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Abstract
Estimation of Distribution Algorithms �EDA� have been proposed as an extension of
genetic algorithms. In this paper the relation of EDA to algorithms developed in statis-
tics, artificial intelligence, and statistical physics is explained. The major design issues
are discussed within a general interdisciplinary framework. It is shown that maximum
entropy approximations play a crucial role. All proposed algorithms try to minimize
the Kullback-Leibler divergence ��� between the unknown distribution ���� and a
class ���� of approximations. The Kullback-Leibler divergence is not symmetric. Ap-
proximations which suppose that the function to be optimized is additively decom-
posed (ADF) minimize ��������, the methods which learn the approximate model
from data minimize ��������. This minimization is identical to maximizing the log-
likelihood. In the paper three classes of algorithms are discussed. FDA uses the ADF
to compute an approximate factorization of the unknown distribution. The factors are
marginal distributions, whose values are computed from samples. The Bethe-Kikuchi
approach developed in statistical physics uses bi-variate or higher order marginals.
The values of the marginals are computed from a difficult minimization problem. The
third class learns the factorization from the data. We analyze our learning algorithm
LFDA in detail. It is shown that learning is faced with two problems: first, to detect
the important dependencies between the variables, and second, to create an acyclic
Bayesian network of bounded clique size.

Keywords
Estimation of distributions, Boltzmann distribution, factorization of distributions,
maximum entropy principle, minimum relative entropy, minimum log-likelihood ra-
tio, Bayesian information criterion, Bethe approximation.

1 Introduction

The Estimation of Distribution (EDA) family of population based search algorithms was
introduced by Mühlenbein and Paaß (1996) as an an extension of genetic algorithms.1

The following observations lead to this proposal. First, genetic algorithm have dif-
ficulties to optimize deceptive and non-separable functions, and second, the search
distributions implicitly generated by recombination and crossover can be extended to
include the correlation of the variables in samples of high fitness values.

1In (Mühlenbein and Paaß, 1996) they have been named conditional distribution algorithms.



EDA uses probability distributions derived from the function to be optimized to
generate search points instead of crossover and mutation as done by genetic algo-
rithms. The other parts of the algorithms are identical. In both cases a population
of points is used and points with good fitness are selected either to estimate a search
distribution or to be used for crossover and mutation.

In (Mühlenbein and Paaß, 1996) the distribution has been estimated by compu-
tationally intensive Monte Carlo methods. The distribution was restricted to tree-like
structures. It has been shown by Mühlenbein et al. (1999) that simpler and more effec-
tive methods exist which use a general factorization of the distribution.

The family of EDA algorithms can be understood and further developed without
the background of genetic algorithms. The problem to estimate empirical distributions
has been investigated independently in several scientific disciplines. In this paper we
will show how results in statistics, belief networks and statistical physics can be used
to understand and further develop EDA. In fact, an interdisciplinary research effort is
well under way which cross-fertilizes the different disciplines.

Unfortunately each discipline uses a different language, has a slightly different ap-
plication, and has developed different algorithms. In EDA we have to sample from a
distribution, in belief networks one computes a single marginal distribution ������ for
new evidence �, and statistical physicists want to compute the free energy of a Boltz-
mann distribution. Thus the algorithms developed for belief networks concentrate on
computing a single marginal distribution, whereas for EDA we want to sample ���� in
areas of high fitness values, i.e. we are interested in a sampling method which gener-
ates points with a high value of ����. All disciplines are interested in developing fast
algorithms to compute marginal distributions. The foundation of the theory is the same
for all disciplines. It is based on graphical models and their decomposition. We hope
that the readers are interested to accompany us on our journey through the different
disciplines. We will leave out a discussion of the approaches in probabilistic logic to
simplify the presentation.

Today two major branches of EDA can be distinguished. In the first branch the
factorization of the distribution is computed from the structure of the function to be
optimized, in the second one the structure is computed from the correlations of the
data. The second branch has been derived from the theory of belief networks (Jordan,
1999). For large real life applications often a hybrid between these two approaches is
most successful (Mühlenbein and Mahnig, 2002a).

The paper is intended as a short introduction to the theory of EDA. We will only
consider discrete variables. It is not intended as a survey of ongoing research. Here an
excellent overview is already available (Larrañaga and Lozano, 2002).

The outline of the paper is as follows. In section 2 the basic steps to derive the
Factorized Distribution Algorithm FDA are recapitulated. A factorization theorem will
be discussed which uses the structure of the function to be optimized to factor the
distribution. In section 2.2 the junction tree algorithm is described which computes an
exact factorization by decomposing graphical models. Unfortunately many important
problems do not allow an exact factorization useful for numerical computations. In
section 3 the estimation problem is generalized. Here the concept of maximum entropy
distributions is explained.

In section 4 the methods developed in statistical physics are described. In this
approach the marginals are not computed from data, but from the known expression
of the function. In section 5 the learning of models from samples of high fitness val-
ues is described. Then we compare the different approaches presented using a simple
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example. In section 7 our learning algorithm LFDA is analyzed and its behavior and
performance compared to FDA is investigated.

2 Factorization of the Search Distribution

EDA has been derived from a search distribution point of view. We just recapitulate
the major steps published in (Mühlenbein et al., 1999; Mühlenbein and Mahnig, 2000;
Mühlenbein and Mahnig, 2002a). We will use in the paper the following notation. Cap-
ital letters denote variables, lower cases instances of variables. If the distinction be-
tween variables and instances is not necessary, we will use lower case letters. Vectors
are denoted by �, a single variable by ��.
Let a function � � �� ���� be given. We consider the optimization problem

���� � ��	
������ (1)

A good candidate for optimization using a search distribution is the Boltzmann distri-
bution.

Definition 1. For � � � define the Boltzmann distribution2 of a function ���� as

����� ��
�������
�

������
��

������

�� ���
(2)

where �� ��� is the partition function. To simplify the notation � and/or � might be omitted.

The Boltzmann distribution concentrates with increasing � around the global op-
tima of the function. Obviously, the distribution converges for � �� to a distribution
where only the optima have a probability greater than 0 (Mühlenbein and Mahnig,
2002b). Therefore, if it were possible to sample efficiently from this distribution for
arbitrary �, optimization would be an easy task. But the computation of the partition
function needs an exponential effort for a problem of � variables. We have therefore
proposed an algorithm which incrementally computes the Boltzmann distribution from
empirical data using Boltzmann selection.

Definition 2. Given a distribution � and a selection parameter �, Boltzmann selection
calculates the distribution for selecting points according to

����� �
������������
� �����������

(3)

The following theorem is easy to prove.

Theorem 3. If ����� is a Boltzmann distribution, then ����� is a Boltzmann distribution with
inverse temperature ��� � �� � ���� � ����.

Algorithm 1 describes BEDA, the Boltzmann Estimated Distribution Algorithm.
BEDA is a conceptional algorithm, because the calculation of the distribution re-

quires a sum over exponentially many terms. In the next section we transform BEDA
into a practical numerical algorithm.

2The Boltzmann distribution is usually defined as ��
����
� �� . The term ���� is called the energy and

� � ��� the temperature. We use the inverse temperature � instead of the temperature.
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Algorithm 1: BEDA – Boltzmann Estimated Distribution Algorithm

1 � � �. Generate 	 points according to the uniform distribution
���
 �� with ���� � �.

2 do �
3 With a given ���� � �, let

����
 �� �
���
 �������������
�

���
 ������������
�

4 Generate 	 new points according to the distribution ���
 � � �� �
����
 ��.

5 � � � � �.
6 � until (stopping criterion reached)

2.1 Factorization of the distribution

In this section an efficient numerical algorithm is derived if the fitness function is addi-
tively decomposed.

Definition 4. Let �
 � � � 
 	 be index sets, � � ��
 � � � 
 ��. Let �� be functions depending
only on the variables �
 with � 	 �. Then

���� �

	�
���

������� (4)

is an additive decomposition of the fitness function (ADF).

Definition 5. Let an ADF be given. Then the graph �ADF
3 is defined as follows: The vertices

represent the variables of the ADF . Two vertices are connected by an arc iff the corresponding
variables are contained in a common sub-function.

Given an ADF we want to estimate the Boltzmann distribution (2) using a product
of marginals. We need the following sets:

Definition 6. Given �
 � � � 
 	, we define for � � �
 � � � 
 � the sets ��, �� and ��:

�� ��

��

��


 
 �� �� � 
 ����
 �� �� � � ���� (5)

We demand �	 � ��
 � � � 
 �� and set �� � �. In the theory of decomposable graphs, �� are
called histories, �� residuals and �� separators (Lauritzen, 1996).

The next definition is stated a bit informally.

Definition 7. A set of marginal distributions ������ 
���� is called consistent if the marginal
distributions fulfill the laws of probability, e.g.

�
���

���

������ 
���� � � (6)

�
���

������ 
���� � ������� (7)

3Xiang et al. (1997) call it a decomposable Markov graph.
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Proposition 8. Let a consistent set of marginal distributions ������ 
���� be given. If �� � �
then

����� �
�	

���
������� ����� (8)

defines a valid distribution (
�

����� � �). Furthermore

������ ����� � ������� �����
 � � �
 � � � � (9)

whereas in general
������ 
���� � ������� 
����
 � � �
 � � � � (10)

The proof follows from the definition of marginal probabilities. The proof of equa-
tion (9) is somewhat technical, but straightforward. The inequality (10) is often over-
looked. We need an additional constraint in order that also the marginal distributions
become equal. This has been proven by Mühlenbein et al. (1999).

Theorem 9 (Factorization Theorem). Let ���� �
�	

��� ������ be an additive decomposi-
tion. If

�� � �
 � � � 
 �� �� � � (11)
�� � � �� � � such that �� � 
 (12)

then

����� �
�	

���
������ ����� �

�	
��� ������ 
�����	

��� �������
(13)

There exists always a factorization fulfilling the assumptions of the factorization theo-
rem. We just mention

���� � ��������������������
 ��� � � � �������
 � � � 
 ����� (14)

But this factorization uses marginal distributions of size ����, thus the computation
is exponential in �. Therefore we are looking for factorizations where the size of the
marginals is bounded, independent of �.

Definition 10. The constraint defined by equation (12) is called the running intersection
property �RIP�. The factorization is polynomially bounded (PBF) if the size of the sets
���
 ��� is bounded by a constant independent of �.

The connection of the factorization theorem to research done in non-sequential
dynamic programming is not well known. If a factorization with RIP is possible, we
can compute the maximum directly. In fact, the following maximization theorem has
been proven earlier than the factorization theorem by Bertelé and Brioschi (1972).

Theorem 11 (Maximization Theorem). Let the assumptions of the factorization theorem be
fulfilled. If the factorization is polynomially bounded, then 
�� ����� and ��	
������� can
be computed recursively in polynomial time.

A proof of the theorem using graphical models can be found in Jordan (1999). The basic
idea is that maximization can be done in the same manner as marginalization. We have


��
���

����
 ������
 �� � 
��
��

����
 �� 
��
�

����
 ��
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For later use we just remark that any FDA factorization can be transformed into an
acyclic Bayesian network (acBN) (see equation (14)).

����� �

��
���

��������� (15)

where �� are called the parents of ��.
We next describe a well-known algorithm to obtain a factorization with marginals

of small size and fulfilling the RIP given an arbitrary graph.

2.2 Computing a factorization by junction trees

The algorithm is defined for any graphical models �, an example is �ADF� In order to
find the separators �� the method computes cliques and generates a junction tree � . A
junction tree is an undirected tree the nodes of which are clusters of variables. The
clusters satisfy the junction property: For any two clusters � and � and any cluster � on
the unique path between � and � in the junction tree

� � � � � (16)

The edges between the clusters are labeled with the intersection of the adjacent clusters;
we call these labels separating sets or separators.

Remark: The junction property is equivalent to the running intersection property (12).

A junction tree is constructed from the graphical model by the following steps:

Triangulating the graph �: A graph is triangulated if it contains no chord-less circle
with more than three vertices. An algorithm for adding the necessary edges is
described in (Huang and Darwiche, 1996).

Finding the cliques: A clique � in a graph is a maximal totally connected subgraph.
That means that in � every node is connected to every other node in �, and there
is no clique �� which contains �.

Generating the clusters: For each clique generate a cluster containing its variables.
This cluster will become a node of the junction tree � .

Building the junction tree: Find pairs of clusters with maximal intersection and con-
nect them. Label the edge with the separating set. Repeat this until the tree is
complete.

This results in a tree which fulfills the junction property. There is plenty of literature
available about this method, e. g. (Lauritzen, 1996; Huang and Darwiche, 1996; Jensen
and Jensen, 1994).

A simple example to demonstrate this method is a circular graph �. It can be
triangulated by connecting one node with all other nodes. The resulting junction tree
is shown for 8 nodes in figure 1. The distribution can be factored into the cliques given
by the clusters of the junction tree.

���� � ����
 ��
 �	�


�
���

���������
 �	� (17)
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�� ��

�	 ��

�
 ��

�� �

�����	 ���	 �����	

���	

���
�	 �����	

���	 ���	

����	 ��	 ����	

Figure 1: Graph model with triangulation and junction tree for a 1-D bi-variate circle.
The left figure shows the graph �; the dashed lines are inserted for the triangulation.
The cliques of the triangulated graph are the clusters of the junction tree � (right figure,
white boxes). The separators are the shaded boxes.

���� ���� ���� ����

���� ���� ���� ����

���� ���� ���� ����

���� ���� ���� ����

Figure 2: Graph model for a 2-D grid. The thick lines give a possible spanning tree

However, the junction tree contains non-local marginal distributions of order three.4

One can show that there exists no exact factorization of a 1-D circle using bi-variate
marginals only. For EDA this poses no problem in principle, because the marginals
can be computed from the selected sample. But for larger marginals more samples
are needed for a reliable estimate. If the graph contains many loops, the junction tree
might be difficult to compute or might contain marginals with an exponential number
of variables. We will investigate this problem for a 2-D grid.

2.3 The 2-D grid

Let there be a 2-D grid of variables ��
 , �
 � � �
 � � � 
 �. Let the fitness function be com-
posed of the sub-functions of pairs of neighboring variables, ��
 
 ����
 and ��
 
 ��
��.
The goal is to compute a factorized distribution which is a good approximation to the
true distribution.

An exact factorization can be found with a junction tree. The difficulty of the com-
putation lies in the triangulation of the graphical model. One valid triangulation uses

4Local marginals are defined in a 1-D neighborhood like ������	 ��	 �����
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�� �� ��

�� � ��

�
 �	 ��

�� �� ��

�� � ��

�
 �	 ��

Figure 3: A �� � grid and its factorization using (19).

the rows of the grid. Each variable is connected with all variables in the same row and
the neighboring rows. This adds ���� edges to the graph. The cliques in the junction
tree consist of pairs of neighboring rows and have size ��. Thus the exact factorization
is not polynomially bounded.

Therefore it is advisable to look for approximations. A very straightforward ap-
proximation is to leave out some of the marginals and build a spanning tree of the grid.
This could be the vertical edges in the first column and all the horizontal edges, forming
a big “E” (see thick lines in figure 2).

Given this subset of the edges and disregarding the rest, we can define the follow-
ing distribution:

���� � �����
 ����

����
���

������������

��
���

����

��

����
�����
� (18)

This is a valid probability distribution insofar as it sums up to � and complies with the
regarded marginals. But obviously the choice of some marginals, while abandoning the
rest, retains the stain of arbitrariness. Another possibility which regards all the given
marginals, consists of combining blocks of four variables ���
 
 ����
 
 ��
��
 ����
���.
The complete distribution can then be built up by:

���� � �����
 ���
 ���
 ����
����
���

�������
 ���������
 ����

����

��

����
��
 ��
�����
 
 ��
�
����
���

����

��

������
�����
 
 ����
 
 ��
��� (19)

However, the factorization (19) violates the running intersection property (12). It
reproduces the given marginals only in the first tetra-variate row and column, but not
in the areas where the running intersection property is violated. For simplicity we
assume a � � � grid. For abbreviation, we enumerate the variables with � through �
(figure 3). We can calculate the marginal distribution ����
 ��� as follows:
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����
 ��� �
�
����

������
 ��
 �	�
�
��

���	���
 ��
�
��

�������
 ������
 ��
 ��

�
�
����

������
 ��
 �	�
�
��

���	���
 ������
 �
 ��� (20)

�
�
����

������
 ��
 �	����
 ��
 �	� (21)

� ����
 ���

The approximations (20) and (21) would be correct if

�������
 �� � �������
 ��
 ��

���	���
 �� � ���	���
 �
 ���

However, these equations cannot be deduced from the graphical model. The first
approximation, for instance, is only true if �� and �� are conditionally independent
given ���
 ��. But this is not the case. There exists a path between �� and �� which
does not have �� or � as a node.
The optimal decomposition of a grid has already been investigated for non-serial dy-
namic programming by Martelli and Montari (1972). We next describe our factorized
distribution algorithm FDA which also works with approximate factorizations.

2.4 The Factorized Distribution Algorithm FDA

If the factorization violates the assumption of the factorization theorem, then non-serial
dynamic programming does not work. But an algorithm which estimates the marginals
from samples might still find the optimum. One only has to compute a good approxi-
mate factorization given the graph �ADF. We first describe our algorithm FDA.

Algorithm 2: FDA – Factorized Distribution Algorithm

1 Calculate �� and �� by the Sub-function Merger Algorithm.
2 � � �. Generate an initial population with 	 individuals from the

uniform distribution.
3 do �
4 Select � � 	 individuals using Boltzmann selectiona (see Def.

2).
5 Estimate the conditional probabilities ����� ���� 
 �� from the se-

lected points.
6 Generate new points according to ���
 � � �� �

�	
��� ����� ���� 
 ��.

7 � � � � �.
8 � until (stopping criterion reached)

aThe algorithm works with any selection method

We next describe the sub-function merger algorithm which computes the FDA fac-
torization. Let us first discuss the assumption �� � � of the factorization theorem. This
assumption is violated already for the loop

� � ��
 ��
 � � ��
 ��
 � � ��
 ��
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All possible sequences end in �� � � because the variables of the sub-function left
are already contained in the two previous sets. One possibility to solve this problem
is to choose only a subset of the � and disregard the others; in our example, we can
use the factorization ���� � ����
 ����������� using � and �. An exact factorization
is ���� � ����
 ����������
 ���. This factorization will be generated if the two sub-
functions � and � are merged. This observation leads to the idea to compute approx-
imate factorizations by merging of sub-functions5.

Algorithm 3: Sub-function Merger

1 � � ��
 � � � 
 	�

2 � � �

3 while ��
 � ��
 � � � 
 �� do �
4 Chose an � 	 � to be added
5 � � � 
 ���

6 Let the indices of the new variables in � be �� � ���
 � � � 
 ���

7 for � � � to  do �

8 Æ� � �� 	 ��
������ 
 ���� 	 ���� �

9 �

10 for � � � to  do �
11 if exists �� � � with Æ� � Æ�� and ��� not marked superfluous
12 Æ�� � Æ�� � ����

13 Mark �� superfluous
14 �

15 for � � � to  do �
16 if not �� superfluous
17 �
 � Æ� � ���
 � � � 
 ���

18 � � � � �

19 �

20 �

A good merging heuristic tries to minimize the number of mergers but simultane-
ously to use all dependencies in �ADF. Thus the heuristic generates graphs with �� � �
which violate the RIP only in a few regions.

Algorithm 3 describes our heuristic. The idea of the sub-function merger algorithm
is that each new variable is included in a set together with the previous variables on
which it depends. However, if another variable depends on a superset of variables, the
two sets are merged. The algorithm calculates ��
 , ��
 and ��
 analogous to (5).

This sub-function merger algorithm might still compute too large cliques. There-
fore a cut parameter � is needed which bounds the clique size. If the size of a clique
becomes larger than � our implementation will randomly leave out arcs from ���� .

Our presentation of the sub-function merger algorithm has been very short. The
interested reader is referred to Bertelé and Brioschi (1972) for an in depth discussion of
different fusion and folding heuristics. In the area of Bayesian networks, the problem

5(Bertelé and Brioschi, 1972) have called it fusion.
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� � ��, 	 � ��
Gen Max prob Opt prob
1 ��� � ���� ��� � ���


2 ��� � ���� ��� � ����

3 ��� � ���� ��� � ���

4 ��� � ���� ��� � ����

5 ��� � ���� ��� � ����

6 ��� � ���� ��� � ����

7 ��� � ���� ��� � ����

� � ��, 	 � ��
Gen Max prob Opt prob
1 ��� � ����� ��� � �����

2 ��� � ����� ��� � �����

3 ��� � ���	 ��� � �����

4 ��� � ���� ��� � ���


5 ��� � ��� ��� � ���

6 ��� � ���� ��� � ����

7 ��� � ���� ��� � ����

Table 1: Runs of FDA with truncation selection (! � ���) on a separable function
(deceptive-3). For each generation, the probabilities of the most probable configura-
tion and of the optimum are shown.

has been investigated by Almond (1995).
If the conditions of the factorization theorem are fulfilled, the convergence proof

of BEDA is valid for FDA, too. Since FDA uses finite samples of points to estimate the
conditional probabilities, convergence to the optimum will depend on the size of the
sample. For small sample sizes the convergence rate is higher if a number of steps with
low selection is used instead of just one step using strong selection. Thus this method
is numerically more efficient than to use a very large sample size and strong selection.

Table 1 gives some numerical results. For � � �� the probability to generate the
maximum increases from about ���
 to ����, and from ����� to ���� for � � ��. Note
that in the first generations the maximum of the estimated probability is not achieved
by the maximum of the function.

FDA has experimentally proven to be very successful on a number of functions
where standard genetic algorithms fail to find the global optimum. In (Mühlenbein
and Mahnig, 1999) the scaling behavior for various test functions has been studied. For
recent surveys the reader is referred to (Mühlenbein and Mahnig, 2002a, 2003).

3 The maximum entropy principle

FDA uses marginals for a factorization ���� which estimates the unknown distribution.
This problem can be formulated more general.

Problem
Given a set of consistent marginal distributions ������ from an unknown distribution compute
a distribution which satisfies the marginals.

If only a small number of marginals is given the problem is under-specified. Conse-
quently, for incomplete specifications the missing information must be added by some
automatic completion procedure. This is achieved by the maximum entropy principle.
Let us recall

Definition 12. The entropy (Cover and Thomas, 1989) of a distribution is defined by

"��� � �
�
�

���� �������� (22)

Maximum entropy principle (MaxEnt): Find the maximum entropy distribution ����
which satisfies the given marginals.
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The maximum entropy principle formulates the principle of indifference. If no constraints
are specified, the uniform random distribution is assumed. MaxEnt has a long history
in physics and probabilistic logic. The interested reader is referred to (Jaynes, 1957,
1978). MaxEnt is especially attractive because there exists a constructive way to obtain
the solution. The following important theorem holds:
Theorem 13. If the given marginals are consistent then there exists a unique distribution
���� of maximum entropy which satisfies the marginals. The distribution can be obtained by
Iterative Proportional Fitting (IPF).

IPF iteratively computes a distribution �� ��� from the given marginals ������, � �
�
 � � � 
 #, where �� is a sub-vector of � and ! � �
 �
 �
 � � � is the iteration index. Let �
be the dimension of � and �� be the dimension of ��. ���� is the uniform distribution.
The update formula is

�� ������� � �� ���
�������

���������	

�� ���
��
(23)

with � � ��! � �� 
�� #� � �.
The proof that IPF converges against the maximum entropy solution was first

tried by Kullback (1968), but was faulty. The correct proof in a most general measure-
theoretic framework was given in (Csiszár, 1975). Since the distribution �, which has
to be stored and updated in every time step, has exponential size, this implementation
takes exponential time and space.

We next connect the solution given by the factorization theorem with the MaxEnt
solution.

Theorem 14. Let consistent marginal distributions ������ be given. Let the assumptions of
the factorization theorem be fulfilled. Then the factorization

����� �
�	

���
������ �����

is the MaxEnt solution.

Proof. Use IPF to compute the MaxEnt solution. Apply the junction tree algorithm.
Using these cliques one can show that IPF converges in just one sweep.

Remark: This theorem has important implications. It shows that all factorizations com-
puted by the the junction tree algorithm generate the same distribution, namely the
unique MaxEnt solution.

For many problems IPF cannot be performed in polynomial time. But IPF can be
easily used locally to estimate higher order marginals from lower marginals computed
from data. Thus it might be advantageous to compute only marginals of low order
from the data, but use a factorization containing higher order marginals. The higher
order marginals can be computed by IPF. A confirmation of this result can be found in
(Ochoa et al., 2003). In this paper the structure is learned from the data. The structure
is restricted to singly connected poly-trees. The poly-tree is constructed by bi-variates
only. For sampling the junction tree is used. The higher order marginals are computed
from the bi-variates using IPF. This algorithm performs by far better than computing
the higher order marginals directly from the data.

Optimization problems which have a polynomially bounded factorization fulfill-
ing RIP can be solved in polynomial time. But this is a sufficient condition, not a necessary
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condition. Many problems do not admit a PBF fulfilling RIP, but an approximate factor-
ization might still lead to the optimum. Our results obtained so far can be formulated
in a conjecture.

Conjecture: In the class of ADF’s with non-polynomially bounded factorization there exist
instances which can only be solved in exponential time. But the number of instances which can
be solved polynomially seems to be very large.

Example:

���� �

��
���

��

���� �

��
���

�� �

��
���

��

Both problems do not admit a polynomially bounded exact factorization. But
whereas the first problem can only be solved in exponential time, the second problem
can be solved by a simple univariate approximation:

���� �

��
���

�����

Let us summarize the results: For all sets of consistent marginal distributions, there
exists a unique MaxEnt distribution. If the graph corresponding to the marginal distributions
admits a junction tree with polynomially bounded clique sizes, then the MaxEnt solution can
be computed in polynomial time. If the graph does not admit a bounded junction tree, then
the known algorithm (IPF) to compute the MaxEnt solution is exponential in the number of
vertices. Nevertheless, approximate factorizations might still lead to the optimum.

The last observation points into the direction to proceed – one should aim to com-
pute a good approximate factorization. Here two approaches are possible.

� If the ADF is explicitly given, compute a factorization which leads to a good ap-
proximation of the true distribution. This method is used by FDA.

� If only data points are given, compute a good factorization from the selected set of
points (“learning a model”).

The first approach has already been discussed. Before we describe the second ap-
proach, we discuss the methods pursued in statistical physics. They belong to the first
class, but the marginals are not computed from sampling.

4 Computing approximate factorizations in statistical physics

We discuss the method using an important example, the 2-D Ising model. Each cell of
the grid, called spin , is in one of two states, �� or ��. The cell is influenced by the
four neighbors only. It is important to note (at least for a computer scientist) that Ising
did not specify any dynamics. Instead Ising assumed that the system behaves according
to a stationary distribution which is given by the Boltzmann distribution

����� �
�

���

��
�

��
�
���
���
�

�
�
�����
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���
 are the coupling constants. ��
 �� denotes a neighboring pair. For all non-neighbors,
we can set ���
 � �. In particular, without loss of generality, we set ���� � �, because this
adds only a constant, which cancels out with ���.

Thus we again encounter the problem to approximate a Boltzmann distribution. Using
� � ��� � � we can change the variables to �� 	 ��
 ��. We obtain

����� �
�

��

��
�

��
� ��
���
�
�

� ���� (24)

��
 � � ���
 (25)

�� � � ��� � �
�



�
���
 � ��
�

�
(26)

and a different partition function ��.
In statistical physics the maximum entropy principle is extended because addi-

tional information is available. Instead of minimizing the distance to the uniform ran-
dom distribution (this is another formulation of MaxEnt), the distance to the Boltzmann
distribution is minimized. As distance measure the Kullback-Leibler divergence is used.
Definition 15. The Kullback-Leibler divergence (KLD) between two distributions is defined by

#$%������ �
�
�

���� ��
����

����
(27)

Note that KLD is not symmetric! Thus we have two choices.

Minimum relative entropy principle (MinRel) Given a set of consistent marginal distri-
butions, find a distribution q with these marginals which minimizes #$%������ to the target
distribution ����.

Remark: If ���� is the uniform random distribution, then MinRel is identical to MaxEnt.
This justifies the above definition. But from a mathematical point of view, it is also
possible to minimize the complementary divergence #$%������ instead. Cover and
Thomas (1989) (p. 18) call #$%������ the expected logarithm of the likelihood ratio. It
is a measure of the inefficiency of assuming � when the true distribution is �. It is
connected to the description length. If we knew � we could construct a code with
average description length "���. If, instead, we used the code for distribution �, we
would need "��� � #$%������ bits on the average to describe the random variable.
Thus the following principle is also justified:

Minimum expected log-likelihood ratio principle (MinLike) Given a set of consistent
marginal distributions, find a distribution q with these marginals which minimizes #$%������
to the target distribution ����.

If � is the uniform random distribution, then MinLike minimizes
�

� �� ����. This
is not the entropy of ����. The MinLike principle will be later used for learning Bayesian
networks.

In physics MinRel is used. Let us now introduce some physical terms. This is not
necessary, but it will help the reader to understand the statistical physics papers better.
Definition 16. The average energy & and Gibbs free energy � are defined by

&��� � �
�
�

�������� (28)

���� � &����"��� (29)
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We can set � � �. Then we obtain

#$%������ � &����"��� � �� �� (30)

#$% � � will be achieved for ���� � ����. This gives the minimal value of ���� �
� �� �. This leads to the idea to minimize ���� for a class of distributions �. This
means we have to compute &��� and "���. The computation of &��� is easy because
the following theorem holds.

Theorem 17. (Mühlenbein and Mahnig, 2002a) : Let ' � ��
 � � � ��. Let � � ' be a multi-
index. Then every binary function can be written as

���� �
�
���

���� (31)

Furthermore, the average of � with respect to a distribution ���� is given by

(���� �
�
�

�������� �
�
���

���� (32)

where �� is the marginal distribution �� �� ��)� � ��� 	 �

The above theorem can easily be applied to the Ising problem, and more general to
ADF’s defined on grids. Thus &��� can efficiently be computed, but the computation
of "��� is more difficult. We will discuss two approximations , the first one uses uni-
variate marginals and the second one bi-variate marginals.

4.1 The mean-field approximation

Let us assume that a product distribution is given.

���� �

��
���

����� (33)

Then we can compute its entropy

"��� � �
�
�

��
���

�����

��

��

�� ���
�

� �
�
��

����� �� ������
�

������

�
���

�����
�

��

�� ���
�

� �
��
���

�
��

����� �� �����

We can now try to find a local minimum by setting the derivative of KLD equal to
zero, using the uni-variates as variables. We abbreviate �� � ���� � ��

Theorem 18. The mean-field approximation minimizes the Kullback-Leibler divergence to the
Boltzmann distribution. The local minima of the divergence are given by the nonlinear equation

��� �
�

� � �
��
��

(34)
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Proof. From (30) we obtain

*#$%

*��
� ��

��
�� ��

�
*&

*��
� � (35)

The solution gives (34).

In (35) the derivative of the average energy &��� enters. From theorem 17 we
obtain for � � �

&��� � �
�
��
�

��
���
 �
�
�

���� (36)

Taking the derivative gives

��� �
�

� � ��
�


 ������
��
���
���
(37)

This equation can be solved by iteration.

Remark: In the mean-field approximation the univariate marginals are considered to
be variables. The marginals are computed from (37). ���� is an upper bound of � �� �.
The uni-variate approximation UMDA (Mühlenbein and Mahnig, 2001) computes the
marginals from the samples. It has to be investigated if the additional computational
effort needed for the mean-field approach pays off.
We next extend the mean-field approach to higher order marginals.

4.2 Bethe-Kikuchi approximation and the FDA factorization

An obvious extension of the mean-field approach is the use of higher order marginals.
This has been done by Bethe (1935) using bi-variate marginals and Kikuchi (1951) for
higher order marginals. The interested reader is referred to Yedidia et al. (2001) for the
original statistical physics approach. A state-of the art report has recently been written
by the same authors (Yedidia et al., 2004).

The approximations of Bethe-Kikuchi may contain loops if �ADF contains loops.
Therefore these approximations are not sufficient to sample from a distribution as is
needed for our optimization problem. Therefore we decided to use our FDA factoriza-
tion as an approximation instead. This factorization does not contain cycles. For the
FDA factorization ���� �

�	
��� ������ ����� we have

"��� � �
��
���

�
���

���

����� 
���� �� ������ ����� (38)

The proof is based on marginalization and left to the reader. But from equation (9) we
know that ����� 
���� � ������ 
���� if the RIP is violated. Therefore we approximate

"��� � �
��
���

�
���

���

������������� ����� �� ������ ����� (39)

&��� can be computed using (32). We approximate the true marginals as before
by setting ����� 
���� � ������ 
���� . Having approximations of &��� and "��� we can
minimize ���� as before. For the minimization the marginals �����
 �
� are considered
to be variables. The minimization is very difficult, because the variables are not inde-
pendent, but the marginals have to be consistent. The minimization becomes easier
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if the number of variables can be reduced substantially, e.g. the unknown Boltzmann
distribution is homogenous.
We can summarize the major points of the Bethe-Kikuchi approximation:
The energy function is explicitly given. The marginals used for the factorization are not com-
puted from a sample, but are determined by computing a local minimum of the Kullback-Leibler
divergence to the Boltzmann distribution. For the 2-D grid ���� can be computed only approx-
imatively, therefore the goodness of the approximation cannot be assessed theoretically.

To our knowledge there exists no computer implementation of the full Bethe-
Kikuchi method. Yedidia et al. (2004) have recently shown that loopy belief propa-
gation converges to local minima of the approximation of ����, if it converges at all.
We will implement our proposal in the near future.

We next turn to an approach which uses only samples of good fitness values. This
approach has first been investigated in artificial intelligence. It is called learning of the
model (Jordan, 1999).

5 Learning a Bayesian network from data

This section will be very brief, compared to the difficulty of the subject. An excellent in-
depth discussion can be found in (Larrañaga and Lozano, 2002). We will just motivate
some of the major design decisions. Let ���� be the true distribution. The learning
algorithm uses acyclic Bayesian networks (acBN) as models.

���� �

��
���

��������� (40)

�� are called the parents of )�, ��������� is a numerical approximation of the true condi-
tional marginal ��������. If the running intersection property is fulfilled, the Bayesian
network is singly connected. If the number of the parents ���� is bounded by a constant
independent from �, we say the Bayesian network is polynomially bounded (PBB).

Both the MaxEnt and the MinRel principle assume that a fixed set of marginal dis-
tributions is given. But if the data is provided by a sample, we can choose which
marginal distributions should be used in order to obtain a Bayesian network which
reproduces the data accurately. This is called model selection.

Therefore we have to deal with the problem how to choose the appropriate model. This
problem can be solved in the following way. Let + be the set of all possible distributions
� defined by the Bayesian networks considered. (Because of the efficiency the number
of parents is bound usually by a small number.
We first compute the average of �� � over the true distribution �

(��� �� �
�
�

���� �� ���� (41)

We have
(��� �� � �"����#$%������ (42)

Therefore the minimization of #$%������ in + is equivalent to maximization of (��� ��.
The next proposition shows that (��� �� can be computed exactly, in contrast to ����
which is used for the MinRel method.
Proposition 19. For the distribution ���� �

��
��� ��������� we have

(��� �� �

��
���

�
����

����
 ��� �� ��������� (43)
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Proof.

�
�

���� �� ���� �
�
�

����

��
���

�� ���������

�

��
���

�
����

����
 ��� �� ���������

Equation (43) can be approximated using a finite sample by setting ����
 ��� �
�����
 ���. We introduce the following notation. Let 	 denote the size of the sample. Let
	�
� denote the number of instances with �� � � and �� � �, where the states of �� are
numbered � � � � �	��	. Let 	�
 �

�
� 	�
� . We can now approximate

����� � ���� � �� �
	�
�

	�


(44)

���� � �
 �� � �� � � 

�
�

	�
�

	
(45)

(��� �� � � 

�
�

�
	(� ��� �� �

��
���

��	���

��

��
���

	�
�

	
��

	�
�

	�




� (46)

Thus we have arrived at the following principle

Finite sample MaxLike principle (FinMaxLike)
Maximize in the class of Bayesian networks +

������(� ��� �� �

��
���

��	���

��

��
���

	�
�

	
��

	�
�

	�


(47)

FinMaxLike can also be derived from the maximum log-likelihood principle.
Proposition 20. Let  ���%� be the log-likelihood of the data given graph �. Then

 ���%� � 	 �(��� �� (48)

Proof. Let % � ���
 � � � 
���. Then the likelihood of % is given by

$���%� �

��
���

������� �

��
���

��
���

���������� (49)

Therefore we obtain

 ���%� � �� $���%� �

��
���

��
���

�� ����������

�

��
���

��
���

�� ����������

�
��
���

��	���

��

��
���

	�
� ��
	�
�

	�
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For given 	 maximizing (��� �� gives the same result as maximizing  ���%�. But
this principle is not yet sufficient for practical computations. ,�����$��� does not
prefer exact models of small complexity (small number of variables) to exact models of
large complexity. This can be seen as follows. If we approximate �����
 ��� � ����
 ���,
then we obtain

(��� �� �

��
���

��
����

����
 ��� ��
����
 ���

����������
�
�
��

����� �� �����


(50)

The first term is called mutual information (Cover and Thomas, 1989).

'�) � - � �
�
��

���
 .� ��
���
 .�

������.�
(51)

If ) and - are independent, we have '�) � - � � �. Using the mutual information we
obtain

(��� �� �

��
���

�'�)�� ����"������� (52)

(��� �� remains unchanged if a vertex between two independent variables is inserted.
In order to solve this over-fitting problem, we need a criterion which maximizes the log-
likelihood and minimizes the complexity. Such a criterion can be derived using Bayesian
principles or a concept called the minimum description length MDL. The interested reader
is referred to (Jordan, 1999). One of the most popular criterion has been derived by
Schwarz (1978). It has been called the Bayesian Information Criterion BIC.
Definition 21. Let / be the degrees of freedom of the marginal distributions defined by the
graph �. Then the weighted BIC measure is defined by

0'�� � 	 �(��� ��� 1 �� 	 � /

It has been shown that �0'� � �	 �(��� �� � 1 ���	� �/ is asymptotically equivalent
to the minimum description length. Schwarz (1978) computed 1 � ��� as the best
weighting factor for 	 ��.

The 0'� criterion can be used to construct a Bayesian network. Basically there
are two approaches. The first one starts with an empty network and adds arcs between
dependent variables, the second one starts with the fully connected network and deletes
arcs between independent variables. In most implementations the first approach is used
together with a simple greedy heuristic for adding a single arc at each step. The reader
is referred to (Larrañaga and Lozano, 2002; Mühlenbein and Mahnig, 1999). The quality
of both approaches depends on a good estimate of the mutual information, the heuristic to
construct the network, and the weighting factor.

These topics will be shortly investigated next. A detailed report will be available
soon.

6 A comparison of the approaches

In this section we will discuss the three different methods presented in this paper -
MaxEnt, MinRel, and MinLike. We restrict the discussion to problems where an addi-
tive decomposed function (ADF) is given.

FDA uses a factorization defined by equation (13). If the factorization fulfills the
running intersection property it follows from the factorization theorem that the factor-
ization gives the true distribution. But in general, the factorization will not fulfill the
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RIP. �FDA can easily be transformed into an acyclic Bayesian network. This class is
used by LFDA. Therefore FDA and LFDA use the same class of graphical models, only
the computation of the graph is different.

The approximations originally proposed by Bethe-Kikuchi contain �ADF. But they
compute only the marginals, not the whole distribution. Let us discuss the methods
using a simple example.
Example:

���� � ������� � ������� � ������� � ������� �
�

����

���� �
�����

�

�ADF is a loop. The following approximations can be used

1. ���� � ���������������������������������
- It defines an acBN with RIP, but it does not contain �ADF (the arc between �� and
�� is missing).

2. ���� � ��������������������������������
 ���
- It defines an acBN without RIP. It contains �ADF. This factorization is computed
by FDA using merging of sub-functions.The last factor is a tri-variate marginal.

3. ���� � �����������������������
 �����������
 ���
- It defines an acBN with RIP which contains �ADF. It uses two tri-variate
marginals. This graph will be obtained by the junction tree algorithm. The ap-
proximation is exact.

4. Original Bethe approach: Compute marginals (�����
 �����
 � � �
 � � � �� by minimiz-
ing ���� � &����"���
- The marginals define a graph with a loop. It needs an iterative method to sample
from the marginals.

5. Given all bi-variate marginals of the unknown distribution ����
 ���
 � � � ����
 ���,
compute the unique ���(�� distribution �ME���
- We have shown that �ME��� � ����, but the computation of �ME��� is exponential.

From a theoretical standpoint the junction tree factorization is the best. But for 2-D
grids this method leads to large clique sizes (�(size of the grid)). We have proposed to
use the FDA factorization. For 2-D grids the sub-function merge algorithm computes
tri-variate marginals in the interior.
Remark: In this paper we have discussed a specific version of the MaxEnt principle,
namely a consistent set of marginals is given as constraints. The original MaxEnt has
been introduced with other classes of constraints, mainly with moments of given func-
tions. If the averages of the sub-functions are taken as the constraints then the MaxEnt
solution is an exponential distribution, in our case the Boltzmann distribution of the
ADF (Jaynes, 1978; Cover and Thomas, 1989)!
The comparison of LFDA and FDA needs a more detailed investigation. This is done
next.

7 How to test EDA algorithms

In our opinion most researchers so far have concentrated on the benchmark method
to show the power of EDA algorithms. A popular benchmark or a difficult function
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Table 2: Number of edges added by LFDA for a uniform random data set (average over
ten runs).

1 � 	 !��2� � 	 !��2� � 	 !��2�
1.00 25 200 0.3 50 400 0.4 100 800 0.8
0.75 25 200 1.5 50 400 3.4 100 800 6.5
0.50 25 200 7.1 50 400 17.2 100 800 45.8
0.25 25 200 38.4 50 400 89.4 100 800 197.6
0.10 25 200 113.1 50 400 254.7 100 800 536.5
0.50 25 10000 0.5 50 10000 4.3 100 10000 10.9

is chosen and the success of the optimization algorithm is shown. The success rate is
usually the percentage of runs computing the optimum. The internal behavior of the
algorithm (e.g. which Bayesian network it has constructed etc.) is not investigated.
Therefore a generalization of the results to other problems is difficult.

We propose to test EDA algorithms in carefully selected steps instead – starting
from theoretically understood problems to more complex ones. Learning the struc-
ture of the Bayesian network from data is a difficult task. Many factors contribute to
the success or failure of the learning method. The Bayesian network community has
investigated this problem intensively. We just mention (Xiang et al., 1997) as a start-
ing point. The test procedure is obvious. A Bayesian network is used to generate the
data, then a Bayesian network is learned from this data. It is measured how close the
learned Bayesian network is to the network generating the data. The results show that
in general large data sets are needed to learn a network which is close to the given one.
We first test LFDA on problems where all variables are independent, i.e �FDA contains
no arcs.

7.1 The penalty weight 1

Schwarz (1978) has computed an optimal penalty factor 1 � ��� under very restrictive
assumptions. (One of the assumptions is 	 � �.) Since we want to use fairly small
population sizes, we investigate the influence of 1 on the computed network in the
neighborhood of 1 � ���. In a first test we generate uniform random data. In this
case the exact network has no edges at all. Table 2 shows empirical results. How is
an optimal 1 defined? It is obvious that no edges will be generated for a large 1. For
very small 1 many edges will be generated. Thus we are looking for a value of 1 at
the transition between these two regimes. Informally speaking, we look for 1tr with
!��2� � � for 1 � 1tr, � � !��2� � �� for 1 � 1tr and !��2� � �� for 1 � 1tr�

The results of table 2 suggest that a value of 1tr � ���� fulfills the requirements
for reasonably large population sizes. The last row shows the results for a very large
population. In this case 1tr � ��� might be indeed the best value.

We have also analyzed the weighting factor in optimization tasks. In many ap-
plications the success of LFDA can dramatically be increased by a suitable weighting
factor. But in general truncation selection with ! � ��� and 1 � ��� is a good starting
point.

7.2 The connection between FDA and LFDA

At first it seems that an internal testing of the learned network of LFDA is impossible,
because the structure of the true network seems to be unknown. But the theory helps.
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FDA can be seen as the infinite sample size limit of any plausible learning method, e.g
LFDA. The relation between FDA and LFDA is difficult to formulate precisely. The
following conjecture is a first try.

Conjecture: Let the empirical distribution ����� be generated by selection from an ADF . Then
for 	 � � the mutual information is the largest between those variables which are contained
in a common sub-function. This means that the graph obtained by connecting the variables with
highest mutual information contains �ADF.

Thus for 	 � � the learning algorithm LFDA has to solve the same problem
as FDA: Given the graph �ADF compute an acyclic Bayesian network. LFDA has an
advantage, because it can use the mutual information to leave out less important arcs.
For some practical problems with a sparsely connected �ADF the graph �FDA contains
�ADF� Thus it does not leave out arcs. The same is true for 2-D grids and LFDA.

Observation: If the ADF is defined on a 2-D grid, then �LFDA for 	 �� contains �ADF�

The above observation depends on the specific learning algorithm. LFDA, for in-
stance, uses a greedy heuristic which adds a single arc at each step. This method has
limitations in constructing the correct network for some artificial cases, as is shown in
(Xiang et al., 1997).

We will discuss the results for three typical benchmark functions. The first function
is separable of order 5 and deceptive.

,Dec5��� �

	�
���

�dec5�����
 � � � 
 ��� � � �
 �
 ��

with

�dec5���
 ��
 ��
 ��
 �� �

����������
���������

��� ��
�

�� � �

��� ��
�

�� � �

��� ��
�

�� � �

��� ��
�

�� � �

��� ��
�

�� � �

��� ��
�

�� � �

(53)

The second function is non-separable. It consists of � overlapping blocks of size 3
(� � �� � �). We have a different function for the last block.

,IsoPeak��� ��

	���
���

�������
 ���
 ������ � 2���	��
 ��	
 ��	��� (54)

���
 .
 3� �

���
��

� �� ��
 .
 3� � ��
 �
 ��

�� � �� ��
 .
 3� � ��
 �
 ��

� otherwise
(55)

2��
 .
 3� �

�
� �� ��
 .
 3� � ��
 �
 ��

� otherwise
(56)

The third class of functions (,3-SAT) are 3-SAT problems with 20 and 50 variables.
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Alg � ,Dec5 ,IsoPeak Alg ,Dec5 ,IsoPeak

FDA 25 400 250 LFDA *3500 900
FDA 50 600 700 LFDA *18000 *5000
FDA 100 800 500
FDA 200 1200 �3500

Table 3: The minimal population size to find the optimum with ��".

Table 3 gives the population size for which the optimum is found with 95% in
20 runs. The selection threshold for truncation selection was set to ! � ���, except
* (! � ���), and � (! � ���). For missing values, the required population size is too large.

The population size needed for finding the optimum is much larger for LFDA than
for FDA. The results of LFDA for the ’easy’ separable function ,Dec5 is especially disap-
pointing. The 3-SAT problem with 20 variables problem was very easy to solve. Both
FDA and LFDA need a population size of 250. But for � � �� the 3-SAT problems turn
out to be very difficult to solve, both for FDA and LFDA. The reason is that the graphs
�ADF are densely connected. For these graphs the computing of good factorizations
with bounded clique size is very difficult or even impossible.
The factorization of the separable function ,Dec5 is obvious. For ,IsoPeak the following
factorization is computed by FDA

���� � �����
 ��
 ��������
 ����� � � � �������
 �������� (57)

Table 4: Characterization of the Bayesian network computed by LFDA in the first gen-
erations. In column arcs comp. the number in brackets denotes the total number of
arcs, the first number gives the number of arcs contained in �ADF. Mutual information
gives the number of arcs in �ADF which are contained in the set of arcs having largest
mutual information (number in brackets). � denotes that the LFDA run did not find the
optimum. Maximum number of parents + � �. ,3-SAT with � � �� was run with very
strong selection (! � ����).

� n arcs N arcs comp. mutual information
�Dec5 50 100 *1000 3(28),5(38),4(34) 3(50),7(50),6(50)

*5000 2(12),2(20),3(23) 3(50),6(50),6(50)
*10000 0(2),4(14),6(20) 4(50),5(50),12(50)
*30000 28(68),63(95),79(105) 20(50),37(50),68(70)

�IsoPeak 24 36 500 16(23),19(23),22(28) 21(28), 23(28),24(28)
5000 34(39),36(39) 36(40), 36(40)

48 72 *2000 44(47),54(59),� � � 13(18) 60(70),62(70),� � � 35(70)
5000 58(63),66(73),69(74) 69(80),73(80),75(80)

74 112 5000 77(85),90(97),98(105) 103(115),109(115),112(115)
�3-SAT 20 141 100 55(65),30(479 90(120),90(120)

500 63(81),65(82),57(70) 90(120),94(120),95(120)
5000 101(108) 115(120)

	 � ���� 50 491 *30000 131(138),131(141),114(135) 175(200),158(200),135(200)
	 � ���� 30000 183(288),195(254),180(225) 180(200),184(200),158(200)

In table 4 we investigate the structure learned by LFDA. Here we see the reason
why LFDA needs a huge population size to find the optimum of ,Dec5. If the popula-
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tion is small, the network computed by LFDA contains a few arcs only. A closer look
shows that this result is not a problem of the learning procedure, but of the computa-
tion of the mutual information. Only for 	 � ����� a reasonable number of the correct
dependencies are contained in the set of the variables with largest mutual information.
The reason can easily be given. If selection is done, then it seems that the sub-function
is almost linear.

The results for ,IsoPeak are very good. The learned network is almost identical to
the network �FDA computed by the sub-function merger algorithm if one observes that

�������
 �������� � �����������������������
 �����

The performance for ,3-SAT with 20 variables is surprisingly good. A closer look at
the network generated by LFDA shows that it contains only �4� of the arcs of �ADF. The
situation changes dramatically for ,3-SAT with 50 variables. The optimum is found only
with very strong selection (! � ����), a large population size (	 � �����), and a small
weight factor (1 � ����. A look into table 4 shows the reason for the bad performance.
LFDA computes a network which leaves out too many arcs of �ADF, despite that the
mutual information gives correct information about the dependencies. Even for 1 � ���
the learned network �LFDA contains only about 180 edges from the 491 edges in �ADF.
The same problem occurs with FDA.
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Figure 4: Trajectories of three runs of the LFDA learning algorithm in the 0'� space.
Maximum number of parents + � �, 	 � ���, 1 varies. The squares mark the end-
points of the runs. The tangents with gradient 1 are also shown.

In figure 4 we analyze the dynamic behavior of our greedy algorithm computing
the network. The search starts with complexity of almost 0 and a small log-likelihood.
The log-likelihood is increased until the increase is equal to the increase in complexity.
We summarize the results of this section.
The learning algorithms face two problems, first to identify the dependent variables, and sec-

ond to compute an acBN which has a bound on the number of parents, but does not leave out
important dependencies.

In this paper we have only discussed a learning algorithm which starts with an
empty network. In the near future we will investigate learning algorithms which start
with the fully connected network and delete the arcs between independent variables. It
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seems that the detection of independent variables is more reliable for small popula-
tion sizes than the test for dependence. Unfortunately the construction of the Bayesian
network is much more complicated. Just deleting arcs might lead to a very difficult
graphical model, which is no Bayesian network at all.

8 Conclusion and Outlook

The efficient estimation and sampling of distributions is a common problem in several
scientific disciplines. Unfortunately each discipline uses a different language to for-
mulate its algorithms. We have identified two principles used for the approximation
– minimum relative entropy and minimum expected log-likelihood ratio. Both princi-
ples are closely related. If � is the distribution to be estimated, then MinRel minimizes
the Kullback-Leibler divergence #$%������ whereas MinLike minimizes #$%������.

We have shown that the basic theory is the same for all algorithms. This theory
deals with the decomposition of graphical models and the computation of approximate
factorizations. If the unknown distribution allows an exact factorization, then both
methods lead to #$% � �, thus they compute the exact distribution.

We have discussed two EDA algorithms in detail. FDA computes a factorization
from the graph representing the structure. If the corresponding graphical model does
not fulfill the assumptions of the factorization theorem the exact distribution is only
approximated. Promising factorizations can be obtained by merging of sub-functions.

LFDA learns the structure from the data. We have discussed some of the problems
of this method. A crucial point for the success seems to be the correct detection of the
important dependencies. Statistical physics uses the most complex approach, selected
marginal distributions are computed by minimizing the distance to the Boltzmann dis-
tribution. The marginals generate a dependence graph with loops. Therefore they are
not sufficient to define a distribution, any factorization ���� using these marginals has
to be normalized (

�
�

���� � ��. But this summation is exponential. We have proposed
an extension of the original approach which circumvents the normalization by using
the marginals of a FDA factorization.

An important improvement of FDA and LFDA could not be discussed, this is the
use of a local hill-climber. This topic is discussed for large bi-partitioning problems
in Mühlenbein and Mahnig (2002a). We have now implemented a local hill-climber
proposed by Lin and Kernighan (1973), which can be used for many combinatorial
optimization problems. It increases the performance of FDA and LFDA on 3-SAT prob-
lems substantially. In fact, problems up to size 250 pose no difficulties. The reason is
that the L-K local optima have a structure which suits LFDA.

The goal of this paper is to inspire researchers to implement some of the methods
presented and make a detailed comparison between the different methods. Especially
interesting would be an implementation of the full Kikuchi method, which has been im-
plemented only for special ADF ’s so far. Whereas the theory of EDA algorithms is very
convincing, we all have to work hard to design numerically efficient EDA algorithms.
Efficiency can only be achieved by having a close look at the different developments in
the neighboring disciplines mentioned.
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