
Population-Based Continuous Optimization,
Probabilistic Modelling and Mean Shift

Marcus Gallagher marcusg@itee.uq.edu.au
School of Information Technology and Electrical Engineering,
University of Queensland, Brisbane QLD 4072, Australia

Marcus Frean marcus@mcs.vuw.ac.nz
School of Mathematical and Computing Sciences,
Victoria University, PO Box 600, Wellington, New Zealand

Abstract
Evolutionary algorithms perform optimization using a population of sample solution
points. An interesting development has been to view population-based optimization
as the process of evolving an explicit, probabilistic model of the search space. This pa-
per investigates a formal basis for continuous, population-based optimization in terms
of a stochastic gradient descent on the Kullback-Leibler divergence between the model
probability density and the objective function, represented as an unknown density of
assumed form. This leads to an update rule that is related and compared with previous
theoretical work, a continuous version of the population-based incremental learning
algorithm, and the generalized mean shift clustering framework. Experimental results
are presented that demonstrate the dynamics of the new algorithm on a set of simple
test problems.
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1 Introduction

Evolutionary Algorithms (EAs) are a broad class of methods that apply mechanisms
inspired by biological evolution to the solution of optimization problems. An opti-
mization problem can be constructed through the representation of a problem solution
as an (n-dimensional) parameter vector, x = (x1, . . . , xn), together with an objective
function f(x) : S → IR, where S is the set of feasible solutions. EAs are applicable
where no further information is available regarding the optimization problem, for ex-
ample derivatives of f . Although the ultimate goal is to find a globally optimal solution
vector

x∗ = argmaxf(x)

in practice, the aim is often to find as good a solution as possible given constraints
such as available computation time (Törn and Žilinskas, 1989). The objective function
may present difficulties such as local maxima, discontinuities or be subject to noise. In
such situations, EAs and other heuristic and meta-heuristic methods have gained wide
popularity and demonstrated impressive performance.

By convention, an EA produces an iterative search process using a population
X = {x1, . . . ,xk} of sample points (candidate solutions). Beginning with a typically
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randomly generated population, each iteration (generation) of the EA involves the ap-
plication of a set of genetic operators (e.g, selection, recombination and mutation) to
evolve the population for the following generation. In this way an EA explores the
search space, using information about the objective function obtained from individual
candidate solutions to direct future search. To take a slightly different view, the popula-
tion (being the only “information” that persists into the next generation) can be thought
of as an implicit model of the potentially promising regions of the search space (Baluja,
1997).

In recent years, a number of researchers have focused specifically on this notion of
modelling the search space. That is, the model is made an explicit part of the search
process, and the algorithm is viewed as performing optimization via the construction
and utilization of an inductive model of the solution space. Although several different
modelling techniques have been adopted from statistics and machine learning (Boyan
et al., 2000), most of the work within the EA community has employed a probabilistic
model of the solution space. These methods have become known as Estimation of Dis-
tribution Algorithms (EDAs) (Larrañaga and Lozano, 2002), Optimization by Building
and Using Probabilistic Models (OBUPM) (Pelikan et al., 2002) or Probabilistic Mod-
elling Evolutionary Algorithms (Gallagher, 2000). To avoid confusion, in this paper we
will refer to these methods as EDAs. A general outline of an EDA is:

1. Initialize the probability model, Q(x).

2. Create a population of points X by sampling from Q(x).

3. Evaluate the objective function f(x) for each point in the population:
F = {f(x1), . . . , f(xk)}.

4. Update Q(x) using X and F , via a Selection operator.

5. Goto step 2 (until termination condition).

The majority of previous work in combining explicit modelling and EAs has fo-
cused on discrete (binary) optimization problems (x ∈ S ⊆ {0, 1}n), for reviews
see (Larrañaga, 2002; Pelikan et al., 2002). One of the first and more widely-known
algorithms of this kind is Population-based incremental learning (PBIL) (Baluja, 1994).
The PBIL model is a probability vector that provides a simple realization of this notion,
modelling solutions encoded as fixed length binary vectors using independent proba-
bilities for each bit value xi ∈ {0, 1}. Subsequent work in binary search spaces has in-
volved using more powerful probabilistic models, which can be considered as Bayesian
networks with various structural (dependency) constraints (Baluja and Davies, 1997;
De Bonet et al., 1997; Etxebrria and Larrañaga, 1999; Pelikan et al., 1999). The motiva-
tion for such work is that discovering and exploiting problem structure (i.e., relation-
ships between variables) is an effective way to develop algorithms that scale favourably
to high-dimensional problems. In general, this is a key goal throughout machine learn-
ing.

Continuous optimization problems (x ∈ S ⊆ IRn) are the focus of several EAs,
notably Evolution Strategies (ES) (Schwefel, 1995) and Evolutionary Programming (Fo-
gel, 1995). At their simplest, these algorithms search by generating a new population of
sample points as Gaussian perturbations of the current point(s). It is possible to make
a connection between continuous EAs such as these and the general EDA framework
above. This is done by focusing on the evolution of a probabilistic model itself (which
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is used to generate candidate solutions) rather than the direct evolution of a finite pop-
ulation of candidate solutions. In fact, it can be shown that simple evolution strategies
and a continuous version of PBIL based on a Gaussian model (Rudlof and Köppen,
1996; Sebag and Ducoulombier, 1998) are equivalent when the PBIL learning rate is set
to its maximum value (Gallagher, 2000). These methods are based on greedy heuristics
aided by the stochastic and distributed nature of the search. A number of other models
based on density estimators have been proposed for continuous problems, such as his-
togram, kernel and mixture models (Bosman and Thierens, 1999; Bosman and Thierens,
2000; Gallagher et al., 1999; Gallagher, 2000). While potential advantages of these ap-
proaches have been demonstrated, few detailed experimental studies and comparisons
of the algorithms are currently available. Furthermore, while the models used in these
algorithms are based on probabilistic methods, theoretical understandings of the be-
haviour of such algorithms are in relatively early stages of development.

This paper explores a theoretical foundation for continuous, population-based op-
timization using probabilistic modelling. In Section 2, optimization is formulated as
incrementally adapting a known probability density Q(x) to approximate an unknown
probability density P (x), where the latter is of an assumed form and depends on the
objective function f(x). The adaptation considered minimizes the Kullback-Leibler di-
vergence between Q(x) and P (x) using a stochastic gradient descent. We compare this
result with a similar existing framework formulated for binary search spaces. The re-
lationship between the framework and existing algorithms (continuous-PBIL and the
(1, λ)-ES) is discussed. In Section 3, wider relationships between the developed frame-
work and the generalized mean shift clustering framework are considered. Section 4
presents some experimental results that illustrate the dynamics of the algorithm com-
pared to the continuous PBIL algorithm and Section 5 provides some conclusions and
discusses directions for future work.

2 Probabilistic Modelling as Gradient Descent

A simple probabilistic model for a multi-dimensional search space IRn assumes that
each variable xi can be modelled independently; i.e. the joint density Q(x) factorizes as

Q(x) =
n∏

j=1

Q(xj);x = (x1, . . . , xn) (1)

Given this restriction, it is sufficient to consider the univariate problem (n = 1). The
optimization task is assumed to be one of unconstrained maximization.

Suppose we have an objective function f(x) where x ∈ IR. Consider a representa-
tion1 of the objective function f(x) using a Boltzmann distribution

P (x) =
1
Z

exp
(

f(x)
T

)
. (2)

For small T (akin to the temperature in physical systems) all the probability mass con-
centrates around the highest points on the surface. One appealing feature of the Boltz-
mann distribution is that it is invariant to arbitrary “vertical” translations of the objec-
tive function f . Z is a normalization factor (the partition function) to constrain P (x) to
be a true probability distribution.

1Such a representation will exist under general conditions.
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Assume that the form of f , and therefore P (x), is unknown. One approach to
the optimization of f is to consider approximating P (x) with some model distribution,
Q(x), whose analytical form is known. For example we could use a Gaussian:

Q(x) = N (µ, v) =
1

(2πv)1/2
exp

[
−‖ x− µ ‖2

2v

]

Now consider the Kullback-Leibler divergence between the known distribution,
Q(x) and the unknown one, P (x):

KQ,P =
∫

x

Q(x) log
Q(x)
P (x)

dx

Given the assumptions above, a well-justified approach is to minimize KQ,P
2. This is

because we search by sampling from our model Q and, with high probability, samples
from Q will have high objective function values when KQ,P is minimized. This opti-
mization problem is over the parameter values of Q (for the Gaussian above, the mean
µ and variance v). Unlike the original optimization problem, KQ,P is differentiable, and
we can consider performing gradient descent on this measure to improve our model by
adapting its parameters. It is easy to check that the gradient with respect to a model
parameter θ is

∂KQ,P

∂θ
=
∫

x

[
1 + log

Q(x)
P (x)

]
∂Q(x)

∂θ
dx (3)

Now, since Q(x) is Gaussian,

log Q(x) = − ‖ x− µ ‖2
2v

− 1
2

log(2πv)

and we can substitute for the log P term in (3). Doing this gives the direction of the
gradient of KQ,P with respect to θ as

∫
x

[
1− ‖ x− µ ‖2

2v
− f(x)

T
− log

(√
2πv

Z

)]
∂Q(x)

∂θ
dx (4)

In the following, we assume that v is given. For the mean µ of the Gaussian for
Q(x), we have

∂Q(x)
∂µ

= Q(x)
(x − µ)

v

Substituting this into (4) gives

∂

∂µ
KQ,P =

∫
x

[
1− ‖ x− µ ‖2

2v
− f(x)

T
− log

(√
2πv

Z

)]
Q(x)

(x − µ)
v

dx

Notice that the term (x − µ) outside the square brackets is odd about µ, but that
all terms in the square brackets apart from f(x) are even about µ in x, as is Q(x) it-
self. Thus each term apart from that involving f(x) is an integral over all x of an odd
function, which is zero since a Gaussian goes to zero faster than any of the other terms.

2Note this is not the same as the divergence KP,Q, which is the form more commonly used in machine
learning algorithms.
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In particular this disposes of the unknown normalization Z that would otherwise be
troublesome. The gradient now simplifies to

− 1
vT

∫
x

Q(x) (x− µ) f(x) dx

Everything in this equation is weighted by Q(x), so a stochastic approximation to the
gradient can be obtained by replacing the integral with a collection of samples X =
{x1, . . . , xk} from Q(x),

∂

∂µ
KQ,P ≈ − 1

kvT

∑
xi∈X

(xi − µ) f(xi)

This approximation improves as the number of samples increases, and its expected
value is unaffected if we shift all f by a constant amount. Here we use f̂(x) = f(x)− f̄ ,
where f̄ = 1

k

∑k
i=1 f(xi) is the sample mean of f in X .

The above suggests an iterative procedure for gradient descent of KQ,P (the minus
sign disappears from the previous expression, since we aim to move in the directions
of negative gradient). At each iteration (i.e., generation) we take some samples from
Q(x), evaluate f(xi) for each of them, and then move the mean µ towards each sample
by an amount proportional to its objective function value,

∆µ = α
∑

xi∈X

(xi − µ) f̂(xi) (5)

where α plays the role of a learning rate.
This simple algorithm performs stochastic gradient descent (with respect to µ) in

the Kullback-Leibler divergence between a multimodal probability distribution which
can be made arbitrarily sharply peaked at the maximum of f , and a unimodal (here
Gaussian) approximation to that distribution. We will refer to this algorithm below as
PKLD.

Note that, unfortunately the gradient with respect to the model variance v does
not simplify in this way: in particular the term involving the normalization Z does
not vanish. This means that in the case of the variance, no simple expression for the
exact gradient is available. Whilst estimates of the gradient such as those obtained by
MCMC or variational techniques may be possible, in this paper we simply take v to be
a constant.

2.1 Relationship to Previous Work

There is a close relationship between the framework developed above and work done
independently by Berny (2001), although this previous work is developed for binary
search spaces, and the derivation is somewhat different (see (Berny, 2000a; Berny,
2000b) for other theoretical insights). In this section we compare and contrast the frame-
work developed above to this previous work. González et al. give a different analysis
of PBIL in discrete spaces (González et al., 2000; González et al., 2002).

Berny develops a framework that casts combinatorial optimization as a statisti-
cal learning task, to construct a probability distribution model that minimizes one of
two criteria. Using our notation from above, the first criteria considered is the KL di-
vergence between a known model distribution and an unknown distribution that is
dependent on f , of the form given in (2) above. The KL divergence in discrete form is
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used, and under the assumptions that: (a) the temperature parameter, T is a constant;
(b)
∑

x∈S Q(x) = 1 (where S is the set of all possible bitstrings, x), the problem of mini-
mizing the KL divergence is reduced to minimizing the “free energy” of the system, F ,
where

F = E − TS (6)

=
∑
x∈S

Q(x)f(x) + T ×
∑
x∈S

Q(x) log Q(x), (7)

KQ,P = log Z +
1
T

(E − TS) (8)

F is then minimized through a stochastic discrete time dynamical system of the form

dθ

dt
+

∂F

∂θ
= 0

where θ is a given parameter of the model probability distribution. Under this dis-
crete formulation, the notion of a population disappears from the resulting algorithm;
a model parameter θ is updated in an “on-line” fashion based on a single sample (and
its cost function value) from the model.

Berny’s update rule for free energy minimization performs stochastic gradient de-
scent in the continuous parameter space of Q(x). Two specific forms for Q(x) are then
considered: a Bernoulli distribution (suitable for binary search spaces) and the log of
a multivariate Gaussian distribution. Because the work was concerned with binary
search spaces, samples drawn from Q(x) need to be discretized (i.e. for each bit, xi → x′

i

where x′
i = 1 if xi > 0.5 and x′

i = 0 otherwise). When optimizing in continuous space
this is not of concern and samples from Q(x) can be used directly.

In the above we have considered only the derivation of an update rule for the mean
vector of a Gaussian distribution. Berny’s update rule for the (log) mean vector is

∆µ = −α(x− µ)(f(x) + T (1 + log Q(x))). (9)

where α is a learning rate parameter. Comparing (9) with (5), it can be seen that our up-
date rule is very similar, except that the T (1 + log Q(x)) term disappears in our deriva-
tion and our update is based on a set of samples from the model.

Berny goes on to derive an update rule for the full covariance matrix of a mul-
tivariate Gaussian model Q(x). He also points out a number of practical difficulties
associated with the implementation of adapting the covariance matrix in an algorithm.

Despite these details, we agree that the fundamental difference between an algo-
rithm based on stochastic gradient descent of the KL divergence and existing EDAs
is that the objective function appears explicitly in the update rule, rather than being
made implicit via selection (Berny, 2001). The potential advantages of this approach
are discussed below.

2.2 PBIL and the (1, λ)-Evolution Strategy as an approximation of Gradient
Descent on KQ,P

When viewed as a probabilistic modelling algorithm (Gallagher, 2000), the (1, λ)-ES
generates a population of λ candidate solutions at time t, and updates the mean, µ of
the Gaussian model (with constant variance v) to the single population point with the
best (here maximum) corresponding objective function value

Qt(x) = N (µt−1, v), µt−1 = argmax({f(x1), . . . , f(xk)}) (10)
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Similarly, continuous-PBIL updates µt based on the learning rule

µt = (1 − α)µt−1 + α argmax({f(x1), . . . , f(xk)}) (11)

Comparing (10) and (11) with (5) above, PBIL and the (1, λ)-ES can be seen as
performing a crude approximation of the gradient descent of KQ,P described in the
framework above. The distinguishing feature of the PKLD update rule is the absence of
a selection operator3. Instead of utilizing all points in the current population (weighted
by their objective function values), only the best point in the current population is se-
lected (ignoring the single corresponding f value). This approximation may be satis-
factory when the objective function value of the best sample in the current population
is significantly greater than those of the rest of the population (an outlier in that sample
of f values), but there is no reason to expect that this would be likely in practice. In
the case of PBIL (11) the effect of this is offset by updating µt using an averaging trace
of values at previous time steps. An extension to the PBIL learning rule that has been
used is to update the model based on a subset of the population, i.e. to move the mean
vector in the direction of the average of the best few samples and in the negative di-
rection of the average of the worst few samples in the current population (Baluja, 1997;
Sebag and Ducoulombier, 1998). Utilizing the best few samples is in fact a better ap-
proximation to the stochastic gradient descent of KQ,P as described above. It has also
been shown that moving away from the worst few samples is also an improvement to
this same approximation (?). Note that in this case it must be assumed that the mean of
the objective function values is zero (as in Equation 5 above) and that negative values
are exponentiated before being used in the update. In any case, most samples are still
disregarded in this type of scheme. It is worth noting that in implementation, when
more than one of the best and/or worst samples are used, the population must be at
least partially ordered according to f values, to determine these best/worst subsets.
This is an additional computational cost which may be significant for large population
sizes4. Finally, in this version of PBIL the f values corresponding to the subset of sam-
ples used to update the model are not used: the selected samples are unweighted in
the learning rule summation. An alternative way to think about this is that the real-
valued function f(x) is arbitrarily thresholded to a binary value, with the number of
ones being the number of “best” sample points utilized.

3 Comparison with Existing Methods and Mean Shift Clustering

In this section, we relate PKLD and the framework developed in Section 2 to a frame-
work for clustering algorithms known as Generalized Mean Shift (Fukunaga and
Hostetler, 1975; Cheng, 1995). In the simplest case, the mean shift algorithm clus-
ters a set of data by (simultaneously) moving each point towards the sample mean
x̄ = 1

k

∑
xi of the data set

xi ∝ xi − x̄ (12)

Generalizing this idea, the nature of the clustering can be varied through the use of
a kernel function over points in the data set. This allows the movement of points to
be dependent on a subset of the data, or to cause points to be weighted in the cal-
culation of the sample mean. For example, a “flat” kernel of radius r calculates the
mean value of points that are less than or equal to a distance r away from the given

3Thereby in some sense removing the final “genetic operator from the genetic algorithm” (Baluja, 1994).
4Another alternative is to consider a different selection scheme, e.g. Boltzmann or fitness proportional

selection.
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sample point to be shifted; points outside this radius do not affect the shift of the sam-
ple point. Another example is a Gaussian kernel, that weights points in the sample
mean calculation according to a Gaussian with mean at the given sample point to be
shifted. Intuitively, these kernels implement clustering which is localized. The mean
shift framework also allows for the contribution of data points in the sample mean cal-
culation to be weighted by some function, w(x). Finally, the framework considers the
case where the data is partitioned into two subsets, P and T , where each element of T
is mean-shifted based on the basis of P which itself remains fixed. If T is P , the mean
shift algorithm is considered a blurring process of the data. The well-known k-means
clustering algorithm can be seen as a limiting case of the mean shift algorithm (Cheng,
1995).

Hence, generalized mean shift moves a data point x to a new location, x′, using

x← x′; x′ =

∑
xi∈X K(xi − x)w(xi)xi∑
xi∈X K(xi − x)w(xi)

(13)

where K is the kernel function, the xi are elements of the data setP and w is the weight-
ing function. The algorithm shifts points simultaneously in an iterative procedure.

In the case of a Gaussian kernel function, it can be shown (Cheng, 1995) that the
mean shift algorithm of (13) moves in the gradient direction of the density estimate at
x given by ∑

xi∈X

K(xi − x)w(xi) (14)

This confirms the intuition that clustering a data set, by simultaneously adjusting
points towards the sample mean of the Gaussian kernel density estimator defined over
that data set, will move the data towards local modes of the density estimate.

It is possible to closely relate generalized mean shift to the framework developed
in Section 2. In fact, Cheng briefly considers a global optimization algorithm based on
mean shift, which involves using the objective function as the weighting function in
into (14), i.e. w(xi) = f(xi) (Cheng, 1995)5. Assuming an approximately uniform dis-
tribution of the points in P (with, for example, T = P initially), the algorithm will find
multiple local optima based on the given (weighted) kernel density estimator. Now,
compare this idea with the framework of Section 2 (Equation 5). Initially, ignore the f
term in the update rule. While there is no kernel function in our framework, the pop-
ulation at each iteration is generated from a Gaussian centered at the current model
(mean) value. The density of points in the population will reflect this Gaussian distrib-
ution, which is approximately (given a finite number of samples) the same as weighting
a uniform distribution of points by a Gaussian kernel function.

Next, consider the model mean vector µ as a (singular) data set T , and the pop-
ulation generated from Q(x) at a given iteration of the algorithm as the data set P . It
is evident that Equation 14 will, in a single iteration, move Q(x) towards the sample
mean of P , which is equivalent to the mean shift procedure. However, because our
PKLD algorithm generates a new population at each iteration (that itself depends on
the updated T ), the generalized mean shift framework cannot describe the algorithm
over a sequence of iterations. This reasoning is not changed by including the objec-
tive function weighting term in the update rule for both procedures. In our approach,
the model used to approximate the unknown distribution is explicit, and the unknown
distribution is explicitly a function of f(x). The basis of mean shift is a kernel density

5To our knowledge, no further investigations or evaluation of this algorithm have been carried out.
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Figure 1: The mean (left) and standard deviation (right) of the evolution of the learning
curve for the model parameter, µ on the sphere function. Curves are for the different
population sizes indicated.

estimator, and its application to optimization is achieved implicitly via the weighting
of component kernels.

4 Experimental Results

In this section we explore the performance of the proposed gradient descent method,
PKLD and compare it to the standard continuous-PBIL algorithm in some simple prob-
lem settings. These experiments are not intended to provide a comprehensive empirical
evaluation of the problem-solving performance of PKLD. Rather, since the contribution
of the paper is mainly theoretical, we intend to gain some understanding of the dynam-
ics of the algorithm in practice.

Firstly, consider a “flat” objective function, f(x) = c for some constant value c (e.g.
c = 1). Ignoring the f̂(xi) term and learning rate α, and remembering that the samples
xi are generated from a Gaussian with mean µ, Equation 5 will implement a simple
random walk with Gaussian distributed stepsizes. This component of the equation
will result in a relatively noisy trajectory about the mean value, and may wander an
arbitrary distance from the mean value, but will on average be a distance

√
σ from the

mean. The f̂(xi) term in Equation 5 will bias the stochastic process towards higher
objective function values, while the constant α will scale down the fluctuations of the
update values.

The parabolic “sphere” function, f(x) = x2 is often used in studies of ESs, partly
because it is a smooth, unimodal function and as such is useful for studying the basic
dynamics of a stochastic algorithm. We used a 1-D sphere function to study the influ-
ence of the two parameters of PKLD, the learning rate, α and the population size, µ on
the progress of the algorithm in terms of the updating of the model parameter, µ. Fig-
ure 1 summarizes the convergence of µ over 500 generations for population sizes of 1,
10 and 100. The learning rate in each case was fixed at α = 0.1. Figure 1 left and right
show the mean and standard deviation respectively, over 100 separate runs of the algo-
rithm from a fixed starting point (µ = 3.0). As expected, an increase in population size
leads to higher stability and lower fluctuations in these learning curves, as the estimate
of the gradient of the Kullback-Liebler divergence improves (see Section 2). Figure 2
shows a similar pair of curves for different values of learning rate (α = 0.01, 0.1, 1.0)
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Figure 2: The mean (left) and standard deviation (right) of the evolution of the learning
curve for the model parameter, α on the sphere function. Curves are for the different
learning rate values indicated.

with a population size of 100. Considering that the Kullback-Liebler divergence for
this simple function will be a smooth, unimodal function of µ, the results of these ex-
periments can be understood in terms of a stochastic gradient descent on a unimodal
surface with finite step size (where here, population size controls the quality of the sto-
chastic approximation and α controls the step size). Hence, increasing the value of α
leads to oscillatory behaviour about the optimum point, and there will be some critical
value beyond which the descent will diverge (see, e.g.(Hertz et al., 1991)).

The final set of experiments considered the performance of PKLD on a non-smooth
function, and compares its dynamics with the standard continuous-PBIL algorithm.
Figure 3 (left) illustrates the test functions used, based on an inverted parabolic bowl
(f1) and corrupting this function with different levels of Gaussian (white) noise (σ =
1.0 for f2 and σ = 4.0 for f3). Note that for f2 and f3, the noise is additive, so the
actual value returned by the objective function changes with successive evaluations.
Intuitively, increasing the variance of the noise corrupting f leads to a more difficult
optimization problem. The evolution of the mean of the Gaussian model distribution
tends towards the optimum point of the objective function. At the optimum, sampling
from the distribution will yield the best possible points (meaning those with the highest
objective function values), given its fixed form and variance.

For each algorithm, the model (mean value) was again initialized to 3.0 and the
population size was set to 10. Trial and error was used to identify values for the ad-
justable parameters that gave roughly the same average convergence behaviour on f1:
for both algorithms the variance of the Gaussian model v was set to 1.0, while for PBIL,
α = 0.05 and for PKLD, α = 0.01.

Figure 3 (right) shows the result of running the algorithms on f1, in terms of the
evolution of the mean vector of the Gaussian model. The mean and standard deviation
over 20 trials are shown. It is clear that the convergence of the mean value is very
smooth for PBIL compared to PKLD (“KLD” in the figures), where the random walk-
like behaviour leads to a noisier and more variable convergence. Both algorithms are
able to approach the optimal mean value, 0, within 100-200 generations. Once found,
the mean value remains close to the optimal value under both algorithms, but PKLD is
much more irregular. In hindsight, PBIL seems to be a better algorithm to optimize a
smooth, unimodal function such as f1.
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Figure 3: Left: Three test functions used in the simulations. f1: An inverted parabolic
bowl (thin line); f2 (thick line): f1 with added Gaussian noise (σ = 1); f3 (dashed line):
f1 with added Gaussian noise (σ = 4). Right: Evolution of the mean parameter for the
PKLD and PBIL algorithms, on the smooth bowl function (f1). Curves shown are the
average (solid lines) and upper and lower standard deviation (dashed lines) of results
for each algorithm, over 20 trials.

In the next two experiments, all parameter values are held fixed, but the objective
functions f2 and f3 are used. Results are shown in Figures 4 (left) and 4 (right) re-
spectively. Comparing these results with Figure 3 (right), two main trends are evident.
Firstly, the presence of noise in the objective function has a dramatic impact on the con-
vergence of PBIL. The mean vector takes much longer to approach the optimal value,
and its convergence is less stable and more stochastic (mean and standard deviation
curves). In contrast, PKLD is largely unaffected by the presence of noise in the objec-
tive function, approaching the optimal mean value, on average, in a similar amount
of time for f1, f2 and f3. For the very noisy function f3, the mean and standard de-
viation curves for PKLD show some deterioration, but the algorithm clearly provides
faster convergence on f3 than PBIL.

5 Conclusion

This paper has developed a theoretical framework to interpret the dynamics of continu-
ous evolutionary algorithms based on probabilistic modelling. Under this framework,
the basic continuous-PBIL algorithm and the (1, λ)-ES approximate a stochastic gradi-
ent descent of the Kullback-Leibler divergence between the chosen probability model
and an assumed target density. The framework also leads to an alternative algorithm
assuming a simple Gaussian probability model, which uses all of the information ob-
tained during search (i.e. the entire population and its associated objective function
values) to update the probability model. We have shown that the framework comple-
ments an existing theoretical framework developed for discrete model-based EAs, and
also with the generalised mean shift framework developed in the context of clustering
algorithms. The experimental results presented illustrate the stability and fluctuations
of the algorithm on a simple problem, and indicate that the proposed algorithm has a
robustness to noise in the objective function, and has a more stochastic behaviour than
PBIL.

There are several interesting possibilities for future work using the ideas presented
in this paper. A comprehensive empirical study of the PKLD algorithm is needed to
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Figure 4: Left: Evolution of the mean parameter for the PKLD and PBIL algorithms,
on the bowl function with moderate noise (f2). Curves shown are the average (solid
lines) and upper and lower standard deviation (dashed lines) of results for each algo-
rithm, over 20 trials. Right: Evolution of the mean parameter for the PKLD and PBIL
algorithms, on the bowl function with high noise (f3). Curves shown are the average
(solid lines) and upper and lower standard deviation (dashed lines) of results for each
algorithm, over 20 trials.

investigate its performance at solving more challenging problems (including multi-
dimensional and real-world problems), as well as investigating the behaviour of the
method across a range of values of its adjustable parameters. From a more theoretical
perspective, we are interested in exploring the application of the framework to more
flexible probability models. The relationship to mean shift clustering also deserves fur-
ther investigation, particularly in the context of existing EDAs based on kernel and
Gaussian mixture model density estimators (Bosman and Thierens, 1999; Bosman and
Thierens, 2000; Gallagher et al., 1999; Gallagher, 2000).
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