

Figure 9: Relationship between four crossover statistics and child survivability for the
Symbolic Regression domain, Generation 16, with or without permitting inviable code.
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Legend. Child survivability (Y axis) is the number of times the child is selected in the next
generation. The crossover statistics (X axis) were first normalized by dividing by the mean.
All crossover statistics except crossover point depth were then transformed to a log scale.
Data was sorted and divided evenly into 50 bins by the crossover statistics variable. Points
show the mean of each bin.

Figure 10: Relationship between four crossover statistics and child survivability for the
11-Multiplexer domain, Generation 16, with or without permitting inviable code.
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Legend. Child survivability (Y axis) is the number of times the child is selected in the next
generation. The crossover statistics (X axis) were first normalized by dividing by the mean.
All crossover statistics except crossover point depth were then transformed to a log scale.
Data was sorted and divided evenly into 50 bins by the crossover statistics variable. Points
show the mean of each bin.

Figure 11: Relationship between four crossover statistics and child survivability for the
6-Multiplexer domain, Generation 16, with or without permitting inviable code.
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Modification Point Depth and Genome Growth

Multiple Regression of Child Survivability
by Depth, Parent Size, Removed Size, Inserted Size

Gen Depth Parent Removed Inserted Intercept Scale Prescaled Dev/DF
4 0.1556 0.1438 -0.1481 -0.0671 0.5673 2.5249 4.7766
8 0.4381 -0.1031 -0.3130 -0.1895 0.6953 2.5954 4.3241
16 0.5521 *-0.0016 -0.1379 -0.0856 0.2393 2.3894 4.1211
32 0.4953 -0.2495 -0.1024 -0.0413 0.5091 2.2728 3.9419
64 0.4940 -0.2505 -0.0458 -0.0102 0.4548 2.1539 3.6412

Multiple Regression of Child Survivability
by Depth, Log(Parent Size), Log(Removed Size), Log(Inserted Size)

Gen Depth Parent Removed Inserted Intercept Scale Prescaled Dev/DF
4 *-0.0267 0.2467 -0.3306 -0.1730 0.5209 2.5304 4.6923
8 0.3593 *0.0249 -0.3715 -0.3140 -0.2328 2.4805 4.1844
16 0.5047 0.1144 -0.1811 -0.1596 -0.2547 2.3718 4.0341
32 0.4603 -0.2027 -0.1151 -0.0894 -0.1884 2.2398 3.9076
64 0.4637 -0.1719 -0.0497 -0.0385 *-0.0240 2.1594 3.6451

Regression of Removed Size
by Depth

Prescaled
Gen Depth Intercept Scale Dev/DF
4 -0.4196 0.4401 0.6013 0.3615
8 -0.5767 0.5275 0.4975 0.2475
16 -0.6683 0.6285 0.3994 0.1596
32 -0.5983 0.5530 0.4602 0.2118
64 -0.8792 0.6350 0.3985 0.1588

Regression of Parent Size
by Depth

Prescaled
Gen Depth Intercept Scale Dev/DF
4 0.5598 1.4181 1.2474 1.5562
8 0.4724 1.5763 1.2953 1.6778
16 0.3715 1.6683 1.6326 2.6655
32 0.4470 1.5983 2.2798 5.1979
64 0.3650 1.8792 2.9464 8.6818

Regression of Child Survivability
by Removed Size

Prescaled
Gen Removed Intercept Scale Dev/DF
4 -0.1562 0.8333 2.5491 4.8236
8 -0.4359 1.0207 2.6725 4.5604
16 -0.2166 *0.8623 2.4556 4.2020
32 -0.1467 0.8018 2.3111 4.0427
64 -0.0711 0.7480 2.1785 3.6854

Regression of Child Survivability
by Parent Size

Prescaled
Gen Parent Intercept Scale Dev/DF
4 0.1964 0.4864 2.5256 4.8236
8 0.1902 0.4960 2.5049 4.5604
16 0.4466 0.2222 2.4453 4.2020
32 0.1297 0.5608 2.3134 4.0427
64 0.1081 0.5838 2.1907 3.6854

Legend. Asterisks indicate statistically insignificant results (with an alpha value greater
than 0.05). Prescaled Dev/DF indicates the deviance of the model, divided by the degrees of
freedom, prior to scaling (at which time it approaches 1.0). Intercept and Scale are constants
in the model function.

Table 5: Exploratory Regression Analysis of the Symbolic Regression Domain
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Multiple Regression of Child Survivability
by Depth, Parent Size, Removed Size, Inserted Size

Gen Depth Parent Removed Inserted Intercept Scale Prescaled Dev/DF
4 0.1852 0.1104 -0.1153 -0.0304 0.5038 2.4793 4.7501
8 0.3745 -0.1022 -0.2140 -0.1825 0.7016 2.6143 4.5322
16 0.5354 -0.1691 -0.2463 -0.1884 0.5757 2.5345 4.2825
32 0.5448 -0.2539 -0.1559 -0.0504 0.4959 2.4962 4.4755
64 0.5411 -0.3333 -0.1243 -0.0266 0.5431 3.6327 4.5287

Multiple Regression of Child Survivability
by Depth, Log(Parent Size), Log(Removed Size), Log(Inserted Size)

Gen Depth Parent Removed Inserted Intercept Scale Prescaled Dev/DF
4 0.0432 0.2126 -0.2688 -0.1269 0.4752 2.4923 4.6827
8 0.2859 *0.0326 -0.3346 -0.3024 -0.1183 2.5732 4.3687
16 0.4931 -0.0801 -0.2429 -0.2409 -0.4383 2.4546 4.1566
32 0.4713 -0.1536 -0.1192 -0.0824 -0.2128 2.4493 4.4731
64 0.3858 -0.1967 -0.0836 -0.0593 -0.0720 2.4329 4.5663

Regression of Removed Size
by Depth

Prescaled
Gen Depth Intercept Scale Dev/DF
4 -0.3678 0.4869 0.6396 0.4091
8 -0.4633 0.5559 0.5659 0.3203
16 -0.5221 0.6192 0.4438 0.1970
32 -0.6351 0.5593 0.4396 0.1933
64 -0.8571 0.5276 0.4626 0.2140

Regression of Parent Size
by Depth

Prescaled
Gen Depth Intercept Scale Dev/DF
4 0.5128 1.3668 1.2846 1.6503
8 0.4441 1.4632 1.3062 1.7063
16 0.3808 1.5221 1.4837 2.2015
32 0.4407 1.6351 2.0503 4.2041
64 0.4724 1.8571 2.7484 7.5544

Regression of Child Survivability
by Removed Size

Prescaled
Gen Removed Intercept Scale Dev/DF
4 -0.1310 0.8113 2.5291 4.7757
8 -0.3078 0.9397 2.6339 4.7164
16 -0.3496 0.9487 2.5758 4.5311
32 -0.2108 0.8423 2.5156 4.6262
64 -0.1648 0.8008 2.6458 4.6847

Regression of Child Survivability
by Parent Size

Prescaled
Gen Parent Intercept Scale Dev/DF
4 0.1845 0.4980 2.5090 4.7757
8 0.1057 0.5850 2.5552 4.7164
16 0.2617 0.4215 2.5606 4.5311
32 0.1652 0.5238 2.5113 4.6262
64 0.0387 0.6542 2.4830 4.6847

Legend. Asterisks indicate statistically insignificant results (with an alpha value greater
than 0.05). Prescaled Dev/DF indicates the deviance of the model, divided by the degrees of
freedom, prior to scaling (at which time it approaches 1.0). Intercept and Scale are constants
in the model function.

Table 6: Exploratory Regression Analysis of the Symbolic Regression Domain with In-
viable Code Restricted
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Multiple Regression of Child Survivability
by Depth, Parent Size, Removed Size, Inserted Size

Gen Depth Parent Removed Inserted Intercept Scale Prescaled Dev/DF
4 0.5861 0.1121 -0.0398 0.0246 -0.0920 2.5291 4.5488
8 0.4123 -0.1078 -0.1912 0.0186 0.4810 2.6392 4.7157
16 0.5441 -0.2494 -0.1076 0.0230 0.4093 2.5156 4.5584
32 0.6007 -0.3066 -0.0558 0.0080 0.3795 2.3085 4.0362
64 0.4074 -0.2146 -0.0399 0.0045 0.4992 1.7202 2.5757

Multiple Regression of Child Survivability
by Depth, Log(Parent Size), Log(Removed Size), Log(Inserted Size)

Gen Depth Parent Removed Inserted Intercept Scale Prescaled Dev/DF
4 0.3234 0.2303 -0.1362 0.0655 0.3482 2.5313 4.5120
8 0.3871 -0.0521 -0.2092 0.0391 0.1029 2.5338 4.7306
16 0.5069 -0.1820 -0.1497 0.0494 0.0052 2.5002 4.5631
32 0.5804 -0.2442 -0.0749 0.0129 *-0.0456 2.3121 4.0489
64 0.4049 -0.2110 -0.0549 0.0096 *0.1672 1.7253 2.5829

Regression of Removed Size
by Depth

Prescaled
Gen Depth Intercept Scale Dev/DF
4 -0.9333 0.1310 0.6794 0.4616
8 -1.9229 0.6544 0.4121 0.1698
16 -1.3266 0.6905 0.3522 0.1241
32 -1.2333 0.7647 0.3140 0.0986
64 -1.0214 0.7370 0.3406 0.1160

Regression of Parent Size
by Depth

Prescaled
Gen Depth Intercept Scale Dev/DF
4 0.8690 1.9333 1.9655 3.8634
8 0.3456 2.9228 1.8325 3.3583
16 0.3095 2.3266 2.2633 5.1227
32 0.2353 2.2333 2.6967 7.2726
64 0.2630 2.0214 3.3274 11.0727

Regression of Child Survivability
by Removed Size

Prescaled
Gen Removed Intercept Scale Dev/DF
4 -0.1180 0.7919 2.5423 4.5681
8 -0.2623 0.8801 2.9196 4.8046
16 -0.1638 0.8123 2.5472 4.6313
32 -0.0943 0.7644 2.3266 4.0798
64 -0.0568 0.7372 1.7279 2.6056

Regression of Child Survivability
by Parent Size

Prescaled
Gen Parent Intercept Scale Dev/DF
4 0.3317 0.3172 2.5400 4.5681
8 *0.0427 0.6502 2.5471 4.8046
16 0.0978 0.5947 2.5107 4.6313
32 0.1269 0.5653 2.3316 4.0798
64 0.0813 0.6114 1.7373 2.6056

Legend. Asterisks indicate statistically insignificant results (with an alpha value greater
than 0.05). Prescaled Dev/DF indicates the deviance of the model, divided by the degrees of
freedom, prior to scaling (at which time it approaches 1.0). Intercept and Scale are constants
in the model function.

Table 7: Exploratory Regression Analysis of the 11-Multiplexer Domain
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Multiple Regression of Child Survivability
by Depth, Parent Size, Removed Size, Inserted Size

Gen Depth Parent Removed Inserted Intercept Scale Prescaled Dev/DF
4 0.6142 0.1166 -0.0278 0.0229 -0.1389 2.5311 4.5308
8 0.5249 -0.1686 -0.1463 0.0242 0.3794 2.5263 4.6687
16 0.4855 *-0.0550 -0.1137 0.0161 0.2904 2.4919 4.4912
32 0.5279 -0.2069 -0.0876 0.0113 0.3813 2.3063 4.0891
64 0.3863 -0.1271 -0.0262 0.0048 0.4279 1.5313 2.2049

Multiple Regression of Child Survivability
by Depth, Log(Parent Size), Log(Removed Size), Log(Inserted Size)

Gen Depth Parent Removed Inserted Intercept Scale Prescaled Dev/DF
4 0.3581 0.2324 -0.1158 0.0552 0.3156 2.5323 4.4940
8 0.4694 -0.0828 -0.1688 0.0535 0.0514 *2.5199 4.6876
16 0.4638 *0.0085 -0.1364 0.0296 0.0574 *2.4609 4.5007
32 0.5182 -0.1822 -0.1082 0.0236 -0.0058 *2.2999 4.0986
64 0.3775 -0.0902 -0.0405 0.0093 0.2307 1.5350 2.2102

Regression of Removed Size
by Depth

Prescaled
Gen Depth Intercept Scale Dev/DF
4 -0.9358 0.1403 0.6802 0.4627
8 -1.8267 0.5608 0.4471 0.1999
16 -1.5359 0.7067 0.3537 0.1251
32 -1.3886 0.7328 0.3229 0.1043
64 -1.0578 0.7406 0.3402 0.1157

Regression of Parent Size
by Depth

Prescaled
Gen Depth Intercept Scale Dev/DF
4 0.8596 1.9346 1.9473 3.7922
8 0.4392 2.8268 1.9132 3.6607
16 0.2933 2.5359 2.2467 5.0479
32 0.2672 2.3886 2.7406 7.5116
64 0.2594 2.0578 3.5214 12.4015

Regression of Child Survivability
by Removed Size

Prescaled
Gen Removed Intercept Scale Dev/DF
4 -0.1050 0.7821 2.5550 4.5492
8 -0.2377 0.8631 2.5900 4.7481
16 -0.1674 0.8137 2.5761 4.5432
32 -0.1254 0.7818 2.3253 4.1436
64 -0.0390 0.7249 1.5400 2.2196

Regression of Child Survivability
by Parent Size

Prescaled
Gen Parent Intercept Scale Dev/DF
4 0.3416 0.3051 2.5394 4.5492
8 0.0641 0.6285 2.5426 4.7481
16 0.2156 0.4740 2.4790 4.5432
32 0.1520 0.5397 2.3234 4.1436
64 0.1137 0.5786 1.5427 2.2196

Legend. Asterisks indicate statistically insignificant results (with an alpha value greater
than 0.05). Prescaled Dev/DF indicates the deviance of the model, divided by the degrees of
freedom, prior to scaling (at which time it approaches 1.0). Intercept and Scale are constants
in the model function.

Table 8: Exploratory Regression Analysis of the 11-Multiplexer Domain with Inviable
Code Restricted
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Multiple Regression of Child Survivability
by Depth, Parent Size, Removed Size, Inserted Size

Gen Depth Parent Removed Inserted Intercept Scale Prescaled Dev/DF
4 0.5116 0.1859 -0.0523 0.0155 -0.0573 *2.5139 4.5375
8 0.4647 -0.0611 -0.2028 0.0174 0.3778 2.5124 4.5441
16 0.5388 -0.2001 -0.1094 0.0201 0.3732 2.2129 3.7820
32 0.3184 *0.0054 -0.0741 *-0.0062 0.4066 1.1964 1.6350
64 0.1812 *-0.0404 *-0.0239 *-0.0069 0.5729 1.1427 1.4647

Multiple Regression of Child Survivability
by Depth, Log(Parent Size), Log(Removed Size), Log(Inserted Size)

Gen Depth Parent Removed Inserted Intercept Scale Prescaled Dev/DF
4 0.2670 0.2778 -0.1408 0.0370 0.3954 2.5195 4.4990
8 0.4367 *-0.0046 -0.2166 0.0415 0.0349 *2.4849 4.5585
16 0.5270 -0.2066 -0.1421 0.0341 -0.0182 *2.2104 3.7851
32 0.3295 *0.0067 -0.0647 *-0.0094 0.2120 1.1997 1.6559
64 0.1982 *-0.0652 *-0.0199 *-0.0191 0.3860 1.1435 1.4699

Regression of Removed Size
by Depth

Prescaled
Gen Depth Intercept Scale Dev/DF
4 -1.1544 0.1919 0.6789 0.4609
8 -2.0979 0.7001 0.4269 0.1822
16 -1.5757 0.7283 0.3136 0.0984
32 -1.0197 0.6739 0.4188 0.1757
64 -0.8889 0.5181 0.4527 0.2058

Regression of Parent Size
by Depth

Prescaled
Gen Depth Intercept Scale Dev/DF
4 0.8081 2.1546 1.9051 3.6297
8 0.2999 3.0979 1.9453 3.7844
16 0.2717 2.5757 2.2518 5.0715
32 0.3261 2.0197 2.8418 8.0866
64 0.4819 1.8889 3.6929 13.6913

Regression of Child Survivability
by Removed Size

Prescaled
Gen Removed Intercept Scale Dev/DF
4 -0.1222 0.7955 2.5341 4.5744
8 -0.2859 0.8870 2.5813 4.6319
16 -0.1664 0.8137 2.2360 3.8440
32 -0.0931 0.7621 1.2114 1.6701
64 -0.0300 0.7182 1.1386 1.4685

Regression of Child Survivability
by Parent Size

Prescaled
Gen Parent Intercept Scale Dev/DF
4 0.3478 0.3020 2.5127 4.5744
8 0.0805 0.6119 2.5005 4.6319
16 0.1431 0.5488 2.2333 3.8440
32 0.1890 0.5001 1.2181 1.6701
64 *0.0709 0.6215 1.1400 1.4685

Legend. Asterisks indicate statistically insignificant results (with an alpha value greater
than 0.05). Prescaled Dev/DF indicates the deviance of the model, divided by the degrees of
freedom, prior to scaling (at which time it approaches 1.0). Intercept and Scale are constants
in the model function.

Table 9: Exploratory Regression Analysis of the 6-Multiplexer Domain
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Multiple Regression of Child Survivability
by Depth, Parent Size, Removed Size, Inserted Size

Gen Depth Parent Removed Inserted Intercept Scale Prescaled Dev/DF
4 0.3015 0.2096 -0.0987 0.0402 0.1621 2.5107 4.5705
8 0.4823 -0.1285 -0.1643 0.0340 0.3750 2.5061 4.4502
16 0.4299 -0.1032 -0.1315 0.0250 0.3973 2.1435 3.6314
32 0.3006 -0.1207 -0.0388 0.0022 *0.5274 1.2459 1.7070
64 0.1119 *-0.0141 -0.0096 -0.0004 *0.6017 1.0760 1.3338

Multiple Regression of Child Survivability
by Depth, Log(Parent Size), Log(Removed Size), Log(Inserted Size)

Gen Depth Parent Removed Inserted Intercept Scale Prescaled Dev/DF
4 *0.0002 0.3357 -0.2323 0.0819 0.6526 2.5026 4.5083
8 0.4533 -0.0761 -0.1677 0.0624 0.0469 *2.4468 4.4621
16 0.4051 *-0.0514 -0.1427 0.0411 0.0894 2.1368 3.6399
32 0.2912 -0.0902 -0.0438 0.0046 *0.3039 1.2469 1.7163
64 0.1069 *-0.0004 -0.0168 -0.0023 *0.5364 1.0757 1.3341

Regression of Removed Size
by Depth

Prescaled
Gen Depth Intercept Scale Dev/DF
4 -1.0538 0.3131 0.7042 0.4960
8 -1.5924 0.6657 0.4458 0.1988
16 -1.3793 0.6800 0.3625 0.1315
32 -1.0265 0.6501 0.3980 0.1584
64 -0.6048 0.5823 0.4631 0.2145

Regression of Parent Size
by Depth

Prescaled
Gen Depth Intercept Scale Dev/DF
4 0.6869 2.0538 1.8672 3.4866
8 0.3343 2.5915 1.8532 3.4345
16 0.3200 2.3793 2.2845 5.2196
32 0.3499 2.0265 2.9996 8.9995
64 0.4177 1.6048 3.7426 14.0102

Regression of Child Survivability
by Removed Size

Prescaled
Gen Removed Intercept Scale Dev/DF
4 -0.1406 0.8073 2.5371 4.6397
8 -0.2555 0.8708 2.6376 4.5416
16 -0.1799 0.8178 2.1570 3.7110
32 -0.0546 0.7373 1.2483 1.7288
64 -0.0122 0.7044 1.0758 1.3357

Regression of Child Survivability
by Parent Size

Prescaled
Gen Parent Intercept Scale Dev/DF
4 0.3027 0.3566 2.5167 4.6397
8 0.0787 0.6138 2.4773 4.5416
16 0.1638 0.5272 2.1557 3.7110
32 0.0655 0.6272 1.2510 1.7288
64 0.0579 0.6347 1.0755 1.3357

Legend. Asterisks indicate statistically insignificant results (with an alpha value greater
than 0.05). Prescaled Dev/DF indicates the deviance of the model, divided by the degrees of
freedom, prior to scaling (at which time it approaches 1.0). Intercept and Scale are constants
in the model function.

Table 10: Exploratory Regression Analysis of the 6-Multiplexer Domain with Inviable
Code Restricted

40 Evolutionary Computation Volume 11, Number 1


